def _preinitialize(self):
        """
    Setup mesh and integrator and preinitialize integrator.
    """
        from spatialdata.units.Nondimensional import Nondimensional
        normalizer = Nondimensional()
        normalizer._configure()

        # Setup mesh
        cs = CSCart()
        cs.inventory.spaceDim = 2
        cs._configure()
        from pylith.meshio.MeshIOAscii import MeshIOAscii
        importer = MeshIOAscii()
        importer.inventory.filename = "data/tri3.mesh"
        importer.inventory.coordsys = cs
        importer._configure()
        mesh = importer.read(debug=False, interpolate=False)

        # Setup material
        from pylith.feassemble.FIATSimplex import FIATSimplex
        cell = FIATSimplex()
        cell.inventory.dimension = 2
        cell.inventory.degree = 1
        cell.inventory.order = 1
        cell._configure()
        from pylith.feassemble.Quadrature import Quadrature
        quadrature = Quadrature()
        quadrature.inventory.cell = cell
        quadrature._configure()

        from spatialdata.spatialdb.SimpleDB import SimpleDB
        from spatialdata.spatialdb.SimpleIOAscii import SimpleIOAscii
        iohandler = SimpleIOAscii()
        iohandler.inventory.filename = "data/elasticplanestrain.spatialdb"
        iohandler._configure()
        db = SimpleDB()
        db.inventory.label = "elastic plane strain"
        db.inventory.iohandler = iohandler
        db._configure()

        from pylith.materials.ElasticPlaneStrain import ElasticPlaneStrain
        material = ElasticPlaneStrain()
        material.inventory.label = "elastic plane strain"
        material.inventory.id = 0
        material.inventory.dbProperties = db
        material.inventory.quadrature = quadrature
        material._configure()

        from pylith.meshio.OutputMatElastic import OutputMatElastic
        material.output = OutputMatElastic()
        material.output._configure()
        material.output.writer._configure()

        # Setup integrator
        integrator = ElasticityImplicitLgDeform()
        integrator.preinitialize(mesh, material)
        return (mesh, integrator)
Пример #2
0
    def test_preinitialize(self):
        """
    Test preinitialize().

    WARNING: This is not a rigorous test of initialize() because we
    don't verify the results.
    """
        from pylith.feassemble.FIATSimplex import FIATSimplex
        cell = FIATSimplex()
        cell.inventory.dimension = 2
        cell.inventory.order = 1
        cell.inventory.degree = 1
        cell._configure()

        from pylith.feassemble.Quadrature import Quadrature
        quadrature = Quadrature()
        quadrature.inventory.cell = cell
        quadrature.inventory.minJacobian = 1.0e-4
        quadrature._configure()

        from spatialdata.spatialdb.SimpleDB import SimpleDB
        from spatialdata.spatialdb.SimpleIOAscii import SimpleIOAscii
        iohandler = SimpleIOAscii()
        iohandler.inventory.filename = "data/matinitialize.spatialdb"
        iohandler._configure()
        db = SimpleDB()
        db.inventory.label = "material properties"
        db.inventory.iohandler = iohandler
        db._configure()

        from pylith.materials.ElasticPlaneStrain import ElasticPlaneStrain
        material = ElasticPlaneStrain()
        material.inventory.quadrature = quadrature
        material.inventory.dbProperties = db
        material.inventory.label = "my material"
        material.inventory.id = 54
        material._configure()

        from spatialdata.geocoords.CSCart import CSCart
        cs = CSCart()
        cs.inventory.spaceDim = 2
        cs._configure()

        from spatialdata.units.Nondimensional import Nondimensional
        normalizer = Nondimensional()
        normalizer._configure()

        from pylith.meshio.MeshIOAscii import MeshIOAscii
        importer = MeshIOAscii()
        importer.inventory.filename = "data/twoelems.mesh"
        importer.inventory.coordsys = cs
        importer._configure()
        mesh = importer.read(debug=False, interpolate=False)

        material.preinitialize(mesh)

        # No test of result.
        return
  def _preinitialize(self):
    """
    Setup mesh and integrator and preinitialize integrator.
    """
    from spatialdata.units.Nondimensional import Nondimensional
    normalizer = Nondimensional()
    normalizer._configure()

    # Setup mesh
    cs = CSCart()
    cs.inventory.spaceDim = 2
    cs._configure()
    from pylith.meshio.MeshIOAscii import MeshIOAscii
    importer = MeshIOAscii()
    importer.inventory.filename = "data/tri3.mesh"
    importer.inventory.coordsys = cs
    importer._configure()
    mesh = importer.read(debug=False, interpolate=False)

