Пример #1
0
    def calc(self, item):
        """
        Process the tasks and materials into a dielectrics collection

        Args:
            item dict: a dict of material_id, structure, and tasks

        Returns:
            dict: a dieletrics dictionary
        """
        def poly(matrix):
            diags = np.diagonal(matrix)
            return np.prod(diags) / np.sum(
                np.prod(comb) for comb in combinations(diags, 2))

        if item["bandstructure"]["band_gap"] > 0:

            structure = Structure.from_dict(
                item.get("dielectric", {}).get("structure", None))

            ionic = Tensor(
                item["dielectric"]["ionic"]).convert_to_ieee(structure)
            static = Tensor(
                item["dielectric"]["static"]).convert_to_ieee(structure)
            total = ionic + static

            d = {
                "dielectric": {
                    "total": total,
                    "ionic": ionic,
                    "static": static,
                    "e_total": np.average(np.diagonal(total)),
                    "e_ionic": np.average(np.diagonal(ionic)),
                    "e_static": np.average(np.diagonal(static)),
                    "n": np.sqrt(np.average(np.diagonal(static))),
                }
            }

            sga = SpacegroupAnalyzer(structure)
            # Update piezo if non_centrosymmetric
            if item.get("piezo", False) and not sga.is_laue():
                static = PiezoTensor.from_voigt(
                    np.array(item["piezo"]["static"]))
                ionic = PiezoTensor.from_voigt(np.array(
                    item["piezo"]["ionic"]))
                total = ionic + static

                # Symmeterize Convert to IEEE orientation
                total = total.convert_to_ieee(structure)
                ionic = ionic.convert_to_ieee(structure)
                static = static.convert_to_ieee(structure)

                directions, charges, strains = np.linalg.svd(
                    total.voigt, full_matrices=False)

                max_index = np.argmax(np.abs(charges))

                max_direction = directions[max_index]

                # Allow a max miller index of 10
                min_val = np.abs(max_direction)
                min_val = min_val[min_val > (np.max(min_val) /
                                             self.max_miller)]
                min_val = np.min(min_val)

                d["piezo"] = {
                    "total": total.zeroed().voigt,
                    "ionic": ionic.zeroed().voigt,
                    "static": static.zeroed().voigt,
                    "e_ij_max": charges[max_index],
                    "max_direction": np.round(max_direction / min_val),
                    "strain_for_max": strains[max_index],
                }
        else:
            d = {
                "dielectric": {},
                "_warnings": [
                    "Dielectric calculated for likely metal. Values are unlikely to be converged"
                ],
            }

            if item.get("piezo", False):
                d.update({
                    "piezo": {},
                    "_warnings": [
                        "Piezoelectric calculated for likely metal. Values are unlikely to be converged"
                    ],
                })

        return d
Пример #2
0
class TensorTest(PymatgenTest):
    _multiprocess_shared_ = True

    def setUp(self):
        self.vec = Tensor([1.0, 0.0, 0.0])
        self.rand_rank2 = Tensor(np.random.randn(3, 3))
        self.rand_rank3 = Tensor(np.random.randn(3, 3, 3))
        self.rand_rank4 = Tensor(np.random.randn(3, 3, 3, 3))
        a = 3.14 * 42.5 / 180
        self.non_symm = SquareTensor([[0.1, 0.2, 0.3], [0.4, 0.5, 0.6],
                                      [0.2, 0.5, 0.5]])
        self.rotation = SquareTensor([[math.cos(a), 0,
                                       math.sin(a)], [0, 1, 0],
                                      [-math.sin(a), 0,
                                       math.cos(a)]])
        self.low_val = Tensor([[1e-6, 1 + 1e-5, 1e-6], [1 + 1e-6, 1e-6, 1e-6],
                               [1e-7, 1e-7, 1 + 1e-5]])
        self.symm_rank2 = Tensor([[1, 2, 3], [2, 4, 5], [3, 5, 6]])
        self.symm_rank3 = Tensor([
            [[1, 2, 3], [2, 4, 5], [3, 5, 6]],
            [[2, 4, 5], [4, 7, 8], [5, 8, 9]],
            [[3, 5, 6], [5, 8, 9], [6, 9, 10]],
        ])
        self.symm_rank4 = Tensor([
            [
                [[1.2, 0.4, -0.92], [0.4, 0.05, 0.11], [-0.92, 0.11, -0.02]],
                [[0.4, 0.05, 0.11], [0.05, -0.47, 0.09], [0.11, 0.09, -0.0]],
                [[-0.92, 0.11, -0.02], [0.11, 0.09, 0.0], [-0.02, 0.0, -0.3]],
            ],
            [
                [[0.4, 0.05, 0.11], [0.05, -0.47, 0.09], [0.11, 0.09, 0.0]],
                [[0.05, -0.47, 0.09], [-0.47, 0.17, 0.62], [0.09, 0.62, 0.3]],
                [[0.11, 0.09, 0.0], [0.09, 0.62, 0.3], [0.0, 0.3, -0.18]],
            ],
            [
                [[-0.92, 0.11, -0.02], [0.11, 0.09, 0.0], [-0.02, 0, -0.3]],
                [[0.11, 0.09, 0.0], [0.09, 0.62, 0.3], [0.0, 0.3, -0.18]],
                [[-0.02, 0.0, -0.3], [0.0, 0.3, -0.18], [-0.3, -0.18, -0.51]],
            ],
        ])

