def track(self, frame, obstacles=None): """ Tracks obstacles in a frame. Args: frame: perception.camera_frame.CameraFrame to track in. """ if obstacles: bboxes = [ obstacle.bounding_box.as_width_height_bbox() for obstacle in obstacles ] confidence_scores = [obstacle.confidence for obstacle in obstacles] self.tracker, detections_class = self._deepsort.run_deep_sort( frame.frame, confidence_scores, bboxes) if self.tracker: obstacles = [] for track in self.tracker.tracks: if not track.is_confirmed() or track.time_since_update > 1: continue # Converts x, y, w, h bbox to tlbr bbox (top left and bottom # right coords). bbox = track.to_tlbr() # Converts to xmin, xmax, ymin, ymax format. obstacles.append( DetectedObstacle( BoundingBox2D(int(bbox[0]), int(bbox[2]), int(bbox[1]), int(bbox[3])), 0, "", track.track_id)) return True, obstacles return False, []
def track(self, frame, obstacles=[]): """ Tracks obstacles in a frame. Args: frame (:py:class:`~pylot.perception.camera_frame.CameraFrame`): Frame to track in. """ # If obstacles, run deep sort to update tracker with detections. # Otherwise, step each confirmed track one step forward. if obstacles: bboxes, labels, confidence_scores, ids = [], [], [], [] for obstacle in obstacles: bboxes.append(obstacle.bounding_box.as_width_height_bbox()) labels.append(obstacle.label) confidence_scores.append(obstacle.confidence) ids.append(obstacle.id) self._deepsort.run_deep_sort(frame.frame, confidence_scores, bboxes, labels, ids) else: for track in self._deepsort.tracker.tracks: if track.is_confirmed(): track.predict(self._deepsort.tracker.kf) tracked_obstacles = [] for track in self._deepsort.tracker.tracks: if track.is_confirmed(): # Converts x, y, w, h bbox to tlbr bbox (top left and bottom # right coords). bbox = track.to_tlbr() # Converts to xmin, xmax, ymin, ymax format. bbox_2d = BoundingBox2D(int(bbox[0]), int(bbox[2]), int(bbox[1]), int(bbox[3])) tracked_obstacles.append( DetectedObstacle(bbox_2d, 0, track.label, track.track_id)) return True, tracked_obstacles
def get_traffic_sign_bounding_boxes(self, min_width=2, min_height=3): """Extracts traffic sign bounding boxes from the frame. Returns: list(:py:class:`~pylot.perception.detection.utils.BoundingBox2D`): Traffic sign bounding boxes. """ assert self.encoding == 'carla', \ 'Not implemented on cityscapes encoding' # Set the pixels we are interested in to True. traffic_signs_frame = self._get_traffic_sign_pixels() # Extracts bounding box from frame. bboxes = [] # Labels the connected segmented pixels. map_labeled = measure.label(traffic_signs_frame, connectivity=1) # Extract the regions out of the labeled frames. for region in measure.regionprops(map_labeled): x_min = region.bbox[1] x_max = region.bbox[3] y_min = region.bbox[0] y_max = region.bbox[2] # Filter the bboxes that are extremely small. if x_max - x_min > min_width and y_max - y_min > min_height: bboxes.append(BoundingBox2D(x_min, x_max, y_min, y_max)) return bboxes
def __convert_to_detected_tl(self, boxes, scores, labels, height, width): traffic_lights = [] for index in range(len(scores)): if scores[ index] > self._flags.traffic_light_det_min_score_threshold: bbox = BoundingBox2D( int(boxes[index][1] * width), # x_min int(boxes[index][3] * width), # x_max int(boxes[index][0] * height), # y_min int(boxes[index][2] * height) # y_max ) traffic_lights.append( DetectedObstacle(bbox, scores[index], labels[index])) return traffic_lights
def track(self, frame): """ Tracks obstacles in a frame. Args: frame: perception.camera_frame.CameraFrame to track in. """ # each track in tracks has format ([xmin, ymin, xmax, ymax], id) obstacles = [] for track in self.tracker.trackers: coords = track.predict()[0].tolist() # changing to xmin, xmax, ymin, ymax format bbox = BoundingBox2D(int(coords[0]), int(coords[2]), int(coords[1]), int(coords[3])) obstacles.append(DetectedObstacle(bbox, 0, "", track.id)) return True, obstacles