    # Setup material
    from pylith.feassemble.FIATSimplex import FIATSimplex
    cell = FIATSimplex()
    cell.inventory.dimension = 2
    cell.inventory.degree = 1
    cell.inventory.order = 1
    cell._configure()
    from pylith.feassemble.Quadrature import Quadrature
    quadrature = Quadrature()
    quadrature.inventory.cell = cell
    quadrature._configure()
    
    from spatialdata.spatialdb.SimpleDB import SimpleDB
    from spatialdata.spatialdb.SimpleIOAscii import SimpleIOAscii
    iohandler = SimpleIOAscii()
    iohandler.inventory.filename = "data/elasticplanestrain.spatialdb"
    iohandler._configure()
    db = SimpleDB()
    db.inventory.label = "elastic plane strain"
    db.inventory.iohandler = iohandler
    db._configure()

    from pylith.materials.ElasticPlaneStrain import ElasticPlaneStrain
    material = ElasticPlaneStrain()
    material.inventory.label = "elastic plane strain"
    material.inventory.id = 0
    material.inventory.dbProperties = db
    material.inventory.quadrature = quadrature
    material._configure()
    
    from pylith.meshio.OutputMatElastic import OutputMatElastic
    material.output = OutputMatElastic()
    material.output._configure()
    material.output.writer._configure()

    # Setup integrator
    integrator = ElasticityImplicitLgDeform()
    integrator.preinitialize(mesh, material)
    return (mesh, integrator)
Пример #4
0
  def test_preinitialize(self):
    """
    Test preinitialize().

    WARNING: This is not a rigorous test of initialize() because we
    don't verify the results.
    """
    from pylith.feassemble.FIATSimplex import FIATSimplex
    cell = FIATSimplex()
    cell.inventory.dimension = 2
    cell.inventory.order = 1
    cell.inventory.degree = 1
    cell._configure()

    from pylith.feassemble.Quadrature import Quadrature
    quadrature = Quadrature()
    quadrature.inventory.cell = cell
    quadrature.inventory.minJacobian = 1.0e-4
    quadrature._configure()

    from spatialdata.spatialdb.SimpleDB import SimpleDB
    from spatialdata.spatialdb.SimpleIOAscii import SimpleIOAscii
    iohandler = SimpleIOAscii()
    iohandler.inventory.filename = "data/matinitialize.spatialdb"
    iohandler._configure()
    db = SimpleDB()
    db.inventory.label = "material properties"
    db.inventory.iohandler = iohandler
    db._configure()

    from pylith.materials.ElasticPlaneStrain import ElasticPlaneStrain
    material = ElasticPlaneStrain()
    material.inventory.quadrature = quadrature
    material.inventory.dbProperties = db
    material.inventory.label = "my material"
    material.inventory.id = 54
    material._configure()

    from spatialdata.geocoords.CSCart import CSCart
    cs = CSCart()
    cs.inventory.spaceDim = 2
    cs._configure()

    from spatialdata.units.Nondimensional import Nondimensional
    normalizer = Nondimensional()
    normalizer._configure()

    from pylith.meshio.MeshIOAscii import MeshIOAscii
    importer = MeshIOAscii()
    importer.inventory.filename = "data/twoelems.mesh"
    importer.inventory.coordsys = cs
    importer._configure()
    mesh = importer.read(debug=False, interpolate=False)
    
    material.preinitialize(mesh)

    # No test of result.
    return
Пример #5
0
  def test_initialize(self):
    """
    Test initialize().
    """
    cell = FIATSimplex()
    cell.inventory.dimension = 2
    cell.inventory.order = 1
    cell._configure()

    scalarType = None
    from pylith.utils.utils import sizeofPylithScalar
    if 8 == sizeofPylithScalar():
      scalarType = numpy.float64
    elif 4 == sizeofPylithScalar():
      scalarType = numpy.float32
    else:
      raise ValueError("Unknown size for PylithScalar.")

    verticesE = numpy.array([ [-1.0, -1.0],
                              [+1.0, -1.0],
                              [-1.0, +1.0] ])
    quadPtsE = numpy.array( [[-1.0/3.0, -1.0/3.0]], dtype=scalarType )
    quadWtsE = numpy.array( [2.0], dtype=scalarType )

    # Compute basis functions and derivatives at quadrature points
    basisE = numpy.zeros( (1, 3), dtype=scalarType)
    basisDerivE = numpy.zeros( (1, 3, 2), dtype=scalarType)
    iQuad = 0
    for x in quadPtsE:
      basisE[iQuad] = numpy.array([N0(x), N1(x), N2(x)], dtype=scalarType).reshape( (3,) )
      deriv = numpy.array([[N0p(x), N0q(x)], [N1p(x), N1q(x)], [N2p(x), N2q(x)]], dtype=scalarType)      
      basisDerivE[iQuad] = deriv.reshape((1, 3, 2))
      iQuad += 1

    quadrature = Quadrature()
    quadrature.inventory.cell = cell
    quadrature._configure()

    quadrature.preinitialize(spaceDim=2)
    quadrature.initialize()

    self.assertEqual(2, quadrature.cellDim())
    self.assertEqual(2, quadrature.spaceDim())
    self.assertEqual(3, quadrature.numBasis())
    self.assertEqual(1, quadrature.numQuadPts())