        # Structural symmetries tested using BaNiO3 piezo/elastic tensors
        self.fit_r3 = Tensor([
            [[0.0, 0.0, 0.03839], [0.0, 0.0, 0.0], [0.03839, 0.0, 0.0]],
            [[0.0, 0.0, 0.0], [0.0, 0.0, 0.03839], [0.0, 0.03839, 0.0]],
            [[6.89822, 0.0, 0.0], [0.0, 6.89822, 0.0], [0.0, 0.0, 27.4628]],
        ])
        self.fit_r4 = Tensor([
            [
                [[157.9, 0.0, 0.0], [0.0, 63.1, 0.0], [0.0, 0.0, 29.4]],
                [[0.0, 47.4, 0.0], [47.4, 0.0, 0.0], [0.0, 0.0, 0.0]],
                [[0.0, 0.0, 4.3], [0.0, 0.0, 0.0], [4.3, 0.0, 0.0]],
            ],
            [
                [[0.0, 47.4, 0.0], [47.4, 0.0, 0.0], [0.0, 0.0, 0.0]],
                [[63.1, 0.0, 0.0], [0.0, 157.9, 0.0], [0.0, 0.0, 29.4]],
                [[0.0, 0.0, 0.0], [0.0, 0.0, 4.3], [0.0, 4.3, 0.0]],
            ],
            [
                [[0.0, 0.0, 4.3], [0.0, 0.0, 0.0], [4.3, 0.0, 0.0]],
                [[0.0, 0.0, 0.0], [0.0, 0.0, 4.3], [0.0, 4.3, 0.0]],
                [[29.4, 0.0, 0.0], [0.0, 29.4, 0.0], [0.0, 0.0, 207.6]],
            ],
        ])

        self.unfit4 = Tensor([
            [
                [[161.26, 0.0, 0.0], [0.0, 62.76, 0.0], [0.0, 0.0, 30.18]],
                [[0.0, 47.08, 0.0], [47.08, 0.0, 0.0], [0.0, 0.0, 0.0]],
                [[0.0, 0.0, 4.23], [0.0, 0.0, 0.0], [4.23, 0.0, 0.0]],
            ],
            [
                [[0.0, 47.08, 0.0], [47.08, 0.0, 0.0], [0.0, 0.0, 0.0]],
                [[62.76, 0.0, 0.0], [0.0, 155.28, -0.06], [0.0, -0.06, 28.53]],
                [[0.0, 0.0, 0.0], [0.0, -0.06, 4.44], [0.0, 4.44, 0.0]],
            ],
            [
                [[0.0, 0.0, 4.23], [0.0, 0.0, 0.0], [4.23, 0.0, 0.0]],
                [[0.0, 0.0, 0.0], [0.0, -0.06, 4.44], [0.0, 4.44, 0.0]],
                [[30.18, 0.0, 0.0], [0.0, 28.53, 0.0], [0.0, 0.0, 207.57]],
            ],
        ])

        self.structure = self.get_structure("BaNiO3")
        ieee_file_path = os.path.join(PymatgenTest.TEST_FILES_DIR,
                                      "ieee_conversion_data.json")
        self.ones = Tensor(np.ones((3, 3)))
        self.ieee_data = loadfn(ieee_file_path)

    def test_new(self):
        bad_2 = np.zeros((4, 4))
        bad_3 = np.zeros((4, 4, 4))
        self.assertRaises(ValueError, Tensor, bad_2)
        self.assertRaises(ValueError, Tensor, bad_3)
        self.assertEqual(self.rand_rank2.rank, 2)
        self.assertEqual(self.rand_rank3.rank, 3)
        self.assertEqual(self.rand_rank4.rank, 4)

