Пример #1
0
    def plot_hull(self, df, new_result_ids, filename=None, finalize=False):
        """
        Generate plots of convex hulls for each of the runs

        Args:
            df (DataFrame): dataframe with formation energies and formulas
            new_result_ids ([]): list of new result ids (i. e. indexes
                in the updated dataframe)
            filename (str): filename to output, if None, no file output
                is produced
            finalize (bool): flag indicating whether to include all new results

        Returns:
            (pyplot): plotter instance
        """
        # Generate all entries
        total_comp = Composition(df['Composition'].sum())
        if len(total_comp) > 4:
            warnings.warn(
                "Number of elements too high for phase diagram plotting")
            return None
        filtered = filter_dataframe_by_composition(df, total_comp)
        filtered = filtered[['delta_e', 'Composition']]
        filtered = filtered.dropna()

        # Create computed entry column with un-normalized energies
        filtered["entry"] = [
            ComputedEntry(
                Composition(row["Composition"]),
                row["delta_e"] * Composition(row["Composition"]).num_atoms,
                entry_id=index,
            ) for index, row in filtered.iterrows()
        ]

        ids_prior_to_run = list(set(filtered.index) - set(new_result_ids))
        if not ids_prior_to_run:
            warnings.warn(
                "No prior data, prior phase diagram cannot be constructed")
            return None

        # Create phase diagram based on everything prior to current run
        entries = filtered.loc[ids_prior_to_run]["entry"].dropna()

        # Filter for nans by checking if it's a computed entry
        pg_elements = sorted(total_comp.keys())
        pd = PhaseDiagram(entries, elements=pg_elements)
        plotkwargs = {
            "markerfacecolor": "white",
            "markersize": 7,
            "linewidth": 2,
        }
        if finalize:
            plotkwargs.update({"linestyle": "--"})
        else:
            plotkwargs.update({"linestyle": "-"})
        plotter = PDPlotter(pd, backend='matplotlib', **plotkwargs)

        getplotkwargs = {"label_stable": False} if finalize else {}
        plot = plotter.get_plot(**getplotkwargs)

        # Get valid results
        valid_results = [
            new_result_id for new_result_id in new_result_ids
            if new_result_id in filtered.index
        ]

        if finalize:
            # If finalize, we'll reset pd to all entries at this point to
            # measure stabilities wrt. the ultimate hull.
            pd = PhaseDiagram(filtered["entry"].values, elements=pg_elements)
            plotter = PDPlotter(pd,
                                backend="matplotlib",
                                **{
                                    "markersize": 0,
                                    "linestyle": "-",
                                    "linewidth": 2
                                })
            plot = plotter.get_plot(plt=plot)

        for entry in filtered["entry"][valid_results]:
            decomp, e_hull = pd.get_decomp_and_e_above_hull(
                entry, allow_negative=True)
            if e_hull < self.hull_distance:
                color = "g"
                marker = "o"
                markeredgewidth = 1
            else:
                color = "r"
                marker = "x"
                markeredgewidth = 1

            # Get coords
            coords = [
                entry.composition.get_atomic_fraction(el) for el in pd.elements
            ][1:]
            if pd.dim == 2:
                coords = coords + [pd.get_form_energy_per_atom(entry)]
            if pd.dim == 3:
                coords = triangular_coord(coords)
            elif pd.dim == 4:
                coords = tet_coord(coords)
            plot.plot(*coords,
                      marker=marker,
                      markeredgecolor=color,
                      markerfacecolor="None",
                      markersize=11,
                      markeredgewidth=markeredgewidth)

        if filename is not None:
            plot.savefig(filename, dpi=70)
        plot.close()
Пример #2
0
 def test_triangular_coord(self):
     coord = [0.5, 0.5]
     coord = triangular_coord(coord)
     self.assertTrue(np.allclose(coord, [0.75, 0.4330127]))
Пример #3
0
    def present(self,
                df=None,
                new_result_ids=None,
                all_result_ids=None,
                filename=None,
                save_hull_distance=False,
                finalize=False):
        """
        Generate plots of convex hulls for each of the runs