    from pylith.utils.utils import TestArray_checkScalar

    self.failUnless(TestArray_checkScalar(basisE.ravel(), quadrature.basis()))
    self.failUnless(TestArray_checkScalar(basisDerivE.ravel(), quadrature.basisDerivRef()))
    self.failUnless(TestArray_checkScalar(quadPtsE.ravel(), quadrature.quadPtsRef()))
    self.failUnless(TestArray_checkScalar(quadWtsE.ravel(), quadrature.quadWts()))

    quadrature.initializeGeometry()
    return
Пример #6
0
  def test_initialize_tet4(self):
    """
    Test initialize() with tet4 cell.
    """
    cell = FIATSimplex()
    cell.inventory.dimension = 3
    cell.inventory.degree = 1
    cell._configure()
    cell.initialize(spaceDim=3)

    cellE = Tet4()
    self._checkVals(cellE, cell)
    from pylith.feassemble.CellGeometry import GeometryTet3D
    self.failUnless(isinstance(cell.geometry, GeometryTet3D))
    return
Пример #7
0
  def test_initialize_tri3_collocated(self):
    """
    Test initialize() with tri3 cell.
    """
    cell = FIATSimplex()
    cell.inventory.dimension = 2
    cell.inventory.degree = 1
    cell.inventory.collocateQuad = True
    cell._configure()
    cell.initialize(spaceDim=2)

    cellE = Tri3Collocated()
    self._checkVals(cellE, cell)
    from pylith.feassemble.CellGeometry import GeometryTri2D
    self.failUnless(isinstance(cell.geometry, GeometryTri2D))
    return
Пример #8
0
  def test_initialize_line3(self):
    """
    Test initialize() with line3 cell.
    """
    cell = FIATSimplex()
    cell.inventory.dimension = 1
    cell.inventory.degree = 2
    cell.inventory.order  = 2
    cell._configure()
    cell.initialize(spaceDim=2)

    cellE = Line3()
    self._checkVals(cellE, cell)
    from pylith.feassemble.CellGeometry import GeometryLine2D
    self.failUnless(isinstance(cell.geometry, GeometryLine2D))
    return
Пример #9
0
  def test_initialize_line2_collodated(self):
    """
    Test initialize() with line2 cell.
    """
    cell = FIATSimplex()
    cell.inventory.dimension = 1
    cell.inventory.degree = 1
    cell.inventory.order  = 1
    cell.inventory.collocateQuad = True
    cell._configure()
    cell.initialize(spaceDim=1)

    cellE = Line2Collocated()
    self._checkVals(cellE, cell)
    from pylith.feassemble.CellGeometry import GeometryLine1D
    self.failUnless(isinstance(cell.geometry, GeometryLine1D))
    return
Пример #10
0
  def test_simplex3D(self):
    """
    Test setup of quadrature for simplex cells for a 3-D problem.
    """
    spaceDim = 3

    cell = FIATSimplex()
    cell.inventory.dimension = 3
    cell._configure()
    
    quadrature = Quadrature()
    quadrature.inventory.cell = cell
    quadrature._configure()

    quadrature.preinitialize(spaceDim)
    self.assertEqual(3, quadrature.cellDim())
    self.assertEqual(spaceDim, quadrature.spaceDim())
    self.assertEqual(4, quadrature.numBasis())
    return
Пример #11
0
    def test_simplex3D(self):
        """
    Test setup of quadrature for simplex cells for a 3-D problem.
    """
        spaceDim = 3

        cell = FIATSimplex()
        cell.inventory.dimension = 3
        cell._configure()

        quadrature = Quadrature()
        quadrature.inventory.cell = cell
        quadrature._configure()

        quadrature.preinitialize(spaceDim)
        self.assertEqual(3, quadrature.cellDim())
        self.assertEqual(spaceDim, quadrature.spaceDim())
        self.assertEqual(4, quadrature.numBasis())
        return
Пример #12
0
    def test_initialize(self):
        """
    Test constructor.
    """
        spaceDim = 2

        from pylith.feassemble.FIATSimplex import FIATSimplex
        cell = FIATSimplex()
        cell.inventory.dimension = 2
        cell.inventory.degree = 2
        cell.inventory.order = 2
        cell._configure()

        from pylith.feassemble.Quadrature import Quadrature
        quadrature = Quadrature()
        quadrature.inventory.cell = cell
        quadrature._configure()
        quadrature.preinitialize(spaceDim)
        quadrature.initialize()

        filter = CellFilterAvg()
        filter._configure()
        filter.initialize(quadrature)
        return
Пример #13
0
  def test_initialize(self):
    """
    Test constructor.
    """
    spaceDim = 2
    
    from pylith.feassemble.FIATSimplex import FIATSimplex
    cell = FIATSimplex()
    cell.inventory.dimension = 2
    cell.inventory.degree = 2
    cell.inventory.order = 2
    cell._configure()