    def test_zeroed(self):
        self.assertArrayEqual(
            self.low_val.zeroed(),
            Tensor([[0, 1 + 1e-5, 0], [1 + 1e-6, 0, 0], [0, 0, 1 + 1e-5]]),
        )
        self.assertArrayEqual(
            self.low_val.zeroed(tol=1e-6),
            Tensor([[1e-6, 1 + 1e-5, 1e-6], [1 + 1e-6, 1e-6, 1e-6],
                    [0, 0, 1 + 1e-5]]),
        )
        self.assertArrayEqual(
            Tensor([[1e-6, -30, 1], [1e-7, 1, 0], [1e-8, 0, 1]]).zeroed(),
            Tensor([[0, -30, 1], [0, 1, 0], [0, 0, 1]]),
        )

    def test_transform(self):
        # Rank 3
        tensor = Tensor(np.arange(0, 27).reshape(3, 3, 3))
        symm_op = SymmOp.from_axis_angle_and_translation([0, 0, 1], 30, False,
                                                         [0, 0, 1])
        new_tensor = tensor.transform(symm_op)

        self.assertArrayAlmostEqual(
            new_tensor,
            [
                [
                    [-0.871, -2.884, -1.928],
                    [-2.152, -6.665, -4.196],
                    [-1.026, -2.830, -1.572],
                ],
                [
                    [0.044, 1.531, 1.804],
                    [4.263, 21.008, 17.928],
                    [5.170, 23.026, 18.722],
                ],
                [
                    [1.679, 7.268, 5.821],
                    [9.268, 38.321, 29.919],
                    [8.285, 33.651, 26.000],
                ],
            ],
            3,
        )

    def test_rotate(self):
        self.assertArrayEqual(
            self.vec.rotate([[0, -1, 0], [1, 0, 0], [0, 0, 1]]), [0, 1, 0])
        self.assertArrayAlmostEqual(
            self.non_symm.rotate(self.rotation),
            SquareTensor([[0.531, 0.485, 0.271], [0.700, 0.5, 0.172],
                          [0.171, 0.233, 0.068]]),
            decimal=3,
        )
        self.assertRaises(ValueError, self.non_symm.rotate, self.symm_rank2)

    def test_einsum_sequence(self):
        x = [1, 0, 0]
        test = Tensor(np.arange(0, 3**4).reshape((3, 3, 3, 3)))
        self.assertArrayAlmostEqual([0, 27, 54], test.einsum_sequence([x] * 3))
        self.assertEqual(360, test.einsum_sequence([np.eye(3)] * 2))
        self.assertRaises(ValueError, test.einsum_sequence,
                          Tensor(np.zeros(3)))

    def test_symmetrized(self):
        self.assertTrue(self.rand_rank2.symmetrized.is_symmetric())
        self.assertTrue(self.rand_rank3.symmetrized.is_symmetric())
        self.assertTrue(self.rand_rank4.symmetrized.is_symmetric())

    def test_is_symmetric(self):
        self.assertTrue(self.symm_rank2.is_symmetric())
        self.assertTrue(self.symm_rank3.is_symmetric())
        self.assertTrue(self.symm_rank4.is_symmetric())
        tol_test = self.symm_rank4
        tol_test[0, 1, 2, 2] += 1e-6
        self.assertFalse(self.low_val.is_symmetric(tol=1e-8))

    def test_fit_to_structure(self):
        new_fit = self.unfit4.fit_to_structure(self.structure)
        self.assertArrayAlmostEqual(new_fit, self.fit_r4, 1)

    def test_is_fit_to_structure(self):
        self.assertFalse(self.unfit4.is_fit_to_structure(self.structure))
        self.assertTrue(self.fit_r3.is_fit_to_structure(self.structure))
        self.assertTrue(self.fit_r4.is_fit_to_structure(self.structure))