def track(self, frame): """ Tracks obstacles in a frame. Args: frame: perception.camera_frame.CameraFrame to track in. """ ok, bboxes = self._tracker.update(frame.frame) if not ok: return False, [] obstacles = [] for (xmin, ymin, w, h) in bboxes: obstacles.append( DetectedObstacle(BoundingBox2D(xmin, xmin + w, ymin, ymin + h), "", 0)) return True, obstacles
def track(self, frame): """ Tracks obstacles in a frame. Args: frame (:py:class:`~pylot.perception.camera_frame.CameraFrame`): Frame to track in. """ self._tracker = SiamRPN_track(self._tracker, frame.frame) target_pos = self._tracker['target_pos'] target_sz = self._tracker['target_sz'] self.obstacle.bounding_box = BoundingBox2D( int(target_pos[0] - target_sz[0] / 2.0), int(target_pos[0] + target_sz[0] / 2.0), int(target_pos[1] - target_sz[1] / 2.0), int(target_pos[1] + target_sz[1] / 2.0)) return Obstacle(self.obstacle.bounding_box, self.obstacle.confidence, self.obstacle.label, self.obstacle.id)
def __convert_to_detected_tl(self, boxes, scores, labels, height, width): traffic_lights = [] for index in range(len(scores)): if scores[ index] > self._flags.traffic_light_det_min_score_threshold: bbox = BoundingBox2D( int(boxes[index][1] * width), # x_min int(boxes[index][3] * width), # x_max int(boxes[index][0] * height), # y_min int(boxes[index][2] * height) # y_max ) traffic_lights.append( TrafficLight(scores[index], labels[index], id=self._unique_id, bounding_box=bbox)) self._unique_id += 1 return traffic_lights
def get_stop_markings_bbox(bbox3d, depth_frame): """ Gets a 2D stop marking bounding box from a 3D bounding box.""" # Move trigger_volume by -0.85 so that the top plane is on the ground. ext_z_value = bbox3d.extent.z - 0.85 ext = [ pylot.utils.Location(x=+bbox3d.extent.x, y=+bbox3d.extent.y, z=ext_z_value), pylot.utils.Location(x=+bbox3d.extent.x, y=-bbox3d.extent.y, z=ext_z_value), pylot.utils.Location(x=-bbox3d.extent.x, y=+bbox3d.extent.y, z=ext_z_value), pylot.utils.Location(x=-bbox3d.extent.x, y=-bbox3d.extent.y, z=ext_z_value), ] bbox = bbox3d.transform.transform_locations(ext) camera_transform = depth_frame.camera_setup.get_transform() coords = [] for loc in bbox: loc_view = loc.to_camera_view( camera_transform.matrix, depth_frame.camera_setup.get_intrinsic_matrix()) if (loc_view.z >= 0 and loc_view.x >= 0 and loc_view.y >= 0 and loc_view.x < depth_frame.camera_setup.width and loc_view.y < depth_frame.camera_setup.height): coords.append(loc_view) if len(coords) == 4: xmin = min(coords[0].x, coords[1].x, coords[2].x, coords[3].x) xmax = max(coords[0].x, coords[1].x, coords[2].x, coords[3].x) ymin = min(coords[0].y, coords[1].y, coords[2].y, coords[3].y) ymax = max(coords[0].y, coords[1].y, coords[2].y, coords[3].y) # Check if the bbox is not obstructed and if it's sufficiently # big for the text to be readable. if (ymax - ymin > 15 and depth_frame.pixel_has_same_depth( int(coords[0].x), int(coords[0].y), coords[0].z, 0.4)): return BoundingBox2D(int(xmin), int(xmax), int(ymin), int(ymax)) return None
def on_frame_msg(self, msg, obstacle_tracking_stream): """Invoked when a FrameMessage is received on the camera stream.""" self._logger.debug('@{}: {} received frame'.format( msg.timestamp, self.config.name)) assert msg.frame.encoding == 'BGR', 'Expects BGR frames' image_np = msg.frame.as_bgr_numpy_array() results = self.run_model(image_np) obstacles = [] for res in results: track_id = res['tracking_id'] bbox = res['bbox'] score = res['score'] (label_id, ) = res['class'] - 1, if label_id > 80: continue label = self.trained_dataset.class_name[label_id] if label in ['Pedestrian', 'pedestrian']: label = 'person' elif label == 'Car': label = 'car' elif label == 'Cyclist': label == 'bicycle' if label in OBSTACLE_LABELS: bounding_box_2D = BoundingBox2D(bbox[0], bbox[2], bbox[1], bbox[3]) bounding_box_3D = None if 'dim' in res and 'loc' in res and 'rot_y' in res: bounding_box_3D = BoundingBox3D.from_dimensions( res['dim'], res['loc'], res['rot_y']) obstacles.append( Obstacle(bounding_box_3D, score, label, track_id, bounding_box_2D=bounding_box_2D)) obstacle_tracking_stream.send( ObstaclesMessage(msg.timestamp, obstacles, 0))