    from pylith.feassemble.Quadrature import Quadrature
    quadrature = Quadrature()
    quadrature.inventory.cell = cell
    quadrature._configure()
    quadrature.preinitialize(spaceDim)
    quadrature.initialize()

    filter = CellFilterAvg()
    filter._configure()
    filter.initialize(quadrature)
    return
Пример #14
0
  def test_shape(self):
    """
    Test _getShape().
    """
    cell = FIATSimplex()

    from FIAT.reference_element import default_simplex

    cell.cellDim = 1
    shape = cell._getShape()
    self.assertEqual(default_simplex(1).get_shape(), shape.get_shape())

    cell.cellDim = 2
    shape = cell._getShape()
    self.assertEqual(default_simplex(2).get_shape(), shape.get_shape())

    cell.cellDim = 3
    shape = cell._getShape()
    self.assertEqual(default_simplex(3).get_shape(), shape.get_shape())
    return
Пример #15
0
  def test_initialize_tet4(self):
    """
    Test initialize() with tet4 cell.
    """
    cell = FIATSimplex()
    cell.inventory.dimension = 3
    cell.inventory.degree = 1
    cell._configure()
    cell.initialize(spaceDim=3)

    cellE = Tet4()
    self._checkVals(cellE, cell)
    from pylith.feassemble.CellGeometry import GeometryTet3D
    self.failUnless(isinstance(cell.geometry, GeometryTet3D))
    return
Пример #16
0
  def test_initialize_tri3_collocated(self):
    """
    Test initialize() with tri3 cell.
    """
    cell = FIATSimplex()
    cell.inventory.dimension = 2
    cell.inventory.degree = 1
    cell.inventory.collocateQuad = True
    cell._configure()
    cell.initialize(spaceDim=2)

    cellE = Tri3Collocated()
    self._checkVals(cellE, cell)
    from pylith.feassemble.CellGeometry import GeometryTri2D
    self.failUnless(isinstance(cell.geometry, GeometryTri2D))
    return
Пример #17
0
  def test_shape(self):
    """
    Test _getShape().
    """
    cell = FIATSimplex()

    from FIAT.reference_element import default_simplex

    cell.cellDim = 1
    shape = cell._getShape()
    self.assertEqual(default_simplex(1).get_shape(), shape.get_shape())

    cell.cellDim = 2
    shape = cell._getShape()
    self.assertEqual(default_simplex(2).get_shape(), shape.get_shape())

    cell.cellDim = 3
    shape = cell._getShape()
    self.assertEqual(default_simplex(3).get_shape(), shape.get_shape())
    return
Пример #18
0
    def test_initialize(self):
        """
    Test initialize().
    """
        cell = FIATSimplex()
        cell.inventory.dimension = 2
        cell.inventory.order = 1
        cell._configure()

        scalarType = None
        from pylith.utils.utils import sizeofPylithScalar
        if 8 == sizeofPylithScalar():
            scalarType = numpy.float64
        elif 4 == sizeofPylithScalar():
            scalarType = numpy.float32
        else:
            raise ValueError("Unknown size for PylithScalar.")

        verticesE = numpy.array([[-1.0, -1.0], [+1.0, -1.0], [-1.0, +1.0]])
        quadPtsE = numpy.array([[-1.0 / 3.0, -1.0 / 3.0]], dtype=scalarType)
        quadWtsE = numpy.array([2.0], dtype=scalarType)

        # Compute basis functions and derivatives at quadrature points
        basisE = numpy.zeros((1, 3), dtype=scalarType)
        basisDerivE = numpy.zeros((1, 3, 2), dtype=scalarType)
        iQuad = 0
        for x in quadPtsE:
            basisE[iQuad] = numpy.array([N0(x), N1(x), N2(x)],
                                        dtype=scalarType).reshape((3, ))
            deriv = numpy.array(
                [[N0p(x), N0q(x)], [N1p(x), N1q(x)], [N2p(x), N2q(x)]],
                dtype=scalarType)
            basisDerivE[iQuad] = deriv.reshape((1, 3, 2))
            iQuad += 1

        quadrature = Quadrature()
        quadrature.inventory.cell = cell
        quadrature._configure()

        quadrature.preinitialize(spaceDim=2)
        quadrature.initialize()

        self.assertEqual(2, quadrature.cellDim())
        self.assertEqual(2, quadrature.spaceDim())
        self.assertEqual(3, quadrature.numBasis())
        self.assertEqual(1, quadrature.numQuadPts())

        from pylith.utils.utils import TestArray_checkScalar

        self.failUnless(
            TestArray_checkScalar(basisE.ravel(), quadrature.basis()))
        self.failUnless(
            TestArray_checkScalar(basisDerivE.ravel(),
                                  quadrature.basisDerivRef()))
        self.failUnless(
            TestArray_checkScalar(quadPtsE.ravel(), quadrature.quadPtsRef()))
        self.failUnless(
            TestArray_checkScalar(quadWtsE.ravel(), quadrature.quadWts()))

