def generate_binary_performance_table_and_assignments(criteria, categories, fmins): cids = list(criteria.keys()) cats = categories.get_ordered_categories() aa = AlternativesAssignments() pt = PerformanceTable() i = 1 for coalition in powerset(cids): if set(coalition) == set({}) or set(coalition) == set(cids): continue aid = "a%d" % i ap = AlternativePerformances(aid, OrderedDict({c: 1 if c in coalition else 0 for c in cids})) pt.append(ap) cat = cats[0] for fmin in fmins: if fmin.issubset(set(coalition)) is True: cat = cats[1] break aa.append(AlternativeAssignment(aid, cat)) i += 1 return pt, aa
def compute_assignments_majority(models_ca, pt): models = sorted(models_ca, key = lambda k: models_ca[k], reverse = True) models_aa = {} for model in models[:len(models)/2]: models_aa[model] = model.get_assignments(pt) aa = AlternativesAssignments() for ap in pt: aid = ap.id cat_scores = {} for model in models[:int(math.ceil(len(models) / 2))]: cat = models_aa[model][aid].category_id if cat in cat_scores: cat_scores[cat] += models_ca[model] else: cat_scores[cat] = models_ca[model] b = AlternativeAssignment(aid, max(cat_scores, key = lambda cat: cat_scores[cat])) aa.append(b) return aa
def discard_alternatives_in_category(aa, category): out = AlternativesAssignments() for a in aa: if a.category_id != category: out.append(a) return out
def discard_undersorted_alternatives(categories, aa, aa2): out = AlternativesAssignments() cat_order = {cat: i + 1 for i, cat in enumerate(categories)} for a in aa: aid = a.id acat = cat_order[a.category_id] a2 = aa2[aid] a2cat = cat_order[a2.category_id] if a2cat >= acat: out.append(a) return out
def add_errors_in_assignments(aa, category_ids, errors_pc): n = int(len(aa)*errors_pc) aa_erroned = random.sample(list(aa), n) l = AlternativesAssignments([]) for a in aa_erroned: cat = a.category_id new_cat = a.category_id while new_cat == cat: new_cat = random.sample(category_ids, 1)[0] a.category_id = new_cat l.append(a) return l
def add_errors_in_assignments_proba(aa, category_ids, proba): l = AlternativesAssignments([]) for a in aa: r = random.random() if r <= proba: cat = a.category_id new_cat = a.category_id while new_cat == cat: new_cat = random.sample(category_ids, 1)[0] a.category_id = new_cat l.append(a) return l
def optimist(self, pt): self.__check_input_params() profiles = self.profiles assignments = AlternativesAssignments([]) for action_perfs in pt: cat_rank = 0 for i, profile in enumerate(profiles): outr = self.__outrank(action_perfs, self.criteria, self.bpt[profile], self.lbda) if outr != "-": cat_rank += 1 cat_id = self.categories[cat_rank] id = action_perfs.id alt_affect = AlternativeAssignment(id, cat_id) assignments.append(alt_affect) return assignments
def pessimist(self, pt): self.__check_input_params() profiles = self.profiles[:] profiles.reverse() assignments = AlternativesAssignments([]) for action_perfs in pt: cat_rank = len(profiles) for i, profile in enumerate(profiles): s_ab = self.credibility(action_perfs, self.bpt[profile], profile) if not eq(s_ab, self.lbda) and s_ab < self.lbda: cat_rank -= 1 cat_id = self.categories[cat_rank] id = action_perfs.id alt_affect = AlternativeAssignment(id, cat_id) assignments.append(alt_affect) return assignments
def build_assignments_table(self): self.good = 0 self.aa = AlternativesAssignments() for aa in self.aa_ori.values(): aid = aa.id cat = self.get_alternative_assignment(aid) self.aa.append(AlternativeAssignment(aid, cat)) cat_ori = aa.category_id if cat == cat_ori: self.good += 1
def compute_assignments_majority(models_ca, pt): models = sorted(models_ca, key=lambda k: models_ca[k], reverse=True) models_aa = {} for model in models[:len(models) / 2]: models_aa[model] = model.get_assignments(pt) aa = AlternativesAssignments() for ap in pt: aid = ap.id cat_scores = {} for model in models[:int(math.ceil(len(models) / 2))]: cat = models_aa[model][aid].category_id if cat in cat_scores: cat_scores[cat] += models_ca[model] else: cat_scores[cat] = models_ca[model] b = AlternativeAssignment( aid, max(cat_scores, key=lambda cat: cat_scores[cat])) aa.append(b) return aa
directory='%s/test-veto2' % (DATADIR) for f in sys.argv[1:]: fname = os.path.splitext(os.path.basename(f))[0] if is_bz2_file(f) is True: f = bz2.BZ2File(f) tree = ElementTree.parse(f) root = tree.getroot() m = MRSort().from_xmcda(root, 'learned') pt_learning = PerformanceTable().from_xmcda(root, 'learning_set') pt_test = PerformanceTable().from_xmcda(root, 'test_set') aa_learning = AlternativesAssignments().from_xmcda(root, 'learning_set') aa_test = AlternativesAssignments().from_xmcda(root, 'test_set') aa_learning_m2 = m.pessimist(pt_learning) aa_test_m2 = m.pessimist(pt_test) # # Remove alternatives that cannot be corrected with a veto rule # aa_learning_m2p = discard_undersorted_alternatives(m.categories, # aa_learning, # aa_learning_m2) # aa_learning_m2p = discard_alternatives_in_category(aa_learning_m2p, # m.categories[0]) # Run the metaheuristic meta = MetaMRSortVCPop3(10, m, SortedPerformanceTable(pt_learning),
