Пример #1
0
def test_new():
    trjfilename = os.path.join(MODULE_DIR,
                               'tests/sample_files/NaSCN.lammpstrj')
    datfilename = os.path.join(MODULE_DIR,
                               'tests/sample_files/data.water_1NaSCN')
    logfilename = os.path.join(MODULE_DIR, 'tests/sample_files/mol.log')

    lrun = LammpsRun(datfilename, trjfilename, logfilename)

    comx, comy, comz = lrun._weighted_average()
Пример #2
0
    def run_task(self, fw_spec):
        lammps_input = self["lammps_input"]
        diffusion_params = self.get("diffusion_params", {})

        # get the directory that contains the LAMMPS dir to parse
        calc_dir = os.getcwd()
        if "calc_dir" in self:
            calc_dir = self["calc_dir"]
        elif self.get("calc_loc"):
            calc_dir = get_calc_loc(self["calc_loc"],
                                    fw_spec["calc_locs"])["path"]

        # parse the directory
        logger.info("PARSING DIRECTORY: {}".format(calc_dir))
        d = {}
        d["dir_name"] = os.path.abspath(os.getcwd())
        d["last_updated"] = datetime.today()
        d["input"] = lammps_input.as_dict()
        log_file = lammps_input.config_dict["log"]
        if isinstance(lammps_input.config_dict["dump"], list):
            dump_file = lammps_input.config_dict["dump"][0].split()[4]
        else:
            dump_file = lammps_input.config_dict["dump"].split()[4]
        is_forcefield = hasattr(lammps_input.lammps_data, "bonds_data")
        lammpsrun = LammpsRun(lammps_input.data_filename,
                              dump_file,
                              log_file,
                              is_forcefield=is_forcefield)
        d["natoms"] = lammpsrun.natoms
        d["nmols"] = lammpsrun.nmols
        d["box_lengths"] = lammpsrun.box_lengths
        d["mol_masses"] = lammpsrun.mol_masses
        d["mol_config"] = lammpsrun.mol_config
        if diffusion_params:
            diffusion_analyzer = lammpsrun.get_diffusion_analyzer(
                **diffusion_params)
            d["analysis"]["diffusion"] = diffusion_analyzer.get_summary_dict()
        db_file = env_chk(self.get('db_file'), fw_spec)

        # db insertion
        if not db_file:
            with open("task.json", "w") as f:
                f.write(json.dumps(d, default=DATETIME_HANDLER))
        else:
            mmdb = MMLammpsDb.from_db_file(db_file)
            # insert the task document
            t_id = mmdb.insert(d)
            logger.info("Finished parsing with task_id: {}".format(t_id))
        return FWAction(stored_data={"task_id": d.get("task_id", None)})
Пример #3
0
 def test_serialization(self):
     d = self.lammpsrun.as_dict()
     lmps_run = LammpsRun.from_dict(d)
     self.assertDictEqual(d, lmps_run.as_dict())
     d2 = self.lmps_log.as_dict()
     lmps_log = LammpsLog.from_dict(d2)
     self.assertDictEqual(d2, lmps_log.as_dict())
Пример #4
0
 def test_serialization(self):
     d = self.lammpsrun.as_dict()
     lmps_run = LammpsRun.from_dict(d)
     self.assertDictEqual(d, lmps_run.as_dict())
     d2 = self.lmps_log.as_dict()
     lmps_log = LammpsLog.from_dict(d2)
     self.assertDictEqual(d2, lmps_log.as_dict())
Пример #5
0
def get_snap_site_features(d):
    feature = []
    data_filename = "lammps_snap.data"
    input_template = "lammps_snap_template.in"
    input_filename = "lammps_snap.in"
    dump_filename =  "dump.sna"
    log_filename = "log.lammps"

    sbp.check_call(["rm", "-f", input_filename])
    sbp.check_call(["rm", "-f", data_filename])    
    sbp.check_call(["rm", "-f", dump_filename])
    sbp.check_call(["rm", "-f", log_filename])

    structure = Structure.from_dict(d["structure"])
    feature.append(structure[d["absorbing_atom"]].specie.number)
    try:
        mol = Molecule.from_dict(d["cluster"])
    except TypeError:
        atoms = Atoms(structure, d["absorbing_atom"], 10.0)
        mol = atoms.cluster
    logger.info(mol.formula)
    lmp_data = LammpsData.from_structure(mol, [[0,25], [0,25],[0,25]], translate=False)    