def track(self, frame): """ Tracks obstacles in a frame. Args: frame (:py:class:`~pylot.perception.camera_frame.CameraFrame`): Frame to track in. """ # each track in tracks has format ([xmin, ymin, xmax, ymax], id) obstacles = [] for track in self.tracker.trackers: coords = track.predict()[0].tolist() # changing to xmin, xmax, ymin, ymax format xmin = int(coords[0]) xmax = int(coords[2]) ymin = int(coords[1]) ymax = int(coords[3]) if xmin < xmax and ymin < ymax: bbox = BoundingBox2D(xmin, xmax, ymin, ymax) obstacles.append(Obstacle(bbox, 0, track.label, track.id)) else: self._logger.error( "Tracker found invalid bounding box {} {} {} {}".format( xmin, xmax, ymin, ymax)) return True, obstacles
def on_msg_camera_stream(self, msg, obstacles_stream): """Invoked whenever a frame message is received on the stream. Args: msg (:py:class:`~pylot.perception.messages.FrameMessage`): Message received. obstacles_stream (:py:class:`erdos.WriteStream`): Stream on which the operator sends :py:class:`~pylot.perception.messages.ObstaclesMessage` messages. """ operator_time_total_start = time.time() start_time = time.time() self._logger.debug('@{}: {} received message'.format( msg.timestamp, self.config.name)) inputs = msg.frame.as_rgb_numpy_array() results = [] start_time = time.time() if MODIFIED_AUTOML: (boxes_np, scores_np, classes_np, num_detections_np) = self._tf_session.run( self._detections_batch, feed_dict={self._image_placeholder: inputs}) num_detections = num_detections_np[0] boxes = boxes_np[0][:num_detections] scores = scores_np[0][:num_detections] classes = classes_np[0][:num_detections] results = zip(boxes, scores, classes) else: outputs_np = self._tf_session.run( self._detections_batch, feed_dict={self._image_placeholder: inputs})[0] for _, x, y, width, height, score, _class in outputs_np: results.append(((y, x, y + height, x + width), score, _class)) obstacles = [] for (ymin, xmin, ymax, xmax), score, _class in results: if np.isclose(ymin, ymax) or np.isclose(xmin, xmax): continue if MODIFIED_AUTOML: # The alternate NMS implementation screws up the class labels. _class = int(_class) + 1 if _class in self._coco_labels: if (score >= self._flags.obstacle_detection_min_score_threshold and self._coco_labels[_class] in self._important_labels): camera_setup = msg.frame.camera_setup width, height = camera_setup.width, camera_setup.height xmin, xmax = max(0, int(xmin)), min(int(xmax), width) ymin, ymax = max(0, int(ymin)), min(int(ymax), height) if xmin < xmax and ymin < ymax: obstacles.append( DetectedObstacle(BoundingBox2D( xmin, xmax, ymin, ymax), score, self._coco_labels[_class], id=self._unique_id)) self._unique_id += 1 self._csv_logger.info( "{},{},detection,{},{:4f}".format( pylot.utils.time_epoch_ms(), msg.timestamp, self._coco_labels[_class], score)) else: self._logger.debug( 'Filtering unknown class: {}'.format(_class)) if (self._flags.visualize_detected_obstacles or self._flags.log_detector_output): msg.frame.annotate_with_bounding_boxes(msg.timestamp, obstacles, None, self._bbox_colors) if self._flags.visualize_detected_obstacles: msg.frame.visualize(self.config.name, pygame_display=pylot.utils.PYGAME_DISPLAY) if self._flags.log_detector_output: msg.frame.save(msg.timestamp.coordinates[0], self._flags.data_path, 'detector-{}'.format(self.config.name)) end_time = time.time() obstacles_stream.send(ObstaclesMessage(msg.timestamp, obstacles, 0)) obstacles_stream.send(erdos.WatermarkMessage(msg.timestamp)) operator_time_total_end = time.time() self._logger.debug("@{}: runtime of the detector: {}".format( msg.timestamp, (end_time - start_time) * 1000)) self._logger.debug("@{}: total time spent: {}".format( msg.timestamp, (operator_time_total_end - operator_time_total_start) * 1000))