class MetaMRSortProfilesChoquet(): def __init__(self, model, pt_sorted, aa_ori): self.na = len(aa_ori) self.nc = len(model.criteria) self.model = model self.nprofiles = len(model.profiles) self.pt_sorted = pt_sorted self.aa_ori = aa_ori self.cat = self.categories_rank() self.cat_ranked = self.model.categories self.aa_by_cat = self.sort_alternative_by_category(aa_ori) self.b0 = pt_sorted.pt.get_worst(model.criteria) self.bp = pt_sorted.pt.get_best(model.criteria) self.rebuild_tables() def categories_rank(self): return {cat: i + 1 for i, cat in enumerate(self.model.categories)} def sort_alternative_by_category(self, aa): aa_by_cat = {} for a in aa: aid = a.id cat = self.cat[a.category_id] if cat in aa_by_cat: aa_by_cat[cat].append(aid) else: aa_by_cat[cat] = [aid] return aa_by_cat def compute_above_histogram(self, cid, perf_profile, perf_above, cat_b, cat_a, ct): lbda = self.model.lbda direction = self.model.criteria[cid].direction delta = 0.00001 * direction h_above = {} num = total = 0 alts, perfs = self.pt_sorted.get_middle(cid, perf_profile, perf_above, True, True) for i, a in enumerate(alts): if (perfs[i] + delta) * direction > perf_above * direction: continue aa_ori = self.aa_ori._d[a].category_id aa = self.aa._d[a].category_id diff = self.mobius[frozenset(ct[a] | set([cid]))] if aa_ori == cat_a: if aa == cat_a and diff < lbda: # -- total += 5 elif aa == cat_b: # - total += 1 elif aa_ori == cat_b and aa == cat_a: if diff >= lbda: # + num += 0.5 total += 1 h_above[perfs[i] + delta] = num / total else: # ++ num += 2 total += 1 h_above[perfs[i] + delta] = num / total # elif self.aa_ori(a) < self.aa(a) and \ elif aa_ori != aa and \ self.cat[aa] < self.cat[cat_a] and \ self.cat[aa_ori] < self.cat[cat_a]: num += 0.1 total += 1 h_above[perfs[i] + delta] = num / total return h_above def compute_below_histogram(self, cid, perf_profile, perf_below, cat_b, cat_a, ct): lbda = self.model.lbda h_below = {} num = total = 0 alts, perfs = self.pt_sorted.get_middle(cid, perf_profile, perf_below, True, True) for i, a in enumerate(alts): aa_ori = self.aa_ori._d[a].category_id aa = self.aa._d[a].category_id diff = self.mobius[frozenset(ct[a] | set([cid]))] if aa_ori == cat_a and aa == cat_b: if diff >= lbda: # ++ num += 2 total += 1 h_below[perfs[i]] = num / total else: # + num += 0.5 total += 1 h_below[perfs[i]] = num / total elif aa_ori == cat_b: if aa == cat_b and diff >= lbda: # -- total += 5 elif aa == cat_a: # - total += 1 # elif self.aa_ori(a) > self.aa(a) and \ elif aa_ori != aa and \ self.cat[aa] > self.cat[cat_b] and \ self.cat[aa_ori] > self.cat[cat_b]: num += 0.1 total += 1 h_below[perfs[i]] = num / total return h_below def histogram_choose(self, h, current): key = random.choice(h.keys()) val = h[key] diff = abs(current - key) for k, v in h.items(): if v >= val: tmp = abs(current - k) if tmp > diff: key = k val = v diff = tmp return key def get_alternative_assignment(self, aid): profile = self.model.profiles[0] for profile in reversed(self.model.profiles): if self.mobius[self.ct[profile][aid]] >= self.model.lbda: return self.model.categories_profiles[profile].value.upper return self.model.categories_profiles[profile].value.lower def build_assignments_table(self): self.good = 0 self.aa = AlternativesAssignments() for aa in self.aa_ori.values(): aid = aa.id cat = self.get_alternative_assignment(aid) self.aa.append(AlternativeAssignment(aid, cat)) cat_ori = aa.category_id if cat == cat_ori: self.good += 1 def build_concordance_table(self): self.ct = {bp.id: dict() for bp in self.model.bpt} for aid, bp in product(self.aa_ori.keys(), self.model.bpt): ap = self.pt_sorted[aid] conc = self.model.concordance(ap, bp) self.ct[bp.id][aid] = conc def build_coalition_table(self): self.ct = {bp.id: dict() for bp in self.model.bpt} for aid, bp in product(self.aa_ori.keys(), self.model.bpt): ap = self.pt_sorted[aid] criteria_coalition = self.model.criteria_coalition(ap, bp) self.ct[bp.id][aid] = frozenset(criteria_coalition) def build_mobius_table(self): cids = self.model.criteria.keys() self.mobius = {frozenset([]): 0} for i in range(len(cids)): for c in combinations(cids, i + 1): s = frozenset(c) wsum = self.model.coalition_weight(s) self.mobius[s] = wsum def rebuild_tables(self): self.build_mobius_table() self.build_coalition_table() self.build_assignments_table() def update_tables(self, profile, cid, old, new): direction = self.model.criteria[cid].direction if old > new: if direction == 1: down, up = True, False else: down, up = False, True add = True else: if direction == 1: down, up = False, True else: down, up = True, False add = False alts, perfs = self.pt_sorted.get_middle(cid, old, new, up, down) for a in alts: self.ct[profile][a] = set(self.ct[profile][a]) if add is True: self.ct[profile][a].add(cid) else: self.ct[profile][a].discard(cid) self.ct[profile][a] = frozenset(self.ct[profile][a]) old_cat = self.aa[a].category_id new_cat = self.get_alternative_assignment(a) ori_cat = self.aa_ori[a].category_id if old_cat == new_cat: continue elif old_cat == ori_cat: self.good -= 1 elif new_cat == ori_cat: self.good += 1 self.aa[a].category_id = new_cat def optimize_profile(self, profile, below, above, cat_b, cat_a): cids = self.model.criteria.keys() random.shuffle(cids) for cid in cids: ct = self.ct[profile.id] perf_profile = profile.performances[cid] perf_above = above.performances[cid] perf_below = below.performances[cid] h_below = self.compute_below_histogram(cid, perf_profile, perf_below, cat_b, cat_a, ct) h_above = self.compute_above_histogram(cid, perf_profile, perf_above, cat_b, cat_a, ct) h = h_below h.update(h_above) if not h: continue i = self.histogram_choose(h, perf_profile) r = random.uniform(0, 1) if r <= h[i]: self.update_tables(profile.id, cid, perf_profile, i) profile.performances[cid] = i def get_below_and_above_profiles(self, i): profiles = self.model.profiles bpt = self.model.bpt if i == 0: below = self.b0 else: below = bpt[profiles[i - 1]] if i == self.nprofiles - 1: above = self.bp else: above = bpt[profiles[i + 1]] return below, above def optimize(self): profiles = self.model.profiles for i, profile in enumerate(profiles): pperfs = self.model.bpt[profile] below, above = self.get_below_and_above_profiles(i) cat_b, cat_a = self.cat_ranked[i], self.cat_ranked[i + 1] self.optimize_profile(pperfs, below, above, cat_b, cat_a) return self.good / self.na