    lmp_data.write_file(data_filename)
    el_sorted = sorted(mol.composition, key=lambda x:x.atomic_mass)
    cutoff = ""
    weight = ""
    for i, e in enumerate(el_sorted):
        cutoff += " {}".format(float(e.atomic_radius))
        weight += " {}".format(1.0)
        settings = {
            'data_file': data_filename,
            'rcutfac': 1.4, 
            'rfac0': 0.993630,
            'twojmax': 6.0,
            'cutoff': cutoff,
            'weight': weight,
            'dump_file': dump_filename
        }
    lmp_in = LammpsInput.from_file(input_template, settings)
    lmp_in.write_file(input_filename)
    #try:
    logger.info("Running LAMMPS ... ")
    exit_code = sbp.check_call(["./lmp_serial", "-in", input_filename])
    if exit_code != 0:
        logger.error("lammps run failed")
        raise RuntimeError("lammps run failed")                
    logger.info("Processing LAMMPS outputs ... ")
    lmp_run = LammpsRun(data_filename, dump_filename, log_filename)
    t = list(lmp_run.trajectory[0])
    try:
        assert np.linalg.norm(t[2:5]) <= 1e-6
    except AssertionError:
        logger.info("xyz: {}".format(t[2:5]))
        logger.error("assertion failed: first one not at origin")
        raise
    logger.info("# bispectrum coeffs: {}".format(len(t[5:])))
    feature.extend(t[5:])
    return feature
Пример #6
0
 def setUpClass(cls):
     data_file = os.path.join(test_dir, "nvt.data")
     traj_file = os.path.join(test_dir, "nvt.dump")
     log_file = os.path.join(test_dir, "nvt.log")
     cls.lammpsrun = LammpsRun(data_file,
                               traj_file,
                               log_file,
                               is_forcefield=True)
Пример #7
0
    def run_task(self, fw_spec):
        lammps_input = self["lammps_input"]
        diffusion_params = self.get("diffusion_params", {})

        # get the directory that contains the LAMMPS dir to parse
        calc_dir = os.getcwd()
        if "calc_dir" in self:
            calc_dir = self["calc_dir"]
        elif self.get("calc_loc"):
            calc_dir = get_calc_loc(self["calc_loc"], fw_spec["calc_locs"])["path"]

        # parse the directory
        logger.info("PARSING DIRECTORY: {}".format(calc_dir))
        d = {}
        d["dir_name"] = os.path.abspath(os.getcwd())
        d["last_updated"] = datetime.today()
        d["input"] = lammps_input.as_dict()
        log_file = lammps_input.config_dict["log"]
        if isinstance(lammps_input.config_dict["dump"], list):
            dump_file = lammps_input.config_dict["dump"][0].split()[4]
        else:
            dump_file = lammps_input.config_dict["dump"].split()[4]
        is_forcefield = hasattr(lammps_input.lammps_data, "bonds_data")
        lammpsrun = LammpsRun(lammps_input.data_filename, dump_file, log_file, is_forcefield=is_forcefield)
        d["natoms"] = lammpsrun.natoms
        d["nmols"] = lammpsrun.nmols
        d["box_lengths"] = lammpsrun.box_lengths
        d["mol_masses"] = lammpsrun.mol_masses
        d["mol_config"] = lammpsrun.mol_config
        if diffusion_params:
            diffusion_analyzer = lammpsrun.get_diffusion_analyzer(**diffusion_params)
            d["analysis"]["diffusion"] = diffusion_analyzer.get_summary_dict()
        db_file = env_chk(self.get('db_file'), fw_spec)

        # db insertion
        if not db_file:
            with open("task.json", "w") as f:
                f.write(json.dumps(d, default=DATETIME_HANDLER))
        else:
            mmdb = MMLammpsDb.from_db_file(db_file)
            # insert the task document
            t_id = mmdb.insert(d)
            logger.info("Finished parsing with task_id: {}".format(t_id))
        return FWAction(stored_data={"task_id": d.get("task_id", None)})
Пример #8
0
    def assimilate(self,
                   path,
                   input_filename,
                   log_filename="log.lammps",
                   is_forcefield=False,
                   data_filename=None,
                   dump_files=None):
        """
        Parses lammps input, data and log files and insert the result into the db.

