Пример #1
0
 def test_get_connectors(self):
     cn = pymaid.get_connectors(config_test.test_skids,
                                remote_instance=self.rm)
     self.assertIsInstance(cn, pd.DataFrame)
     self.assertIsInstance(
         pymaid.get_connector_details(cn.connector_id.tolist(),
                                      remote_instance=self.rm),
         pd.DataFrame)
Пример #2
0
def merge_overlapping_connectors(remote_instance=None,
                                 verbose=True,
                                 tolerance=1):
    """Merge pairs of connectors that are at exactly the same coordinate"""
    if remote_instance in [None, 'source']:
        remote_instance = source_project
        if verbose: print('Merging overlapping connectors in source project.')
    elif remote_instance == 'target':
        remote_instance = target_project
        if verbose: print('Merging overlapping connectors in target project.')
    overlapping_pairs_ids = find_overlapping_connectors(
        remote_instance=remote_instance, verbose=False, tolerance=tolerance)
    user_input = input('Continue with merge? [Y/n] ')
    if user_input not in ('y', 'Y'):
        return
    resp = []
    for ids in overlapping_pairs_ids:
        print('ids', ids)
        details = pymaid.get_connector_details(ids,
                                               remote_instance=remote_instance)
        # Put the connector with presynaptic links first, if there is one
        details.sort_values(by='presynaptic_to',
                            inplace=True,
                            ignore_index=True)
        # Make sure it's not the case that both connectors have presynaptic links
        assert details.at[
            1,
            'presynaptic_to'] is None, "Can't merge two presynaptic connectors"
        #Add postsynaptic connections between the winner and the loser's postsynaptic nodes
        print('linking')
        link_resp = pymaid.link_connector([
            (postsyn_node_id, details.at[0, 'connector_id'], 'postsynaptic_to')
            for postsyn_node_id in details.at[1, 'postsynaptic_to_node']
        ],
                                          remote_instance=remote_instance)
        #Delete the loser
        print('deleting')
        del_resp = pymaid.delete_nodes(details.at[1, 'connector_id'],
                                       'CONNECTOR',
                                       no_prompt=True,
                                       remote_instance=remote_instance)
        resp.append((link_resp, del_resp))
        print('done')

    return resp
Пример #3
0
def get_connectors(nl):
    connectors = pymaid.get_connectors(nl)
    connectors.set_index("connector_id", inplace=True)
    connectors.drop(
        [
            "confidence",
            "creation_time",
            "edition_time",
            "tags",
            "creator",
            "editor",
            "type",
        ],
        inplace=True,
        axis=1,
    )
    details = pymaid.get_connector_details(connectors.index.values)
    details.set_index("connector_id", inplace=True)
    connectors = pd.concat((connectors, details), ignore_index=False, axis=1)
    connectors.reset_index(inplace=True)
    return connectors
Пример #4
0
connectors = pymaid.get_connectors(nl)
connectors.set_index("connector_id", inplace=True)
connectors.drop(
    [
        "confidence",
        "creation_time",
        "edition_time",
        "tags",
        "creator",
        "editor",
        "type",
    ],
    inplace=True,
    axis=1,
)
details = pymaid.get_connector_details(connectors.index.values)
details.set_index("connector_id", inplace=True)
connectors = pd.concat((connectors, details), ignore_index=False, axis=1)
connectors.reset_index(inplace=True)
# %% [markdown]
# #
pg = sns.PairGrid(data=connectors, x_vars=["x", "y", "z"], y_vars=["x", "y", "z"])
pg.map(sns.scatterplot, alpha=0.02, linewidth=0, s=1)

# %% [markdown]
# #

import matplotlib.pyplot as plt
import numpy as np
import matplotlib as mpl