        quadrature.initializeGeometry()
        return
Пример #19
0
    def _initialize(self):
        """
    Initialize AbsorbingDampers boundary condition.
    """
        from spatialdata.spatialdb.SimpleDB import SimpleDB
        db = SimpleDB()
        db.inventory.label = "TestAbsorbingDampers tri3"
        db.inventory.iohandler.inventory.filename = \
            "data/elasticplanestrain.spatialdb"
        db.inventory.iohandler._configure()
        db._configure()

        from pylith.feassemble.FIATSimplex import FIATSimplex
        cell = FIATSimplex()
        cell.inventory.dimension = 1
        cell.inventory.degree = 1
        cell.inventory.order = 1
        cell._configure()
        from pylith.feassemble.Quadrature import Quadrature
        quadrature = Quadrature()
        quadrature.inventory.cell = cell
        quadrature._configure()

        from pylith.bc.AbsorbingDampers import AbsorbingDampers
        bc = AbsorbingDampers()
        bc.inventory.quadrature = quadrature
        bc.inventory.db = db
        bc.inventory.id = 0
        bc.inventory.label = "bc"
        bc._configure()

        from spatialdata.geocoords.CSCart import CSCart
        cs = CSCart()
        cs.inventory.spaceDim = 2
        cs._configure()

        from spatialdata.units.Nondimensional import Nondimensional
        normalizer = Nondimensional()
        normalizer._configure()

        from pylith.meshio.MeshIOAscii import MeshIOAscii
        importer = MeshIOAscii()
        importer.inventory.filename = "data/tri3.mesh"
        importer.inventory.coordsys = cs
        importer._configure()
        mesh = importer.read(debug=False, interpolate=False)

        bc.preinitialize(mesh)
        bc.initialize(totalTime=0.0, numTimeSteps=1, normalizer=normalizer)
        bc.timeStep(0.01)

        # Setup fields
        from pylith.topology.SolutionFields import SolutionFields
        fields = SolutionFields(mesh)
        fields.add("residual", "residual")
        fields.add("dispIncr(t->t+dt)", "displacement")
        fields.add("disp(t)", "displacement")
        fields.add("disp(t-dt)", "displacement")
        fields.add("velocity(t)", "velocity")
        fields.solutionName("dispIncr(t->t+dt)")

        residual = fields.get("residual")
        residual.newSection(residual.VERTICES_FIELD, cs.spaceDim())
        residual.allocate()
        residual.zero()

        fields.copyLayout("residual")

        return (mesh, bc, fields)
Пример #20
0
  def _initialize(self):
    """
    Initialize AbsorbingDampers boundary condition.
    """
    from spatialdata.spatialdb.SimpleDB import SimpleDB
    db = SimpleDB()
    db.inventory.label = "TestAbsorbingDampers tri3"
    db.inventory.iohandler.inventory.filename = \
        "data/elasticplanestrain.spatialdb"
    db.inventory.iohandler._configure()
    db._configure()

    from pylith.feassemble.FIATSimplex import FIATSimplex
    cell = FIATSimplex()
    cell.inventory.dimension = 1
    cell.inventory.degree = 1
    cell.inventory.order = 1
    cell._configure()
    from pylith.feassemble.Quadrature import Quadrature
    quadrature = Quadrature()
    quadrature.inventory.cell = cell
    quadrature._configure()

    from pylith.bc.AbsorbingDampers import AbsorbingDampers
    bc = AbsorbingDampers()
    bc.inventory.quadrature = quadrature
    bc.inventory.db = db
    bc.inventory.id = 0
    bc.inventory.label = "bc"
    bc._configure()

    from spatialdata.geocoords.CSCart import CSCart
    cs = CSCart()
    cs.inventory.spaceDim = 2
    cs._configure()

    from spatialdata.units.Nondimensional import Nondimensional
    normalizer = Nondimensional()
    normalizer._configure()

    from pylith.meshio.MeshIOAscii import MeshIOAscii
    importer = MeshIOAscii()
    importer.inventory.filename = "data/tri3.mesh"
    importer.inventory.coordsys = cs
    importer._configure()
    mesh = importer.read(debug=False, interpolate=False)
    
    bc.preinitialize(mesh)
    bc.initialize(totalTime=0.0, numTimeSteps=1, normalizer=normalizer)
    bc.timeStep(0.01)

    # Setup fields
    from pylith.topology.SolutionFields import SolutionFields
    fields = SolutionFields(mesh)
    fields.add("residual", "residual")
    fields.add("dispIncr(t->t+dt)", "displacement")
    fields.add("disp(t)", "displacement")
    fields.add("disp(t-dt)", "displacement")
    fields.add("velocity(t)", "velocity")
    fields.solutionName("dispIncr(t->t+dt)")

    residual = fields.get("residual")
    residual.newSection(residual.VERTICES_FIELD, cs.spaceDim())
    residual.allocate()
    residual.zero()

    fields.copyLayout("residual")
    
    return (mesh, bc, fields)
Пример #21
0
  def _initialize(self):
    """
    Initialize fault.
    """
    dt = 2.4
    
    from spatialdata.units.Nondimensional import Nondimensional
    normalizer = Nondimensional()
    normalizer._configure()