        Args:
            path (str): path to the run folder
            input_filename (str): just the name of the input file
            log_filename (str): lammps log file name
            is_forcefield (bool): whether or not ot parse forcefield info
            data_filename (str): name of the data file
            dump_files ([str]): list of dump file names

        Returns:
            dict
        """

        input_file = os.path.join(path, input_filename)
        data_file = os.path.join(path,
                                 data_filename) if data_filename else None
        log_file = os.path.join(path, log_filename)
        dump_files = dump_files or []
        dump_files = [dump_files] if isinstance(
            dump_files, six.string_types) else dump_files

        # input set
        lmps_input = LammpsInputSet.from_file("lammps", input_file, {},
                                              data_file, data_filename)

        # dumps
        dumps = []
        if dump_files:
            for df in dump_files:
                dumps.append((df, LammpsDump.from_file(os.path.join(path,
                                                                    df))))

        # log
        log = LammpsLog(log_file=log_file)

        logger.info("Getting task doc for base dir :{}".format(path))
        d = self.generate_doc(path, lmps_input, log, dumps)

        lmps_run = None
        if len(dump_files) == 1 and data_file:
            lmps_run = LammpsRun(data_file,
                                 dump_files[0],
                                 log_file=log_filename)

        self.post_process(d, lmps_run)

        return d
Пример #9
0
def test_conductivity():
    trjfilename = [
        os.path.join(MODULE_DIR, 'tests/sample_files/NaSCN.lammpstrj')
    ]
    datfilename = os.path.join(MODULE_DIR,
                               'tests/sample_files/data.water_1NaSCN')
    logfilename = os.path.join(MODULE_DIR, 'tests/sample_files/mol.log')

    lrun = LammpsRun(datfilename, trjfilename, logfilename)

    cc = Conductivity()
    T = 350  # from lammpsio

    output = {}
    output['Conductivity'] = {}
    output['Conductivity']['units'] = 'S/m'
    (nummoltype, moltypel, moltype) = lrun.get_mols()
    n = lrun.natoms()
    (molcharges, atomcharges, n) = lrun.get_mol_charges(n)
    output = cc.calcConductivity(molcharges, trjfilename, logfilename,
                                 datfilename, T, output)
    print((output['Conductivity']['Green_Kubo']))
Пример #10
0
 def calcConductivity(self, molcharges, trjfilename, logfilename,
                      datfilename, T, output):
     lrun = LammpsRun(datfilename, trjfilename, logfilename)
     dt = lrun.timestep
     tsjump = lrun.jump(trjfilename)
     (num_lines, n, num_timesteps, count, line) = self.getnum(trjfilename)
     atommass = self.getmass(datfilename)
     V = self.getdimensions(trjfilename[0])
     (vx, vy, vz, mol, atype, j, J) = self.createarrays(n, num_timesteps)
     (vxcol, vycol, vzcol, idcol, molcol,
      typecol) = self.getcolumns(trjfilename[0])
     for i in range(0, len(trjfilename)):
         trjfile = open(trjfilename[i])
         while line[i] < num_lines[i]:
             (vx, vy, vz, line, mol,
              atype) = self.readdata(trjfile, n, line, vx, vy, vz, vxcol,
                                     vycol, vzcol, idcol, i, mol, molcol,
                                     atype, typecol)
             if count == 0:
                 (comvx, comvy, comvz, nummol,
                  molmass) = self.COMprep(mol, atype, atommass, n)
             (comvx, comvy,
              comvz) = self.calcCOMv(comvx, comvy, comvz, vx, vy, vz, mol,
                                     atype, atommass, molmass, n, nummol)
             (j, count) = self.calcj(molcharges, comvx, comvy, comvz, j,
                                     count)
     J = self.clacJ(j, J)
     integral = self.integrateJ(J, tsjump * dt)
     time = []
     for i in range(0, len(integral)):
         time.append(i * tsjump * dt)
     popt = self.fitcurve(time, integral)
     cond = self.greenkubo(popt, T, V)
     output['Conductivity']['Green_Kubo'] = cond
     file = open('integral.dat', 'w')
     for i in range(0, len(integral)):
         file.write(str(integral[i]) + '\n')
     return output
Пример #11
0
def test_other():
    """
    Sample driver file to calculate the MSD and diffusivity for all
    molecules in a system as well as the center of mass radial distribution
    function for all pairs of molecules in the system. Will also integrate
    the rdf to get the coordination number and calculate the ion pair lifetime
    for the system

    Requires the following comments in the lammps data file starting
    at the third line

    # 'number' 'molecule' molecules

    where 'number' is the number of that molecule type and
    'molecule' is a name for that molecule