# Original Electre Tri model model = generate_random_mrsort_model(10, 5, 890) # Generate random alternatives a = generate_alternatives(15000) pt = generate_random_performance_table(a, model.criteria) errors = 0.0 delta = 0.0001 nlearn = 1.00 # Assign the alternative with the model aa = model.pessimist(pt) a_learn = random.sample(a, int(nlearn * len(a))) aa_learn = AlternativesAssignments([aa[alt.id] for alt in a_learn]) pt_learn = PerformanceTable([pt[alt.id] for alt in a_learn]) aa_err = aa_learn.copy() aa_erroned = add_errors_in_assignments(aa_err, model.categories, errors) print('Original model') print('==============') print("Number of alternatives: %d" % len(a)) print("Number of learning alternatives: %d" % len(aa_learn)) print("Errors in alternatives assignments: %g%%" % (errors * 100)) cids = model.criteria.keys() model.bpt.display(criterion_ids=cids) model.cv.display(criterion_ids=cids) print("lambda\t%.7s" % model.lbda) print("delta: %g" % delta)
def test001(self): c = generate_criteria(5) w1 = CriterionValue('c1', 0.2) w2 = CriterionValue('c2', 0.2) w3 = CriterionValue('c3', 0.2) w4 = CriterionValue('c4', 0.2) w5 = CriterionValue('c5', 0.2) w = CriteriaValues([w1, w2, w3, w4, w5]) b1 = AlternativePerformances('b1', { 'c1': 10, 'c2': 10, 'c3': 10, 'c4': 10, 'c5': 10 }) bpt = PerformanceTable([b1]) cat = generate_categories(2) cps = generate_categories_profiles(cat) vb1 = AlternativePerformances('b1', { 'c1': 2, 'c2': 2, 'c3': 2, 'c4': 2, 'c5': 2 }, 'b1') v = PerformanceTable([vb1]) vw = w.copy() a1 = AlternativePerformances('a1', { 'c1': 9, 'c2': 9, 'c3': 9, 'c4': 9, 'c5': 11 }) a2 = AlternativePerformances('a2', { 'c1': 9, 'c2': 9, 'c3': 9, 'c4': 11, 'c5': 9 }) a3 = AlternativePerformances('a3', { 'c1': 9, 'c2': 9, 'c3': 9, 'c4': 11, 'c5': 11 }) a4 = AlternativePerformances('a4', { 'c1': 9, 'c2': 9, 'c3': 11, 'c4': 9, 'c5': 9 }) a5 = AlternativePerformances('a5', { 'c1': 9, 'c2': 9, 'c3': 11, 'c4': 9, 'c5': 11 }) a6 = AlternativePerformances('a6', { 'c1': 9, 'c2': 9, 'c3': 11, 'c4': 11, 'c5': 9 }) a7 = AlternativePerformances('a7', { 'c1': 9, 'c2': 9, 'c3': 11, 'c4': 11, 'c5': 11 }) a8 = AlternativePerformances('a8', { 'c1': 9, 'c2': 11, 'c3': 9, 'c4': 9, 'c5': 9 }) a9 = AlternativePerformances('a9', { 'c1': 9, 'c2': 11, 'c3': 9, 'c4': 9, 'c5': 11 }) a10 = AlternativePerformances('a10', { 'c1': 9, 'c2': 11, 'c3': 9, 'c4': 11, 'c5': 9 }) a11 = AlternativePerformances('a11', { 'c1': 9, 'c2': 11, 'c3': 9, 'c4': 11, 'c5': 11 }) a12 = AlternativePerformances('a12', { 'c1': 9, 'c2': 11, 'c3': 11, 'c4': 9, 'c5': 9 }) a13 = AlternativePerformances('a13', { 'c1': 9, 'c2': 11, 'c3': 11, 'c4': 9, 'c5': 11 }) a14 = AlternativePerformances('a14', { 'c1': 9, 'c2': 11, 'c3': 11, 'c4': 11, 'c5': 9 }) a15 = AlternativePerformances('a15', { 'c1': 9, 'c2': 11, 'c3': 11, 'c4': 11, 'c5': 11 }) a16 = AlternativePerformances('a16', { 'c1': 11, 'c2': 9, 'c3': 9, 'c4': 9, 'c5': 9 }) a17 = AlternativePerformances('a17', { 'c1': 11, 'c2': 9, 'c3': 9, 'c4': 9, 'c5': 11 }) a18 = AlternativePerformances('a18', { 'c1': 11, 'c2': 9, 'c3': 9, 'c4': 11, 'c5': 9 }) a19 = AlternativePerformances('a19', { 'c1': 11, 'c2': 9, 'c3': 9, 'c4': 11, 'c5': 11 }) a20 = AlternativePerformances('a20', { 'c1': 11, 'c2': 9, 'c3': 11, 'c4': 9, 'c5': 9 }) a21 = AlternativePerformances('a21', { 'c1': 11, 'c2': 9, 'c3': 11, 'c4': 9, 'c5': 11 }) a22 = AlternativePerformances('a22', { 'c1': 11, 'c2': 9, 'c3': 11, 'c4': 11, 'c5': 9 }) a23 = AlternativePerformances('a23', { 'c1': 11, 'c2': 9, 'c3': 11, 'c4': 11, 'c5': 11 }) a24 = AlternativePerformances('a24', { 'c1': 11, 'c2': 11, 'c3': 9, 'c4': 9, 'c5': 9 }) a25 = AlternativePerformances('a25', { 'c1': 11, 'c2': 11, 'c3': 9, 'c4': 9, 'c5': 11 }) a26 = AlternativePerformances('a26', { 'c1': 11, 'c2': 11, 'c3': 9, 'c4': 11, 'c5': 9 }) a27 = AlternativePerformances('a27', { 'c1': 11, 'c2': 11, 'c3': 9, 'c4': 11, 'c5': 11 }) a28 = AlternativePerformances('a28', { 'c1': 11, 'c2': 11, 'c3': 11, 'c4': 9, 'c5': 9 }) a29 = AlternativePerformances('a29', { 'c1': 11, 'c2': 11, 'c3': 11, 'c4': 9, 'c5': 11 }) a30 = AlternativePerformances('a30', { 'c1': 11, 'c2': 11, 'c3': 11, 'c4': 11, 'c5': 9 }) a31 = AlternativePerformances('a31', { 'c1': 11, 'c2': 11, 'c3': 11, 'c4': 11, 'c5': 7 }) a32 = AlternativePerformances('a32', { 'c1': 11, 'c2': 11, 'c3': 11, 'c4': 7, 'c5': 11 }) a33 = AlternativePerformances('a33', { 'c1': 11, 'c2': 11, 'c3': 7, 'c4': 11, 'c5': 11 }) a34 = AlternativePerformances('a34', { 'c1': 11, 'c2': 7, 'c3': 11, 'c4': 11, 'c5': 11 }) a35 = AlternativePerformances('a35', { 'c1': 7, 'c2': 11, 'c3': 11, 'c4': 11, 'c5': 11 }) a36 = AlternativePerformances('a36', { 'c1': 11, 'c2': 11, 'c3': 11, 'c4': 7, 'c5': 7 }) a37 = AlternativePerformances('a37', { 'c1': 11, 'c2': 11, 'c3': 7, 'c4': 11, 'c5': 7 }) a38 = AlternativePerformances('a38', { 'c1': 11, 'c2': 7, 'c3': 11, 'c4': 11, 'c5': 7 }) a39 = AlternativePerformances('a39', { 'c1': 7, 'c2': 11, 'c3': 11, 'c4': 11, 'c5': 7 }) a40 = AlternativePerformances('a40', { 'c1': 11, 'c2': 11, 'c3': 7, 'c4': 7, 'c5': 11 }) a41 = AlternativePerformances('a41', { 'c1': 11, 'c2': 7, 'c3': 11, 'c4': 7, 'c5': 11 }) a42 = AlternativePerformances('a42', { 'c1': 7, 'c2': 11, 'c3': 11, 