    def test_convert_to_ieee(self):
        for entry in self.ieee_data:
            xtal = entry["xtal"]
            struct = entry["structure"]
            orig = Tensor(entry["original_tensor"])
            ieee = Tensor(entry["ieee_tensor"])
            diff = np.max(abs(ieee - orig.convert_to_ieee(struct)))
            err_msg = f"{xtal} IEEE conversion failed with max diff {diff}. Numpy version: {np.__version__}"
            converted = orig.convert_to_ieee(struct, refine_rotation=False)
            self.assertArrayAlmostEqual(ieee,
                                        converted,
                                        err_msg=err_msg,
                                        decimal=3)
            converted_refined = orig.convert_to_ieee(struct,
                                                     refine_rotation=True)
            err_msg = "{} IEEE conversion with refinement failed with max diff {}. Numpy version: {}".format(
                xtal, diff, np.__version__)
            self.assertArrayAlmostEqual(ieee,
                                        converted_refined,
                                        err_msg=err_msg,
                                        decimal=2)

    def test_structure_transform(self):
        # Test trivial case
        trivial = self.fit_r4.structure_transform(self.structure,
                                                  self.structure.copy())
        self.assertArrayAlmostEqual(trivial, self.fit_r4)

        # Test simple rotation
        rot_symm_op = SymmOp.from_axis_angle_and_translation([1, 1, 1], 55.5)
        rot_struct = self.structure.copy()
        rot_struct.apply_operation(rot_symm_op)
        rot_tensor = self.fit_r4.rotate(rot_symm_op.rotation_matrix)
        trans_tensor = self.fit_r4.structure_transform(self.structure,
                                                       rot_struct)
        self.assertArrayAlmostEqual(rot_tensor, trans_tensor)

        # Test supercell
        bigcell = self.structure.copy()
        bigcell.make_supercell([2, 2, 3])
        trans_tensor = self.fit_r4.structure_transform(self.structure, bigcell)
        self.assertArrayAlmostEqual(self.fit_r4, trans_tensor)

        # Test rotated primitive to conventional for fcc structure
        sn = self.get_structure("Sn")
        sn_prim = SpacegroupAnalyzer(sn).get_primitive_standard_structure()
        sn_prim.apply_operation(rot_symm_op)
        rotated = self.fit_r4.rotate(rot_symm_op.rotation_matrix)
        transformed = self.fit_r4.structure_transform(sn, sn_prim)
        self.assertArrayAlmostEqual(rotated, transformed)

    def test_from_voigt(self):
        with self.assertRaises(ValueError):
            Tensor.from_voigt([
                [59.33, 28.08, 28.08, 0],
                [28.08, 59.31, 28.07, 0],
                [28.08, 28.07, 59.32, 0, 0],
                [0, 0, 0, 26.35, 0],
                [0, 0, 0, 0, 26.35],
            ])
        # Rank 4
        Tensor.from_voigt([
            [59.33, 28.08, 28.08, 0, 0, 0],
            [28.08, 59.31, 28.07, 0, 0, 0],
            [28.08, 28.07, 59.32, 0, 0, 0],
            [0, 0, 0, 26.35, 0, 0],
            [0, 0, 0, 0, 26.35, 0],
            [0, 0, 0, 0, 0, 26.35],
        ])
        # Rank 3
        Tensor.from_voigt(np.zeros((3, 6)))
        # Rank 2
        Tensor.from_voigt(np.zeros(6))
        # Addresses occasional cast issues for integers
        Tensor.from_voigt(np.arange(6))

    def test_symmetry_reduce(self):
        tbs = [Tensor.from_voigt(row) for row in np.eye(6) * 0.01]
        reduced = symmetry_reduce(tbs, self.get_structure("Sn"))
        self.assertEqual(len(reduced), 2)
        self.assertArrayEqual([len(i) for i in reduced.values()], [2, 2])
        reconstructed = []
        for k, v in reduced.items():
            reconstructed.extend([k.voigt] +
                                 [k.transform(op).voigt for op in v])
        reconstructed = sorted(reconstructed, key=lambda x: np.argmax(x))
        self.assertArrayAlmostEqual([tb for tb in reconstructed],
                                    np.eye(6) * 0.01)

    def test_tensor_mapping(self):
        # Test get
        tbs = [Tensor.from_voigt(row) for row in np.eye(6) * 0.01]
        reduced = symmetry_reduce(tbs, self.get_structure("Sn"))
        tkey = Tensor.from_values_indices([0.01], [(0, 0)])
        tval = reduced[tkey]
        for tens_1, tens_2 in zip(tval, reduced[tbs[0]]):
            self.assertAlmostEqual(tens_1, tens_2)
        # Test set
        reduced[tkey] = "test_val"
        self.assertEqual(reduced[tkey], "test_val")
        # Test empty initialization
        empty = TensorMapping()
        self.assertEqual(empty._tensor_list, [])