        Args:
            df (DataFrame): dataframe with formation energies, compositions, ids
            new_result_ids ([]): list of new result ids (i. e. indexes
                in the updated dataframe)
            all_result_ids ([]): list of all result ids associated
                with the current run
            filename (str): filename to output, if None, no file output
                is produced

        Returns:
            (pyplot): plotter instance
        """
        df = df if df is not None else self.df
        new_result_ids = new_result_ids if new_result_ids is not None \
            else self.new_result_ids
        all_result_ids = all_result_ids if all_result_ids is not None \
            else self.all_result_ids

        # TODO: consolidate duplicated code here
        # Generate all entries
        comps = df.loc[all_result_ids]['Composition'].dropna()
        system_elements = []
        for comp in comps:
            system_elements += list(Composition(comp).as_dict().keys())
        elems = set(system_elements)
        if len(elems) > 4:
            warnings.warn(
                "Number of elements too high for phase diagram plotting")
            return None
        ind_to_include = []
        for ind in df.index:
            if set(Composition(
                    df.loc[ind]['Composition']).as_dict().keys()).issubset(
                        elems):
                ind_to_include.append(ind)
        _df = df.loc[ind_to_include]

        # Create computed entry column
        _df['entry'] = [
            ComputedEntry(
                Composition(row['Composition']),
                row['delta_e'] * Composition(
                    row['Composition']).num_atoms,  # un-normalize the energy
                entry_id=index) for index, row in _df.iterrows()
        ]
        # Partition ids into sets of prior to CAMD run, from CAMD but prior to
        # current iteration, and new ids
        ids_prior_to_camd = list(set(_df.index) - set(all_result_ids))
        ids_prior_to_run = list(set(all_result_ids) - set(new_result_ids))

        # Create phase diagram based on everything prior to current run
        entries = list(_df.loc[ids_prior_to_run + ids_prior_to_camd]['entry'])
        # Filter for nans by checking if it's a computed entry
        entries = [
            entry for entry in entries if isinstance(entry, ComputedEntry)
        ]
        pg_elements = [Element(el) for el in sorted(elems)]
        pd = PhaseDiagram(entries, elements=pg_elements)
        plotkwargs = {
            "markerfacecolor": "white",
            "markersize": 7,
            "linewidth": 2,
        }
        if finalize:
            plotkwargs.update({'linestyle': '--'})
        else:
            plotkwargs.update({'linestyle': '-'})
        plotter = PDPlotter(pd, **plotkwargs)

        getplotkwargs = {"label_stable": False} if finalize else {}
        plot = plotter.get_plot(**getplotkwargs)
        # Get valid results
        valid_results = [
            new_result_id for new_result_id in new_result_ids
            if new_result_id in _df.index
        ]

        if finalize:
            # If finalize, we'll reset pd to all entries at this point
            # to measure stabilities wrt. the ultimate hull.
            pd = PhaseDiagram(_df['entry'].values, elements=pg_elements)
            plotter = PDPlotter(
                pd, **{
                    "markersize": 0,
                    "linestyle": "-",
                    "linewidth": 2
                })
            plot = plotter.get_plot(plt=plot)

        for entry in _df['entry'][valid_results]:
            decomp, e_hull = pd.get_decomp_and_e_above_hull(
                entry, allow_negative=True)
            if e_hull < self.hull_distance:
                color = 'g'
                marker = 'o'
                markeredgewidth = 1
            else:
                color = 'r'
                marker = 'x'
                markeredgewidth = 1

            # Get coords
            coords = [
                entry.composition.get_atomic_fraction(el) for el in pd.elements
            ][1:]
            if pd.dim == 2:
                coords = coords + [pd.get_form_energy_per_atom(entry)]
            if pd.dim == 3:
                coords = triangular_coord(coords)
            elif pd.dim == 4:
                coords = tet_coord(coords)
            plot.plot(*coords,
                      marker=marker,
                      markeredgecolor=color,
                      markerfacecolor="None",
                      markersize=11,
                      markeredgewidth=markeredgewidth)

        if filename is not None:
            plot.savefig(filename, dpi=70)
        plot.close()

        if filename is not None and save_hull_distance:
            if self.stabilities is None:
                print("ERROR: No stability information in analyzer.")
                return None
            with open(filename.split(".")[0] + '.json', 'w') as f:
                json.dump(self.stabilities, f)