'c4': 7, 'c5': 11 }) a43 = AlternativePerformances('a43', { 'c1': 11, 'c2': 7, 'c3': 7, 'c4': 11, 'c5': 11 }) a44 = AlternativePerformances('a44', { 'c1': 7, 'c2': 11, 'c3': 7, 'c4': 11, 'c5': 11 }) a45 = AlternativePerformances('a45', { 'c1': 7, 'c2': 7, 'c3': 11, 'c4': 11, 'c5': 11 }) pt = PerformanceTable([ a1, a2, a3, a4, a5, a6, a7, a8, a9, a10, a11, a12, a13, a14, a15, a16, a17, a18, a19, a20, a21, a22, a23, a24, a25, a26, a27, a28, a29, a30, a31, a32, a33, a34, a35, a36, a37, a38, a39, a40, a41, a42, a43, a44, a45 ]) ap1 = AlternativeAssignment('a1', 'cat2') ap2 = AlternativeAssignment('a2', 'cat2') ap3 = AlternativeAssignment('a3', 'cat2') ap4 = AlternativeAssignment('a4', 'cat2') ap5 = AlternativeAssignment('a5', 'cat2') ap6 = AlternativeAssignment('a6', 'cat2') ap7 = AlternativeAssignment('a7', 'cat1') ap8 = AlternativeAssignment('a8', 'cat2') ap9 = AlternativeAssignment('a9', 'cat2') ap10 = AlternativeAssignment('a10', 'cat2') ap11 = AlternativeAssignment('a11', 'cat1') ap12 = AlternativeAssignment('a12', 'cat2') ap13 = AlternativeAssignment('a13', 'cat1') ap14 = AlternativeAssignment('a14', 'cat1') ap15 = AlternativeAssignment('a15', 'cat1') ap16 = AlternativeAssignment('a16', 'cat2') ap17 = AlternativeAssignment('a17', 'cat2') ap18 = AlternativeAssignment('a18', 'cat2') ap19 = AlternativeAssignment('a19', 'cat1') ap20 = AlternativeAssignment('a20', 'cat2') ap21 = AlternativeAssignment('a21', 'cat1') ap22 = AlternativeAssignment('a22', 'cat1') ap23 = AlternativeAssignment('a23', 'cat1') ap24 = AlternativeAssignment('a24', 'cat2') ap25 = AlternativeAssignment('a25', 'cat1') ap26 = AlternativeAssignment('a26', 'cat1') ap27 = AlternativeAssignment('a27', 'cat1') ap28 = AlternativeAssignment('a28', 'cat1') ap29 = AlternativeAssignment('a29', 'cat1') ap30 = AlternativeAssignment('a30', 'cat1') ap31 = AlternativeAssignment('a31', 'cat1') ap32 = AlternativeAssignment('a32', 'cat1') ap33 = AlternativeAssignment('a33', 'cat1') ap34 = AlternativeAssignment('a34', 'cat1') ap35 = AlternativeAssignment('a35', 'cat1') ap36 = AlternativeAssignment('a36', 'cat2') ap37 = AlternativeAssignment('a37', 'cat2') ap38 = AlternativeAssignment('a38', 'cat2') ap39 = AlternativeAssignment('a39', 'cat2') ap40 = AlternativeAssignment('a40', 'cat2') ap41 = AlternativeAssignment('a41', 'cat2') ap42 = AlternativeAssignment('a42', 'cat2') ap43 = AlternativeAssignment('a43', 'cat2') ap44 = AlternativeAssignment('a44', 'cat2') ap45 = AlternativeAssignment('a45', 'cat2') aa = AlternativesAssignments([ ap1, ap2, ap3, ap4, ap5, ap6, ap7, ap8, ap9, ap10, ap11, ap12, ap13, ap14, ap15, ap16, ap17, ap18, ap19, ap20, ap21, ap22, ap23, ap24, ap25, ap26, ap27, ap28, ap29, ap30, ap31, ap32, ap33, ap34, ap35, ap36, ap37, ap38, ap39, ap40, ap41, ap42, ap43, ap44, ap45 ]) model = MRSort(c, w, bpt, 0.6, cps, v, vw, 0.4) aa2 = model.pessimist(pt) ok = compare_assignments(aa, aa2) self.assertEqual(ok, 1, "One or more alternatives were wrongly " "assigned")
class MetaMRSortProfiles3(): def __init__(self, model, pt_sorted, aa_ori): self.na = len(aa_ori) self.model = model self.nprofiles = len(model.profiles) self.pt_sorted = pt_sorted self.aa_ori = aa_ori self.cat = self.categories_rank() self.cat_ranked = self.model.categories self.aa_by_cat = self.sort_alternative_by_category(aa_ori) self.b0 = pt_sorted.pt.get_worst(model.criteria) self.bp = pt_sorted.pt.get_best(model.criteria) self.compute_interval_ratios(3) self.build_concordance_table() self.build_assignments_table() def categories_rank(self): return { cat: i + 1 for i, cat in enumerate(self.model.categories) } def compute_interval_ratios(self, n): self.nintervals = n intervals = [] for i in range(n-1): intervals += [ math.exp(i+1) ] s = sum(intervals) self.interval_ratios = [ i/s for i in intervals ] + [ 0.9 ] def update_intervals(self, fitness): if fitness > 0.99: self.compute_interval_ratios(8) elif fitness > 0.95: self.compute_interval_ratios(6) elif fitness > 0.9: self.compute_interval_ratios(5) else: self.compute_interval_ratios(4) def rank_categories(self, cat): c_rank = { c.id: c.rank for c in cat } return sorted([cat for cat in c_rank.iterkeys()]) def sort_alternative_by_category(self, aa): aa_by_cat = {} for a in aa: aid = a.id cat = self.cat[a.category_id] if cat in aa_by_cat: aa_by_cat[cat].append(aid) else: aa_by_cat[cat] = [ aid ] return aa_by_cat def get_alternative_assignment(self, aid): profile = self.model.profiles[0] for profile in reversed(self.model.profiles): if self.ct[profile][aid] >= self.model.lbda: return self.model.categories_profiles[profile].value.upper return self.model.categories_profiles[profile].value.lower def build_assignments_table(self): self.good = 0 self.aa = AlternativesAssignments() for aa in self.aa_ori.values(): aid = aa.id cat = self.get_alternative_assignment(aid) self.aa.append(AlternativeAssignment(aid, cat)) cat_ori = aa.category_id if cat == cat_ori: self.good += 1 def build_concordance_table(self): self.ct = { bp.id: dict() for bp in self.model.bpt } for aid, bp in product(self.aa_ori.keys(), self.model.bpt): ap = self.pt_sorted[aid] conc = self.model.concordance(ap, bp) self.ct[bp.id][aid] = conc def rebuild_tables(self): self.build_concordance_table() self.build_assignments_table() def compute_above_histogram(self, cid, profile, above, cat_b, cat_a): h_above = {} size = above - profile intervals = [ profile + self.interval_ratios[i]*size \ for i in range(self.nintervals) ] intervals = [ profile ] + intervals ok = nok = 0 for i in range(self.nintervals): alts = self.pt_sorted.get_middle(cid, intervals[i], intervals[i+1])[0] for a in alts: if self.aa(a) == cat_b and self.aa_ori(a) == cat_a: ok += 1 elif self.aa(a) == cat_a: if self.aa_ori(a) == cat_a: ok += 1 elif self.aa_ori(a) == cat_b: nok += 1 if (ok + nok) > 0: h_above[intervals[i+1]] = nok / (ok + nok) else: h_above[intervals[i+1]] = 0 return h_above def compute_below_histogram(self, cid, profile, below, cat_b, cat_a): h_below = {} size = profile - below intervals = [ profile - self.interval_ratios[i]*size \ for i in range(self.nintervals) ] intervals = [ profile ] + intervals ok = nok = 0 for i in range(self.nintervals): alts = self.pt_sorted.get_middle(cid, intervals[i], intervals[i+1])[0] for a in alts: if self.aa(a) == cat_a and self.aa_ori(a) == cat_b: ok += 1 elif self.aa(a) == cat_b: if self.aa_ori(a) == cat_b: ok += 1 elif self.aa_ori(a) == cat_a: nok += 1 if (ok + nok) > 0: h_below[intervals[i+1]] = nok / (ok + nok) else: h_below[intervals[i+1]] = 0 return h_below def optimize_profile(self, profile, below, above, cat_b, cat_a): p_perfs = profile.performances a_perfs = above.performances b_perfs = below.performances moved = False max_val = 0 for c in self.model.criteria: cid = c.id h_below = self.compute_below_histogram(cid, p_perfs[cid], b_perfs[cid], cat_b, cat_a) h_above = self.compute_above_histogram(cid, p_perfs[cid], a_perfs[cid], cat_b, cat_a) i_b = max(h_below, key=h_below.get) i_a = max(h_above, key=h_above.get) r = random.random() if h_below[i_b] > h_above[i_a]: if r < h_below[i_b]: p_perfs[cid] = i_b moved = True elif moved is False and h_below[i_b] > max_val: max_val = h_below[i_b] max_cid = cid max_move = i_b elif h_below[i_b] < h_above[i_a]: if r < h_above[i_a]: p_perfs[cid] = i_a moved = True elif moved is False and h_above[i_a] > max_val: max_val = h_above[i_a] max_cid = cid max_move = i_a elif r > 0.5: r2 = random.random() if r2 < h_below[i_b]: p_perfs[cid] = i_b moved = True elif moved is False and h_below[i_b] > max_val: max_val = h_below[i_b] max_cid = cid max_move = i_b elif r < 0.5: r2 = random.random() if r2 < h_above[i_a]: p_perfs[cid] = i_a moved = True elif moved is False and h_above[i_a] > max_val: max_val = h_above[i_a] max_cid = cid max_move = i_a if moved is False and max_val > 0: p_perfs[max_cid] = max_move def get_below_and_above_profiles(self, i): profiles = self.model.profiles bpt = self.model.bpt if i == 0: below = self.b0 else: below = bpt[profiles[i-1]] if i == self.nprofiles-1: above = self.bp else: above = bpt[profiles[i+1]] return below, above def optimize(self): profiles = self.model.profiles for i, profile in enumerate(profiles): pperfs = self.model.bpt[profile] below, above = self.get_below_and_above_profiles(i) cat_b, cat_a = self.cat_ranked[i], self.cat_ranked[i+1] self.update_intervals(self.good / self.na) self.optimize_profile(pperfs, below, above, cat_b, cat_a) self.rebuild_tables() return self.good / self.na
def get_assignments(self, pt): aa = AlternativesAssignments() for ap in pt: a = self.get_assignment(ap) aa.append(a) return aa
# Generate assignment incompatible with an MR-Sort model ap1 = AlternativePerformances('a1', {'c1': 1, 'c2': 1, 'c3': 0, 'c4': 0}) ap2 = AlternativePerformances('a2', {'c1': 0, 'c2': 0, 'c3': 1, 'c4': 1}) ap3 = AlternativePerformances('a3', {'c1': 1, 'c2': 0, 'c3': 1, 'c4': 0}) ap4 = AlternativePerformances('a4', {'c1': 1, 'c2': 0, 'c3': 0, 'c4': 1}) ap5 = AlternativePerformances('a5', {'c1': 0, 'c2': 1, 'c3': 1, 'c4': 0}) ap6 = AlternativePerformances('a6', {'c1': 0, 'c2': 1, 'c3': 0, 'c4': 1}) pt = PerformanceTable([ap1, ap2, ap3, ap4, ap5, ap6]) aa1 = AlternativeAssignment('a1', 'cat1') aa2 = AlternativeAssignment('a2', 'cat1') aa3 = AlternativeAssignment('a3', 'cat2') aa4 = AlternativeAssignment('a4', 'cat2') aa5 = AlternativeAssignment('a5', 'cat2') aa6 = AlternativeAssignment('a6', 'cat2') aa = AlternativesAssignments([aa1, aa2, aa3, aa4, aa5, aa6]) print_pt_and_assignments(aa.keys(), c.keys(), [aa], pt) model = MRSort(c, None, None, None, cps) worst = pt.get_worst(model.criteria) best = pt.get_best(model.criteria) # Run the MIP mip = MipCMRSort(model, pt, aa) mip.solve() # Display learned model parameters print('Learned model') print('=============') model.bpt.display()
def get_assignments(self, pt): aas = AlternativesAssignments([]) for ap in pt: aas.append(self.get_assignment(ap)) return aas
class MetaMRSortProfiles4(): def __init__(self, model, pt_sorted, aa_ori): self.na = len(aa_ori) self.nc = len(model.criteria) self.model = model self.nprofiles = len(model.profiles) self.pt_sorted = pt_sorted self.aa_ori = aa_ori self.cat = self.categories_rank() self.cat_ranked = self.model.categories self.aa_by_cat = self.sort_alternative_by_category(aa_ori) self.b0 = pt_sorted.pt.get_worst(model.criteria) self.bp = pt_sorted.pt.get_best(model.criteria) self.build_concordance_table() self.build_assignments_table() def categories_rank(self): return { cat: i + 1 for i, cat in enumerate(self.model.categories) } def sort_alternative_by_category(self, aa): aa_by_cat = {} for a in aa: aid = a.id cat = self.cat[a.category_id] if cat in aa_by_cat: aa_by_cat[cat].append(aid) else: aa_by_cat[cat] = [ aid ] return aa_by_cat def compute_above_histogram(self, cid, perf_profile, perf_above, cat_b, cat_a, ct): w = self.model.cv[cid].value lbda = self.model.lbda direction = self.model.criteria[cid].direction delta = 0.00001 * direction h_above = {} num = total = 0 alts, perfs = self.pt_sorted.get_middle(cid, perf_profile, perf_above, True, True) for i, a in enumerate(alts): if (perfs[i] + delta) * direction > perf_above * direction: continue conc = ct[a] aa_ori = self.aa_ori._d[a].category_id aa = self.aa._d[a].category_id diff = conc - w if aa_ori == cat_a: if aa == cat_a and diff < lbda: # -- total += 5 elif aa == cat_b: # - total += 1 elif aa_ori == cat_b and aa == cat_a: if diff >= lbda: # + num += 0.5 total += 1 h_above[perfs[i] + delta] = num / total else: # ++ num += 2 total += 1 h_above[perfs[i] + delta] = num / total # elif self.aa_ori(a) < self.aa(a) and \ elif aa_ori != aa and \ self.cat[aa] < self.cat[cat_a] and \ self.cat[aa_ori] < self.cat[cat_a]: num += 0.1 total += 1 h_above[perfs[i] + delta] = num / total return h_above def compute_below_histogram(self, cid, perf_profile, perf_below, cat_b, cat_a, ct): w = self.model.cv[cid].value lbda = self.model.lbda h_below = {} num = total = 0 alts, perfs = self.pt_sorted.get_middle(cid, perf_profile, perf_below, True, True) for i, a in enumerate(alts): conc = ct[a] aa_ori = self.aa_ori._d[a].category_id aa = self.aa._d[a].category_id diff = conc + w if aa_ori == cat_a and aa == cat_b: if diff >= lbda: # ++ num += 2 total += 1 h_below[perfs[i]] = num / total else: # + num += 0.5 total += 1 h_below[perfs[i]] = num / total elif aa_ori == cat_b: if aa == cat_b and diff >= lbda: # -- total += 5 elif aa == cat_a: # - total += 1 # elif self.aa_ori(a) > self.aa(a) and \ elif aa_ori != aa and \ self.cat[aa] > self.cat[cat_b] and \ self.cat[aa_ori] > self.cat[cat_b]: num += 0.1 total += 1 h_below[perfs[i]] = num / total return h_below def histogram_choose(self, h, current): key = random.choice(h.keys()) val = h[key] diff = abs(current - key) for k, v in h.items(): if v >= val: tmp = abs(current - k) if tmp > diff: key = k val = v diff = tmp return key def get_alternative_assignment(self, aid): profile = self.model.profiles[0] for profile in reversed(self.model.profiles): if self.ct[profile][aid] >= self.model.lbda \ or eq(self.ct[profile][aid], self.model.lbda): return self.model.categories_profiles[profile].value.upper return self.model.categories_profiles[profile].value.lower def build_assignments_table(self): self.good = 0 self.aa = AlternativesAssignments() for aa in self.aa_ori.values(): aid = aa.id cat = self.get_alternative_assignment(aid) self.aa.append(AlternativeAssignment(aid, cat)) cat_ori = aa.category_id if cat == cat_ori: self.good += 1 def build_concordance_table(self): self.ct = { bp.id: dict() for bp in self.model.bpt } for aid, bp in product(self.aa_ori.keys(), self.model.bpt): ap = self.pt_sorted[aid] conc = self.model.concordance(ap, bp) self.ct[bp.id][aid] = conc def rebuild_tables(self): self.build_concordance_table() self.build_assignments_table() def update_tables(self, profile, cid, old, new): direction = self.model.criteria[cid].direction if old > new: if direction == 1: down, up = True, False else: down, up = False, True w = self.model.cv[cid].value * direction else: if direction == 1: down, up = False, True else: down, up = True, False w = -self.model.cv[cid].value * direction alts, perfs = self.pt_sorted.get_middle(cid, old, new, up, down) for a in alts: self.ct[profile][a] += w old_cat = self.aa[a].category_id new_cat = self.get_alternative_assignment(a) ori_cat = self.aa_ori[a].category_id if old_cat == new_cat: continue elif old_cat == ori_cat: self.good -= 1 elif new_cat == ori_cat: self.good += 1 self.aa[a].category_id = new_cat def optimize_profile(self, profile, below, above, cat_b, cat_a): cids = self.model.criteria.keys() random.shuffle(cids) for cid in cids: ct = self.ct[profile.id] perf_profile = profile.performances[cid] perf_above = above.performances[cid] perf_below = below.performances[cid] h_below = self.compute_below_histogram(cid, perf_profile, perf_below, cat_b, cat_a, ct) h_above = self.compute_above_histogram(cid, perf_profile, perf_above, cat_b, cat_a, ct) h = h_below h.update(h_above) if not h: continue i = self.histogram_choose(h, perf_profile) r = random.uniform(0, 1) if r <= h[i]: self.update_tables(profile.id, cid, perf_profile, i) profile.performances[cid] = i def get_below_and_above_profiles(self, i): profiles = self.model.profiles bpt = self.model.bpt if i == 0: below = self.b0 else: below = bpt[profiles[i-1]] if i == self.nprofiles-1: above = self.bp else: above = bpt[profiles[i+1]] return below, above def optimize(self): profiles = self.model.profiles for i, profile in enumerate(profiles): pperfs = self.model.bpt[profile] below, above = self.get_below_and_above_profiles(i) cat_b, cat_a = self.cat_ranked[i], self.cat_ranked[i+1] self.optimize_profile(pperfs, below, above, cat_b, cat_a) return self.good / self.na
fcoalitions = open('%s-wcoalitions.dat' % bname, 'w+') mwinning = compute_minimal_winning_coalitions(lp.fmins) for win in mwinning: win = list(win) win.sort(key=criteria_order.index) buf = "" for c in win: buf += "%s, " % criteria_names[c] print('[%s]' % buf[:-2], file=fcoalitions) fcoalitions.close() pt_learning = PerformanceTable().from_xmcda(root, 'learning_set') aa_learning = AlternativesAssignments().from_xmcda(root, 'learning_set') aa_learned = m.pessimist(pt_learning) fca = open('%s-ca_learning.dat' % bname, 'w+') ca = compute_ca(aa_learning, aa_learned) print("%.4f" % ca, end='', file=fca) fca.close() fauc = open('%s-auc_learning.dat' % bname, 'w+') auc = m.auc(aa_learning, pt_learning) print("%.4f" % auc, end='', file=fauc) fauc.close() ca_learning.append(ca) auc_learning.append(auc)