def on_watermark(self, timestamp, obstacles_stream): """Invoked whenever a frame message is received on the stream. Args: msg (:py:class:`~pylot.perception.messages.FrameMessage`): Message received. obstacles_stream (:py:class:`erdos.WriteStream`): Stream on which the operator sends :py:class:`~pylot.perception.messages.ObstaclesMessage` messages. """ start_time = time.time() #ttd_msg = self._ttd_msgs.popleft() frame_msg = self._frame_msgs.popleft() #ttd, detection_deadline = ttd_msg.data #self.update_model_choice(detection_deadline) frame = frame_msg.frame inputs = frame.as_rgb_numpy_array() detector_start_time = time.time() outputs_np = self._driver.serve_images([inputs])[0] detector_end_time = time.time() self._logger.debug("@{}: detector runtime {}".format( timestamp, (detector_end_time - detector_start_time) * 1000)) obstacles = [] camera_setup = frame.camera_setup for _, y, x, height, width, score, _class in outputs_np: xmin = int(x) ymin = int(y) xmax = int(x + width) ymax = int(y + height) if _class in self._coco_labels: if (score >= self._flags.obstacle_detection_min_score_threshold and self._coco_labels[_class] in self._important_labels): xmin, xmax = max(0, xmin), min(xmax, camera_setup.width) ymin, ymax = max(0, ymin), min(ymax, camera_setup.height) if xmin < xmax and ymin < ymax: obstacles.append( DetectedObstacle(BoundingBox2D( xmin, xmax, ymin, ymax), score, self._coco_labels[_class], id=self._unique_id)) self._unique_id += 1 self._csv_logger.info( "{},{},detection,{},{:4f}".format( pylot.utils.time_epoch_ms(), timestamp.coordinates[0], self._coco_labels[_class], score)) else: self._logger.debug( 'Filtering unknown class: {}'.format(_class)) if (self._flags.visualize_detected_obstacles or self._flags.log_detector_output): frame.annotate_with_bounding_boxes(timestamp, obstacles, None, self._bbox_colors) if self._flags.visualize_detected_obstacles: frame.visualize(self.config.name, pygame_display=pylot.utils.PYGAME_DISPLAY) if self._flags.log_detector_output: frame.save(timestamp.coordinates[0], self._flags.data_path, 'detector-{}'.format(self.config.name)) end_time = time.time() obstacles_stream.send(ObstaclesMessage(timestamp, obstacles, 0)) obstacles_stream.send(erdos.WatermarkMessage(timestamp)) operator_time_total_end = time.time() self._logger.debug("@{}: total time spent: {}".format( timestamp, (operator_time_total_end - start_time) * 1000))
def reset_bbox(self, bbox: BoundingBox2D): """Resets tracker's bounding box with a new bounding box.""" center = bbox.get_center_point() self._tracker['target_pos'] = np.array([center.x, center.y]) self._tracker['target_sz'] = np.array( [bbox.get_width(), bbox.get_height()])
def on_msg_camera_stream(self, msg, obstacles_stream): """Invoked whenever a frame message is received on the stream. Args: msg (:py:class:`~pylot.perception.messages.FrameMessage`): Message received. obstacles_stream (:py:class:`erdos.WriteStream`): Stream on which the operator sends :py:class:`~pylot.perception.messages.ObstaclesMessage` messages. """ self._logger.debug('@{}: {} received message'.format( msg.timestamp, self.config.name)) start_time = time.time() # The models expect BGR images. assert msg.frame.encoding == 'BGR', 'Expects BGR frames' num_detections, res_boxes, res_scores, res_classes = self.