    Do not include blank lines in between the molecule types

    Outputs are stored in a dictionary called output to later be stored
    in JSON format
    """
    trjfilename = [
        os.path.join(MODULE_DIR, 'tests/sample_files/NaSCN.lammpstrj')
    ]
    datfilename = os.path.join(MODULE_DIR,
                               'tests/sample_files/data.water_1NaSCN')
    logfilename = os.path.join(MODULE_DIR, 'tests/sample_files/mol.log')

    lrun = LammpsRun(datfilename, trjfilename, logfilename)

    c = CenterOfMass()
    m = MeanSquareDisplacement()
    crd = RadialDistributionPure()
    ne = NernstEinsteinConductivity()
    cn = CoordinationNumber()
    ip = IonPair()

    output = {}
    output['RDF'] = {}
    output['RDF']['units'] = 'unitless and angstroms'
    output['Conductivity'] = {}
    output['Conductivity']['units'] = 'S/m'
    T = 298  # get from lammpsio

    tsjump = lrun.jump()
    (nummoltype, moltypel, moltype) = lrun.get_mols()
    dt = lrun.timestep
    n = lrun.natoms()
    (molcharges, atomcharges, n) = lrun.get_mol_charges(n)
    molcharge = lrun.get_mol_charge_dict(molcharges, moltypel, moltype)

    (comx, comy, comz, Lx, Ly, Lz, Lx2, Ly2,
     Lz2) = c.calcCOM(trjfilename, datfilename)

    output = m.runMSD(comx, comy, comz, Lx, Ly, Lz, Lx2, Ly2, Lz2, moltype,
                      moltypel, dt, tsjump, output)
    output = ne.calcNEconductivity(output, molcharge, Lx, Ly, Lz, nummoltype,
                                   moltypel, T)
    ip.runionpair(comx,
                  comy,
                  comz,
                  Lx,
                  Ly,
                  Lz,
                  moltypel,
                  moltype,
                  tsjump,
                  dt,
                  output,
                  skipframes=0)
    output = crd.runradial(datfilename,
                           comx,
                           comy,
                           comz,
                           Lx,
                           Ly,
                           Lz,
                           Lx2,
                           Ly2,
                           Lz2,
                           output,
                           nummoltype,
                           moltypel,
                           moltype,
                           firststep=1)
    output = cn.compute(output, nummoltype, moltypel, Lx * Ly * Lz)
Пример #12
0
 def setUpClass(cls):
     data_file = os.path.join(test_dir, "nvt.data")
     traj_file = os.path.join(test_dir, "nvt.dump")
     log_file = os.path.join(test_dir, "nvt.log")
     cls.lmps_log = LammpsLog(log_file=log_file)
     cls.lammpsrun = LammpsRun(data_file, traj_file, log_file)
Пример #13
0
    def lampps_properties(self, trjfile, datafile, logfile):
        """
        calculate the MSD and diffusivity for all
        molecules in a system as well as the center of mass radial distribution
        function for all pairs of molecules in the system

        Requires the following comments in the lammps data file starting
        at the third line

        # "number" "molecule" molecules

        where "number" is the number of that molecule type and
        "molecule" is a name for that molecule

        Do not include blank lines in between the molecule types

        Outputs are stored in a dictionary called output to later be stored
        in JSON format
        :return: Output
        """
        lrun = LammpsRun(datafile, trjfile, logfile)

        c = CenterOfMass()
        m = MeanSquareDisplacement()
        crd = RadialDistributionPure()
        ne = NernstEinsteinConductivity()

        output = {}
        output['RDF'] = {}
        output['RDF']['units'] = 'unitless and angstroms'
        output['Conductivity'] = {}
        output['Conductivity']['units'] = 'S/m'
        T = 298  # get from lammpsio

        tsjump = lrun.jump()
        (nummoltype, moltypel, moltype) = lrun.get_mols()
        dt = lrun.timestep
        n = lrun.natoms()
        (molcharges, atomcharges, n) = lrun.get_mol_charges(n)
        molcharge = lrun.get_mol_charge_dict(molcharges, moltypel, moltype)
        (comx, comy, comz, Lx, Ly, Lz, Lx2, Ly2, Lz2) = c.calcCOM([trjfile],
                                                                  datafile)

        output = m.runMSD(comx, comy, comz, Lx, Ly, Lz, Lx2, Ly2, Lz2, moltype,
                          moltypel, dt, tsjump, output)
        output = ne.calcNEconductivity(output, molcharge, Lx, Ly, Lz,
                                       nummoltype, moltypel, T)
        output = crd.runradial(datafile,
                               comx,
                               comy,
                               comz,
                               Lx,
                               Ly,
                               Lz,
                               Lx2,
                               Ly2,
                               Lz2,
                               output,
                               nummoltype,
                               moltypel,
                               moltype,
                               firststep=1)
        return output