    # Setup mesh
    cs = CSCart()
    cs.inventory.spaceDim = 2
    cs._configure()

    from pylith.meshio.MeshIOAscii import MeshIOAscii
    importer = MeshIOAscii()
    importer.inventory.filename = "data/tri3.mesh"
    importer.inventory.coordsys = cs
    importer._configure()
    mesh = importer.read(debug=False, interpolate=False)

    # Setup quadrature
    from pylith.feassemble.FIATSimplex import FIATSimplex
    cell = FIATSimplex()
    cell.inventory.dimension = 1
    cell.inventory.degree = 1
    cell.inventory.order = 1
    cell._configure()
    from pylith.feassemble.Quadrature import Quadrature
    quadrature = Quadrature()
    quadrature.inventory.cell = cell
    quadrature._configure()

    # Setup impulses
    from spatialdata.spatialdb.SimpleDB import SimpleDB
    from spatialdata.spatialdb.SimpleIOAscii import SimpleIOAscii
    ioImpulseAmp = SimpleIOAscii()
    ioImpulseAmp.inventory.filename = "data/tri3_impulses.spatialdb"
    ioImpulseAmp._configure()
    dbImpulseAmp = SimpleDB()
    dbImpulseAmp.inventory.iohandler = ioImpulseAmp
    dbImpulseAmp.inventory.label = "impulse amplitude"
    dbImpulseAmp._configure()
    
    # Setup fault
    fault = FaultCohesiveImpulses()
    fault.inventory.output.inventory.writer._configure()
    fault.inventory.output._configure()
    fault.inventory.matId = 10
    fault.inventory.faultLabel = "fault"
    fault.inventory.upDir = [0, 0, 1]
    fault.inventory.faultQuadrature = quadrature
    fault.inventory.dbImpulseAmp = dbImpulseAmp
    fault._configure()

    nvertices = fault.numVerticesNoMesh(mesh)
    firstFaultVertex = 0
    firstLagrangeVertex = nvertices
    firstFaultCell      = 2*nvertices
    fault.adjustTopology(mesh, firstFaultVertex, firstLagrangeVertex,
                         firstFaultCell)
    fault.preinitialize(mesh)
    fault.timeStep(dt)
    fault.verifyConfiguration()
    from pyre.units.time import s
    fault.initialize(totalTime=0.0*s, numTimeSteps=1, normalizer=normalizer)

    # Setup fields
    from pylith.topology.SolutionFields import SolutionFields
    fields = SolutionFields(mesh)
    fields.add("residual", "residual")
    fields.add("dispIncr(t->t+dt)", "displacement_increment")
    fields.add("disp(t)", "displacement")
    fields.solutionName("dispIncr(t->t+dt)")
    residual = fields.get("residual")
    residual.newSection(residual.VERTICES_FIELD, cs.spaceDim())
    residual.allocate()
    residual.zero()
    fields.copyLayout("residual")
    
    return (mesh, fault, fields)
Пример #22
0
  def _initialize(self):
    """
    Initialize fault.
    """
    dt = 2.4
    
    from spatialdata.units.Nondimensional import Nondimensional
    normalizer = Nondimensional()
    normalizer._configure()

    # Setup mesh
    cs = CSCart()
    cs.inventory.spaceDim = 2
    cs._configure()

    from pylith.meshio.MeshIOAscii import MeshIOAscii
    importer = MeshIOAscii()
    importer.inventory.filename = "data/tri3.mesh"
    importer.inventory.coordsys = cs
    importer._configure()
    mesh = importer.read(debug=False, interpolate=False)

    # Setup quadrature
    from pylith.feassemble.FIATSimplex import FIATSimplex
    cell = FIATSimplex()
    cell.inventory.dimension = 1
    cell.inventory.degree = 1
    cell.inventory.order = 1
    cell._configure()
    from pylith.feassemble.Quadrature import Quadrature
    quadrature = Quadrature()
    quadrature.inventory.cell = cell
    quadrature._configure()

    # Setup earthquake source
    from spatialdata.spatialdb.SimpleDB import SimpleDB
    from spatialdata.spatialdb.SimpleIOAscii import SimpleIOAscii
    ioFinalSlip = SimpleIOAscii()
    ioFinalSlip.inventory.filename = "data/tri3_finalslip.spatialdb"
    ioFinalSlip._configure()
    dbFinalSlip = SimpleDB()
    dbFinalSlip.inventory.iohandler = ioFinalSlip
    dbFinalSlip.inventory.label = "final slip"
    dbFinalSlip._configure()
    
    ioSlipTime = SimpleIOAscii()
    ioSlipTime.inventory.filename = "data/tri3_sliptime.spatialdb"
    ioSlipTime._configure()
    dbSlipTime = SimpleDB()
    dbSlipTime.inventory.iohandler = ioSlipTime
    dbSlipTime.inventory.label = "slip time"
    dbSlipTime._configure()
    
    from pylith.faults.StepSlipFn import StepSlipFn
    slipfn = StepSlipFn()
    slipfn.inventory.dbSlip = dbFinalSlip
    slipfn.inventory.dbSlipTime = dbSlipTime
    slipfn._configure()