nveto = 0 for f in sys.argv[1:]: f = os.path.abspath(f) if is_bz2_file(f) is True: f = bz2.BZ2File(f) import pdb pdb.set_trace() tree = ElementTree.parse(f) root = tree.getroot() m = MRSort().from_xmcda(root, 'learned') pt_learning = PerformanceTable().from_xmcda(root, 'learning_set') pt_test = PerformanceTable().from_xmcda(root, 'test_set') aa_learning = AlternativesAssignments().from_xmcda(root, 'learning_set') aa_test = AlternativesAssignments().from_xmcda(root, 'test_set') aa_learning_m2 = m.pessimist(pt_learning) aa_test_m2 = m.pessimist(pt_test) # Compute classification accuracy ca_learning = compute_ca(aa_learning, aa_learning_m2) ca_test = compute_ca(aa_test, aa_test_m2) table_ca_learning.append(ca_learning) table_ca_test.append(ca_test) # Compute area under the curve auc_learning = m.auc(aa_learning, pt_learning) auc_test = m.auc(aa_test, pt_test)
# Categories cat1 = Category('cat1', rank=3) cat2 = Category('cat2', rank=2) cat3 = Category('cat3', rank=1) cats = Categories([cat1, cat2, cat3]) # Categories profiles cp1 = CategoryProfile('b1', Limits('cat1', 'cat2')) cp2 = CategoryProfile('b2', Limits('cat2', 'cat3')) cps = CategoriesProfiles([cp1, cp2]) # Alternatives assignments aap1 = AlternativeAssignment('a1', 'cat2') aap2 = AlternativeAssignment('a2', 'cat1') aap3 = AlternativeAssignment('a3', 'cat2') aap4 = AlternativeAssignment('a4', 'cat3') aap5 = AlternativeAssignment('a5', 'cat1') aap6 = AlternativeAssignment('a6', 'cat2') aap7 = AlternativeAssignment('a7', 'cat2') aap = AlternativesAssignments([aap1, aap2, aap3, aap4, aap5, aap6, aap7]) aao1 = AlternativeAssignment('a1', 'cat2') aao2 = AlternativeAssignment('a2', 'cat3') aao3 = AlternativeAssignment('a3', 'cat2') aao4 = AlternativeAssignment('a4', 'cat3') aao5 = AlternativeAssignment('a5', 'cat2') aao6 = AlternativeAssignment('a6', 'cat2') aao7 = AlternativeAssignment('a7', 'cat2') aao = AlternativesAssignments([aao1, aao2, aao3, aao4, aao5, aao6, aao7])
# MR-Sort model model = generate_random_mrsort_model_with_coalition_veto(5, 3, 4) # Generate random alternatives a = generate_alternatives(15000) pt = generate_random_performance_table(a, model.criteria) errors = 0.0 delta = 0.0001 nlearn = 1.00 # Assign the alternative with the model aa = model.pessimist(pt) a_learn = random.sample(a, int(nlearn*len(a))) aa_learn = AlternativesAssignments([ aa[alt.id] for alt in a_learn ]) pt_learn = PerformanceTable([ pt[alt.id] for alt in a_learn ]) aa_err = aa_learn.copy() aa_erroned = add_errors_in_assignments(aa_err, model.categories, errors) print('Original model') print('==============') print("Number of alternatives: %d" % len(a)) print("Number of learning alternatives: %d" % len(aa_learn)) print("Errors in alternatives assignments: %g%%" % (errors*100)) cids = model.criteria.keys() model.bpt.display(criterion_ids = cids) model.cv.display(criterion_ids = cids) print("lambda\t%.7s" % model.lbda) print("delta: %g" % delta)
cmatrix_learning = {} cmatrix_test = {} nveto = 0 for f in sys.argv[1:]: if is_bz2_file(f) is True: f = bz2.BZ2File(f) tree = ElementTree.parse(f) root = tree.getroot() m = MRSort().from_xmcda(root, 'learned') pt_learning = PerformanceTable().from_xmcda(root, 'learning_set') pt_test = PerformanceTable().from_xmcda(root, 'test_set') aa_learning = AlternativesAssignments().from_xmcda(root, 'learning_set') aa_test = AlternativesAssignments().from_xmcda(root, 'test_set') aa_learning_m2 = m.pessimist(pt_learning) aa_test_m2 = m.pessimist(pt_test) # Compute classification accuracy ca_learning = compute_ca(aa_learning, aa_learning_m2) ca_test = compute_ca(aa_test, aa_test_m2) table_ca_learning.append(ca_learning) table_ca_test.append(ca_test) # Compute area under the curve auc_learning = m.auc(aa_learning, pt_learning)
class MetaMRSortProfiles3(): def __init__(self, model, pt_sorted, aa_ori): self.na = len(aa_ori) self.model = model self.nprofiles = len(model.profiles) self.pt_sorted = pt_sorted self.aa_ori = aa_ori self.cat = self.categories_rank() self.cat_ranked = self.model.categories self.aa_by_cat = self.sort_alternative_by_category(aa_ori) self.b0 = pt_sorted.pt.get_worst(model.criteria) self.bp = pt_sorted.pt.get_best(model.criteria) self.compute_interval_ratios(3) self.build_concordance_table() self.build_assignments_table() def categories_rank(self): return {cat: i + 1 for i, cat in enumerate(self.model.categories)} def compute_interval_ratios(self, n): self.nintervals = n intervals = [] for i in range(n - 1): intervals += [math.exp(i + 1)] s = sum(intervals) self.interval_ratios = [i / s for i in intervals] + [0.9] def update_intervals(self, fitness): if fitness > 0.99: self.compute_interval_ratios(8) elif fitness > 0.95: self.compute_interval_ratios(6) elif fitness > 0.9: self.compute_interval_ratios(5) else: self.compute_interval_ratios(4) def rank_categories(self, cat): c_rank = {c.id: c.rank for c in cat} return sorted([cat for cat in c_rank.iterkeys()]) def sort_alternative_by_category(self, aa): aa_by_cat = {} for a in aa: aid = a.id cat = self.cat[a.category_id] if cat in aa_by_cat: aa_by_cat[cat].append(aid) else: aa_by_cat[cat] = [aid] return aa_by_cat def get_alternative_assignment(self, aid): profile = self.model.profiles[0] for profile in reversed(self.model.profiles): if self.ct[profile][aid] >= self.model.lbda: return self.model.categories_profiles[profile].value.upper return self.model.categories_profiles[profile].value.lower def build_assignments_table(self): self.good = 0 self.aa = AlternativesAssignments() for aa in self.aa_ori.values(): aid = aa.id cat = self.get_alternative_assignment(aid) self.aa.append(AlternativeAssignment(aid, cat)) cat_ori = aa.category_id if