    def test_populate(self):
        test_data = loadfn(
            os.path.join(PymatgenTest.TEST_FILES_DIR, "test_toec_data.json"))

        sn = self.get_structure("Sn")
        vtens = np.zeros((6, 6))
        vtens[0, 0] = 259.31
        vtens[0, 1] = 160.71
        vtens[3, 3] = 73.48
        et = Tensor.from_voigt(vtens)
        populated = et.populate(sn, prec=1e-3).voigt.round(2)
        self.assertAlmostEqual(populated[1, 1], 259.31)
        self.assertAlmostEqual(populated[2, 2], 259.31)
        self.assertAlmostEqual(populated[0, 2], 160.71)
        self.assertAlmostEqual(populated[1, 2], 160.71)
        self.assertAlmostEqual(populated[4, 4], 73.48)
        self.assertAlmostEqual(populated[5, 5], 73.48)
        # test a rank 6 example
        vtens = np.zeros([6] * 3)
        indices = [(0, 0, 0), (0, 0, 1), (0, 1, 2), (0, 3, 3), (0, 5, 5),
                   (3, 4, 5)]
        values = [-1271.0, -814.0, -50.0, -3.0, -780.0, -95.0]
        for v, idx in zip(values, indices):
            vtens[idx] = v
        toec = Tensor.from_voigt(vtens)
        toec = toec.populate(sn, prec=1e-3, verbose=True)
        self.assertAlmostEqual(toec.voigt[1, 1, 1], -1271)
        self.assertAlmostEqual(toec.voigt[0, 1, 1], -814)
        self.assertAlmostEqual(toec.voigt[0, 2, 2], -814)
        self.assertAlmostEqual(toec.voigt[1, 4, 4], -3)
        self.assertAlmostEqual(toec.voigt[2, 5, 5], -3)
        self.assertAlmostEqual(toec.voigt[1, 2, 0], -50)
        self.assertAlmostEqual(toec.voigt[4, 5, 3], -95)

        et = Tensor.from_voigt(test_data["C3_raw"]).fit_to_structure(sn)
        new = np.zeros(et.voigt.shape)
        for idx in indices:
            new[idx] = et.voigt[idx]
        new = Tensor.from_voigt(new).populate(sn)
        self.assertArrayAlmostEqual(new, et, decimal=2)

    def test_from_values_indices(self):
        sn = self.get_structure("Sn")
        indices = [(0, 0), (0, 1), (3, 3)]
        values = [259.31, 160.71, 73.48]
        et = Tensor.from_values_indices(values,
                                        indices,
                                        structure=sn,
                                        populate=True).voigt.round(4)
        self.assertAlmostEqual(et[1, 1], 259.31)
        self.assertAlmostEqual(et[2, 2], 259.31)
        self.assertAlmostEqual(et[0, 2], 160.71)
        self.assertAlmostEqual(et[1, 2], 160.71)
        self.assertAlmostEqual(et[4, 4], 73.48)
        self.assertAlmostEqual(et[5, 5], 73.48)

    def test_serialization(self):
        # Test base serialize-deserialize
        d = self.symm_rank2.as_dict()
        new = Tensor.from_dict(d)
        self.assertArrayAlmostEqual(new, self.symm_rank2)

        d = self.symm_rank3.as_dict(voigt=True)
        new = Tensor.from_dict(d)
        self.assertArrayAlmostEqual(new, self.symm_rank3)

    def test_projection_methods(self):
        self.assertAlmostEqual(self.rand_rank2.project([1, 0, 0]),
                               self.rand_rank2[0, 0])
        self.assertAlmostEqual(self.rand_rank2.project([1, 1, 1]),
                               np.sum(self.rand_rank2) / 3)
        # Test integration
        self.assertArrayAlmostEqual(self.ones.average_over_unit_sphere(), 1)

    def test_summary_methods(self):
        self.assertEqual(
            set(self.ones.get_grouped_indices()[0]),
            set(itertools.product(range(3), range(3))),
        )
        self.assertEqual(
            self.ones.get_grouped_indices(voigt=True)[0],
            [(i, ) for i in range(6)])
        self.assertEqual(self.ones.get_symbol_dict(), {"T_1": 1})
        self.assertEqual(self.ones.get_symbol_dict(voigt=False), {"T_11": 1})

    def test_round(self):
        test = self.non_symm + 0.01
        rounded = test.round(1)
        self.assertArrayAlmostEqual(rounded, self.non_symm)
        self.assertTrue(isinstance(rounded, Tensor))