    # Setup fault
    fault = FaultCohesiveKin()
    fault.inventory.output.inventory.writer._configure()
    fault.inventory.output._configure()
    fault.inventory.matId = 10
    fault.inventory.faultLabel = "fault"
    fault.inventory.upDir = [0, 0, 1]
    fault.inventory.faultQuadrature = quadrature
    fault._configure()
    eqsrc = fault.eqsrcs.components()[0]
    eqsrc.inventory.originTime = 1.23*second
    eqsrc.inventory.slipfn = slipfn
    eqsrc._configure()

    nvertices = fault.numVerticesNoMesh(mesh)
    firstFaultVertex = 0
    firstLagrangeVertex = nvertices
    firstFaultCell      = 2*nvertices
    fault.adjustTopology(mesh, firstFaultVertex, firstLagrangeVertex,
                         firstFaultCell)
    fault.preinitialize(mesh)
    fault.timeStep(dt)
    fault.verifyConfiguration()
    from pyre.units.time import s
    fault.initialize(totalTime=0.0*s, numTimeSteps=1, normalizer=normalizer)

    # Setup fields
    from pylith.topology.SolutionFields import SolutionFields
    fields = SolutionFields(mesh)
    fields.add("residual", "residual")
    fields.add("dispIncr(t->t+dt)", "displacement_increment")
    fields.add("disp(t)", "displacement")
    fields.solutionName("dispIncr(t->t+dt)")

    residual = fields.get("residual")
    residual.subfieldAdd("displacement", cs.spaceDim(), residual.VECTOR)
    residual.subfieldAdd("lagrange_multiplier", cs.spaceDim(), residual.VECTOR)
    residual.subfieldsSetup()
    residual.setupSolnChart()
    residual.setupSolnDof(cs.spaceDim())
    fault.setupSolnDof(residual)
    residual.allocate()
    residual.zero()

    fields.copyLayout("residual")
    
    return (mesh, fault, fields)
Пример #23
0
  def _initialize(self):
    """
    Initialize fault.
    """
    dt = 2.4
    
    from spatialdata.units.Nondimensional import Nondimensional
    normalizer = Nondimensional()
    normalizer._configure()

    # Setup mesh
    cs = CSCart()
    cs.inventory.spaceDim = 2
    cs._configure()

    from pylith.meshio.MeshIOAscii import MeshIOAscii
    importer = MeshIOAscii()
    importer.inventory.filename = "data/tri3.mesh"
    importer.inventory.coordsys = cs
    importer._configure()
    mesh = importer.read(debug=False, interpolate=False)

    # Setup quadrature
    from pylith.feassemble.FIATSimplex import FIATSimplex
    cell = FIATSimplex()
    cell.inventory.dimension = 1
    cell.inventory.degree = 1
    cell.inventory.order = 1
    cell._configure()
    from pylith.feassemble.Quadrature import Quadrature
    quadrature = Quadrature()
    quadrature.inventory.cell = cell
    quadrature._configure()

    # Setup rupture info
    from spatialdata.spatialdb.SimpleDB import SimpleDB
    from spatialdata.spatialdb.SimpleIOAscii import SimpleIOAscii
    ioTractions = SimpleIOAscii()
    ioTractions.inventory.filename = "data/tri3_initialtractions.spatialdb"
    ioTractions._configure()
    dbTractions = SimpleDB()
    dbTractions.inventory.iohandler = ioTractions
    dbTractions.inventory.label = "initial tractions"
    dbTractions._configure()
    from pylith.faults.TractPerturbation import TractPerturbation
    tract = TractPerturbation()
    tract.inventory.dbInitial = dbTractions
    tract._configure()

    ioFriction = SimpleIOAscii()
    ioFriction.inventory.filename = "data/tri3_staticfriction.spatialdb"
    ioFriction._configure()
    dbFriction = SimpleDB()
    dbFriction.inventory.iohandler = ioFriction
    dbFriction.inventory.label = "friction"
    dbFriction._configure()
    
    from pylith.friction.StaticFriction import StaticFriction
    friction = StaticFriction()
    friction.inventory.label = "Static friction"
    friction.inventory.dbProperties = dbFriction
    friction._configure()