cat == cat_ori: self.good += 1 def build_concordance_table(self): self.ct = {bp.id: dict() for bp in self.model.bpt} for aid, bp in product(self.aa_ori.keys(), self.model.bpt): ap = self.pt_sorted[aid] conc = self.model.concordance(ap, bp) self.ct[bp.id][aid] = conc def rebuild_tables(self): self.build_concordance_table() self.build_assignments_table() def compute_above_histogram(self, cid, profile, above, cat_b, cat_a): h_above = {} size = above - profile intervals = [ profile + self.interval_ratios[i]*size \ for i in range(self.nintervals) ] intervals = [profile] + intervals ok = nok = 0 for i in range(self.nintervals): alts = self.pt_sorted.get_middle(cid, intervals[i], intervals[i + 1])[0] for a in alts: if self.aa(a) == cat_b and self.aa_ori(a) == cat_a: ok += 1 elif self.aa(a) == cat_a: if self.aa_ori(a) == cat_a: ok += 1 elif self.aa_ori(a) == cat_b: nok += 1 if (ok + nok) > 0: h_above[intervals[i + 1]] = nok / (ok + nok) else: h_above[intervals[i + 1]] = 0 return h_above def compute_below_histogram(self, cid, profile, below, cat_b, cat_a): h_below = {} size = profile - below intervals = [ profile - self.interval_ratios[i]*size \ for i in range(self.nintervals) ] intervals = [profile] + intervals ok = nok = 0 for i in range(self.nintervals): alts = self.pt_sorted.get_middle(cid, intervals[i], intervals[i + 1])[0] for a in alts: if self.aa(a) == cat_a and self.aa_ori(a) == cat_b: ok += 1 elif self.aa(a) == cat_b: if self.aa_ori(a) == cat_b: ok += 1 elif self.aa_ori(a) == cat_a: nok += 1 if (ok + nok) > 0: h_below[intervals[i + 1]] = nok / (ok + nok) else: h_below[intervals[i + 1]] = 0 return h_below def optimize_profile(self, profile, below, above, cat_b, cat_a): p_perfs = profile.performances a_perfs = above.performances b_perfs = below.performances moved = False max_val = 0 for c in self.model.criteria: cid = c.id h_below = self.compute_below_histogram(cid, p_perfs[cid], b_perfs[cid], cat_b, cat_a) h_above = self.compute_above_histogram(cid, p_perfs[cid], a_perfs[cid], cat_b, cat_a) i_b = max(h_below, key=h_below.get) i_a = max(h_above, key=h_above.get) r = random.random() if h_below[i_b] > h_above[i_a]: if r < h_below[i_b]: p_perfs[cid] = i_b moved = True elif moved is False and h_below[i_b] > max_val: max_val = h_below[i_b] max_cid = cid max_move = i_b elif h_below[i_b] < h_above[i_a]: if r < h_above[i_a]: p_perfs[cid] = i_a moved = True elif moved is False and h_above[i_a] > max_val: max_val = h_above[i_a] max_cid = cid max_move = i_a elif r > 0.5: r2 = random.random() if r2 < h_below[i_b]: p_perfs[cid] = i_b moved = True elif moved is False and h_below[i_b] > max_val: max_val = h_below[i_b] max_cid = cid max_move = i_b elif r < 0.5: r2 = random.random() if r2 < h_above[i_a]: p_perfs[cid] = i_a moved = True elif moved is False and h_above[i_a] > max_val: max_val = h_above[i_a] max_cid = cid max_move = i_a if moved is False and max_val > 0: p_perfs[max_cid] = max_move def get_below_and_above_profiles(self, i): profiles = self.model.profiles bpt = self.model.bpt if i == 0: below = self.b0 else: below = bpt[profiles[i - 1]] if i == self.nprofiles - 1: above = self.bp else: above = bpt[profiles[i + 1]] return below, above def optimize(self): profiles = self.model.profiles for i, profile in enumerate(profiles): pperfs = self.model.bpt[profile] below, above = self.get_below_and_above_profiles(i) cat_b, cat_a = self.cat_ranked[i], self.cat_ranked[i + 1] self.update_intervals(self.good / self.na) self.optimize_profile(pperfs, below, above, cat_b, cat_a) self.rebuild_tables() return self.good / self.na
if not os.path.isfile(f): xmcda_models_toshow.append(f) continue if is_bz2_file(f) is True: f = bz2.BZ2File(f) tree = ElementTree.parse(f) root = tree.getroot() xmcda_models = root.findall(".//ElectreTri") m = MRSort().from_xmcda(xmcda_models[0]) pt_learning = PerformanceTable().from_xmcda(root, 'learning_set') aa_learning = AlternativesAssignments().from_xmcda(root, 'learning_set') uniquevalues = pt_learning.get_unique_values() bname = os.path.basename(os.path.splitext(f.name)[0]) fweights = open('%s-w.dat' % bname, 'w+') fprofiles = open('%s-p.dat' % bname, 'w+') print("Processing %s..." % bname) criteria = m.criteria.keys() for c in criteria: print("{%s} " % criteria_names[c], end='', file=fprofiles) print('', file=fprofiles) profiles = reversed(m.categories_profiles.get_ordered_profiles())
if root.find("ElectreTri[@id='initial']") is not None: m1 = MRSort().from_xmcda(root, 'initial') if pt_learning is not None: aa_learning_m1 = m1.pessimist(pt_learning) if pt_test is not None: aa_test_m1 = m1.pessimist(pt_test) elif root.find("AVFSort[@id='initial']") is not None: m1 = AVFSort().from_xmcda(root, 'initial') if pt_learning is not None: aa_learning_m1 = m1.get_assignments(pt_learning) if pt_test is not None: aa_test_m1 = m1.get_assignments(pt_test) else: if root.find("alternativesAffectations[@id='learning_set']") is not None: aa_learning_m1 = AlternativesAssignments().from_xmcda(root, 'learning_set') if root.find("alternativesAffectations[@id='test_set']") is not None: aa_test_m1 = AlternativesAssignments().from_xmcda(root, 'test_set') if root.find("ElectreTri[@id='learned']") is not None: m2 = MRSort().from_xmcda(root, 'learned') if pt_learning is not None: aa_learning_m2 = m2.pessimist(pt_learning) if pt_test is not None: aa_test_m2 = m2.pessimist(pt_test) elif root.find("AVFSort[@id='learned']") is not None: m2 = AVFSort().from_xmcda(root, 'learned') if pt_learning is not None: aa_learning_m2 = m2.get_assignments(pt_learning) aids = []