__run_model( msg.frame.frame) obstacles = [] for i in range(0, num_detections): if res_classes[i] in self._coco_labels: if (res_scores[i] >= self._flags.obstacle_detection_min_score_threshold): if (self._coco_labels[res_classes[i]] in OBSTACLE_LABELS): obstacles.append( Obstacle(BoundingBox2D( int(res_boxes[i][1] * msg.frame.camera_setup.width), int(res_boxes[i][3] * msg.frame.camera_setup.width), int(res_boxes[i][0] * msg.frame.camera_setup.height), int(res_boxes[i][2] * msg.frame.camera_setup.height)), res_scores[i], self._coco_labels[res_classes[i]], id=self._unique_id)) self._unique_id += 1 else: self._logger.warning( 'Ignoring non essential detection {}'.format( self._coco_labels[res_classes[i]])) else: self._logger.warning('Filtering unknown class: {}'.format( res_classes[i])) self._logger.debug('@{}: {} obstacles: {}'.format( msg.timestamp, self.config.name, obstacles)) # Get runtime in ms. runtime = (time.time() - start_time) * 1000 # Send out obstacles. obstacles_stream.send( ObstaclesMessage(msg.timestamp, obstacles, runtime)) obstacles_stream.send(erdos.WatermarkMessage(msg.timestamp)) if self._flags.log_detector_output: msg.frame.annotate_with_bounding_boxes(msg.timestamp, obstacles, None, self._bbox_colors) msg.frame.save(msg.timestamp.coordinates[0], self._flags.data_path, 'detector-{}'.format(self.config.name))
def on_watermark(self, timestamp, obstacles_stream): """Invoked whenever a frame message is received on the stream. Args: msg (:py:class:`~pylot.perception.messages.FrameMessage`): Message received. obstacles_stream (:py:class:`erdos.WriteStream`): Stream on which the operator sends :py:class:`~pylot.perception.messages.ObstaclesMessage` messages. """ if timestamp.is_top: return start_time = time.time() ttd_msg = self._ttd_msgs.popleft() frame_msg = self._frame_msgs.popleft() ttd = ttd_msg.data self.update_model_choice(ttd) frame = frame_msg.frame inputs = frame.as_rgb_numpy_array() detector_start_time = time.time() outputs_np = self._tf_session.run( self._signitures['prediction'], feed_dict={self._signitures['image_arrays']: [inputs]})[0] detector_end_time = time.time() self._logger.debug("@{}: detector runtime {}".format( timestamp, (detector_end_time - detector_start_time) * 1000)) obstacles = [] camera_setup = frame.camera_setup for _, ymin, xmin, ymax, xmax, score, _class in outputs_np: xmin, ymin, xmax, ymax = int(xmin), int(ymin), int(xmax), int(ymax) if _class in self._coco_labels: if (score >= self._flags.obstacle_detection_min_score_threshold and self._coco_labels[_class] in OBSTACLE_LABELS): xmin, xmax = max(0, xmin), min(xmax, camera_setup.width) ymin, ymax = max(0, ymin), min(ymax, camera_setup.height) if xmin < xmax and ymin < ymax: obstacles.append( Obstacle(BoundingBox2D(xmin, xmax, ymin, ymax), score, self._coco_labels[_class], id=self._unique_id)) self._unique_id += 1 self._csv_logger.info( "{},{},detection,{},{:4f}".format( pylot.utils.time_epoch_ms(), timestamp.coordinates[0], self._coco_labels[_class], score)) else: self._logger.debug( 'Filtering unknown class: {}'.format(_class)) if self._flags.log_detector_output: frame.annotate_with_bounding_boxes(timestamp, obstacles, None, self._bbox_colors) frame.save(timestamp.coordinates[0], self._flags.data_path, 'detector-{}'.format(self.config.name)) # end_time = time.time() obstacles_stream.send(ObstaclesMessage(timestamp, obstacles, 0)) operator_time_total_end = time.time() self._logger.debug("@{}: total time spent: {}".format( timestamp, (operator_time_total_end - start_time) * 1000))
def on_msg_camera_stream(self, msg, obstacles_stream): """ Invoked when the operator receives a message on the data stream.""" self._logger.debug('@{}: {} received message'.format( msg.timestamp, self._name)) start_time = time.time() # The models expect BGR images. assert msg.frame.encoding == 'BGR', 'Expects BGR frames' # Expand dimensions since the model expects images to have # shape: [1, None, None, 3] image_np_expanded = np.expand_dims(msg.frame.frame, axis=0) (boxes, scores, classes, num_detections) = self._tf_session.run( [ self._detection_boxes, self._detection_scores, self._detection_classes, self._num_detections ], feed_dict={self._image_tensor: image_np_expanded}) num_detections = int(num_detections[0]) res_classes = classes[0][:num_detections] res_boxes = boxes[0][:num_detections] res_scores = scores[0][:num_detections] obstacles = [] for i in range(0, num_detections): if (res_classes[i] in self._coco_labels and res_scores[i] >= self._flags.obstacle_detection_min_score_threshold): obstacles.append( DetectedObstacle( BoundingBox2D( int(res_boxes[i][1] * msg.frame.camera_setup.width), int(res_boxes[i][3] * msg.frame.camera_setup.width), int(res_boxes[i][0] * msg.frame.camera_setup.height), int(res_boxes[i][2] * msg.frame.camera_setup.height)), res_scores[i], self._coco_labels[res_classes[i]])) else: self._logger.warning('Filtering unknown class: {}'.format( res_classes[i])) self._logger.debug('@{}: {} obstacles: {}'.format( msg.timestamp, self._name, obstacles)) if (self._flags.visualize_detected_obstacles or self._flags.log_detector_output): msg.frame.annotate_with_bounding_boxes(msg.timestamp, obstacles, self._bbox_colors) if self._flags.visualize_detected_obstacles: msg.frame.visualize(self._name) if self._flags.log_detector_output: msg.frame.save(msg.timestamp.coordinates[0], self._flags.data_path, 'detector-{}'.format(self._name)) # Get runtime in ms. runtime = (time.time() - start_time) * 1000 self._csv_logger.info('{},{},"{}",{}'.format(time_epoch_ms(), self._name, msg.timestamp, runtime)) # Send out obstacles. obstacles_stream.send( ObstaclesMessage(obstacles, msg.timestamp, runtime))
def on_msg_camera_stream(self, msg, obstacles_stream): """Invoked whenever a frame message is received on the stream. Args: msg (:py:class:`~pylot.perception.messages.FrameMessage`): Message received. obstacles_stream (:py:class:`erdos.WriteStream`): Stream on which the operator sends :py:class:`~pylot.perception.messages.ObstaclesMessage` messages. """ self._logger.debug('@{}: {} received message'.format( msg.timestamp, self.config.name)) start_time = time.time() # The models expect BGR images. assert msg.frame.encoding == 'BGR', 'Expects BGR frames' # Expand dimensions since the model expects images to have # shape: [1, None, None, 3] image_np_expanded = np.expand_dims(msg.frame.frame, axis=0) (boxes, scores, classes, num_detections) = self._tf_session.run( [ self._detection_boxes, self._detection_scores, self._detection_classes, self._num_detections ], feed_dict={self._image_tensor: image_np_expanded}) num_detections = int(num_detections[0]) res_classes = [int(cls) for cls in classes[0][:num_detections]] res_boxes = boxes[0][:num_detections] res_scores = scores[0][:num_detections] obstacles = [] for i in range(0, num_detections): if res_classes[i] in self._coco_labels: if (res_scores[i] >= self._flags.obstacle_detection_min_score_threshold and self._coco_labels[ res_classes[i]] in self._important_labels): obstacles.append( DetectedObstacle(BoundingBox2D( int(res_boxes[i][1] * msg.frame.camera_setup.width), int(res_boxes[i][3] * msg.frame.camera_setup.width), int(res_boxes[i][0] * msg.frame.camera_setup.height), int(res_boxes[i][2] * msg.frame.camera_setup.height)), res_scores[i], self._coco_labels[res_classes[i]], id=self._unique_id)) self._unique_id += 1 else: self._logger.warning('Filtering unknown class: {}'.format( res_classes[i])) self._logger.debug('@{}: {} obstacles: {}'.format( msg.timestamp, self.config.name, obstacles)) if (self._flags.visualize_detected_obstacles or self._flags.log_detector_output): msg.frame.annotate_with_bounding_boxes(msg.timestamp, obstacles, None, self._bbox_colors) if self._flags.visualize_detected_obstacles: msg.frame.visualize(self.config.name) if self._flags.log_detector_output: msg.frame.save(msg.timestamp.coordinates[0], self._flags.data_path, 'detector-{}'.format(self.config.name)) # Get runtime in ms. runtime = (time.time() - start_time) * 1000 # Send out obstacles. obstacles_stream.send( ObstaclesMessage(msg.timestamp, obstacles, runtime))