    # Setup fault
    fault = FaultCohesiveDyn()
    fault.inventory.output.inventory.writer._configure()
    fault.inventory.output._configure()
    fault.inventory.matId = 10
    fault.inventory.faultLabel = "fault"
    fault.inventory.upDir = [0, 0, 1]
    fault.inventory.faultQuadrature = quadrature
    fault.inventory.tract = tract
    fault.inventory.friction = friction
    fault._configure()

    nvertices = fault.numVerticesNoMesh(mesh)
    firstFaultVertex = 0
    firstLagrangeVertex = nvertices
    firstFaultCell      = 2*nvertices
    fault.adjustTopology(mesh, firstFaultVertex, firstLagrangeVertex,
                         firstFaultCell)
    from pylith.topology.topology import MeshOps_nondimensionalize
    MeshOps_nondimensionalize(mesh, normalizer)

    fault.preinitialize(mesh)
    fault.timeStep(dt)
    fault.verifyConfiguration()
    from pyre.units.time import s
    fault.initialize(totalTime=0.0*s, numTimeSteps=1, normalizer=normalizer)

    # Setup fields
    from pylith.topology.SolutionFields import SolutionFields
    fields = SolutionFields(mesh)
    fields.add("residual", "residual")
    fields.add("dispIncr(t->t+dt)", "displacement_increment")
    fields.add("disp(t)", "displacement")
    fields.add("velocity(t)", "velocity")
    fields.solutionName("dispIncr(t->t+dt)")

    residual = fields.get("residual")
    residual.subfieldAdd("displacement", cs.spaceDim(), residual.VECTOR)
    residual.subfieldAdd("lagrange_multiplier", cs.spaceDim(), residual.VECTOR)
    residual.subfieldsSetup()
    residual.setupSolnChart()
    residual.setupSolnDof(cs.spaceDim())
    fault.setupSolnDof(residual)
    residual.allocate()
    residual.zero()

    fields.copyLayout("residual")
    
    return (mesh, fault, fields)
Пример #24
0
  def _initialize(self):
    """
    Initialize fault.
    """
    dt = 2.4
    
    from spatialdata.units.Nondimensional import Nondimensional
    normalizer = Nondimensional()
    normalizer._configure()

    # Setup mesh
    cs = CSCart()
    cs.inventory.spaceDim = 2
    cs._configure()

    from pylith.meshio.MeshIOAscii import MeshIOAscii
    importer = MeshIOAscii()
    importer.inventory.filename = "data/tri3.mesh"
    importer.inventory.coordsys = cs
    importer._configure()
    mesh = importer.read(debug=False, interpolate=False)

    # Setup quadrature
    from pylith.feassemble.FIATSimplex import FIATSimplex
    cell = FIATSimplex()
    cell.inventory.dimension = 1
    cell.inventory.degree = 1
    cell.inventory.order = 1
    cell._configure()
    from pylith.feassemble.Quadrature import Quadrature
    quadrature = Quadrature()
    quadrature.inventory.cell = cell
    quadrature._configure()

    # Setup impulses
    from spatialdata.spatialdb.SimpleDB import SimpleDB
    from spatialdata.spatialdb.SimpleIOAscii import SimpleIOAscii
    ioImpulseAmp = SimpleIOAscii()
    ioImpulseAmp.inventory.filename = "data/tri3_impulses.spatialdb"
    ioImpulseAmp._configure()
    dbImpulseAmp = SimpleDB()
    dbImpulseAmp.inventory.iohandler = ioImpulseAmp
    dbImpulseAmp.inventory.label = "impulse amplitude"
    dbImpulseAmp._configure()
    
    # Setup fault
    fault = FaultCohesiveImpulses()
    fault.inventory.output.inventory.writer._configure()
    fault.inventory.output._configure()
    fault.inventory.matId = 10
    fault.inventory.faultLabel = "fault"
    fault.inventory.upDir = [0, 0, 1]
    fault.inventory.faultQuadrature = quadrature
    fault.inventory.dbImpulseAmp = dbImpulseAmp
    fault._configure()

    nvertices = fault.numVerticesNoMesh(mesh)
    firstFaultVertex = 0
    firstLagrangeVertex = nvertices
    firstFaultCell      = 2*nvertices
    fault.adjustTopology(mesh, firstFaultVertex, firstLagrangeVertex,
                         firstFaultCell)
    fault.preinitialize(mesh)
    fault.timeStep(dt)
    fault.verifyConfiguration()
    from pyre.units.time import s
    fault.initialize(totalTime=0.0*s, numTimeSteps=1, normalizer=normalizer)

    # Setup fields
    from pylith.topology.SolutionFields import SolutionFields
    fields = SolutionFields(mesh)
    fields.add("residual", "residual")
    fields.add("dispIncr(t->t+dt)", "displacement_increment")
    fields.add("disp(t)", "displacement")
    fields.solutionName("dispIncr(t->t+dt)")

    residual = fields.get("residual")
    residual.subfieldAdd("displacement", cs.spaceDim(), residual.VECTOR)
    residual.subfieldAdd("lagrange_multiplier", cs.spaceDim(), residual.VECTOR)
    residual.subfieldsSetup()
    residual.setupSolnChart()
    residual.setupSolnDof(cs.spaceDim())
    fault.setupSolnDof(residual)
    residual.allocate()
    residual.zero()

    fields.copyLayout("residual")
    
    return (mesh, fault, fields)