def capacities_are_monotone(criteria, capacities):
    n = len(criteria)
    for i in range(2, n + 1):
        for combi in [c for c in combinations(criteria.keys(), i)]:
            cid = CriteriaSet(combi)
            for combi2 in [c for c in combinations(combi, i - 1)]:
                cidj = combi2[0] if (i == 2) else CriteriaSet(combi2)
                if capacities[cidj].value > capacities[cid].value:
                    return False

    return True
    def test001(self):
        c = generate_criteria(3)
        cat = generate_categories(3)
        cps = generate_categories_profiles(cat)

        bp1 = AlternativePerformances('b1', {
            'c1': 0.75,
            'c2': 0.75,
            'c3': 0.75
        })
        bp2 = AlternativePerformances('b2', {
            'c1': 0.25,
            'c2': 0.25,
            'c3': 0.25
        })
        bpt = PerformanceTable([bp1, bp2])

        cv1 = CriterionValue('c1', 0.2)
        cv2 = CriterionValue('c2', 0.2)
        cv3 = CriterionValue('c3', 0.2)
        cv12 = CriterionValue(CriteriaSet(['c1', 'c2']), -0.1)
        cv23 = CriterionValue(CriteriaSet(['c2', 'c3']), 0.2)
        cv13 = CriterionValue(CriteriaSet(['c1', 'c3']), 0.3)
        cvs = CriteriaValues([cv1, cv2, cv3, cv12, cv23, cv13])

        lbda = 0.6

        model = MRSort(c, cvs, bpt, lbda, cps)

        ap1 = AlternativePerformances('a1', {'c1': 0.3, 'c2': 0.3, 'c3': 0.3})
        ap2 = AlternativePerformances('a2', {'c1': 0.8, 'c2': 0.8, 'c3': 0.8})
        ap3 = AlternativePerformances('a3', {'c1': 0.3, 'c2': 0.3, 'c3': 0.1})
        ap4 = AlternativePerformances('a4', {'c1': 0.3, 'c2': 0.1, 'c3': 0.3})
        ap5 = AlternativePerformances('a5', {'c1': 0.1, 'c2': 0.3, 'c3': 0.3})
        ap6 = AlternativePerformances('a6', {'c1': 0.8, 'c2': 0.8, 'c3': 0.1})
        ap7 = AlternativePerformances('a7', {'c1': 0.8, 'c2': 0.1, 'c3': 0.8})
        ap8 = AlternativePerformances('a8', {'c1': 0.1, 'c2': 0.8, 'c3': 0.8})
        pt = PerformanceTable([ap1, ap2, ap3, ap4, ap5, ap6, ap7, ap8])

        aa = model.get_assignments(pt)

        self.assertEqual(aa['a1'].category_id, "cat2")
        self.assertEqual(aa['a2'].category_id, "cat1")
        self.assertEqual(aa['a3'].category_id, "cat3")
        self.assertEqual(aa['a4'].category_id, "cat2")
        self.assertEqual(aa['a5'].category_id, "cat2")
        self.assertEqual(aa['a6'].category_id, "cat3")
        self.assertEqual(aa['a7'].category_id, "cat1")
        self.assertEqual(aa['a8'].category_id, "cat1")
def generate_random_capacities(criteria, seed = None, k = 3):
    if seed is not None:
        random.seed(seed)

    n = len(criteria)
    r = [round(random.random(), k) for i in range(2 ** n - 2)] + [1.0]
    r.sort()

    j = 0
    cvs = CriteriaValues()
    for i in range(1, n + 1):
        combis = [c for c in combinations(criteria.keys(), i)]
        random.shuffle(combis)
        for combi in combis:
            if i == 1:
                cid = combi[0]
            else:
                cid = CriteriaSet(combi)

            cv = CriterionValue(cid, r[j])
            cvs.append(cv)

            j += 1

    return cvs
    def solve_cplex(self):
        self.lp.solve()

        status = self.lp.solution.get_status()
        if status != self.lp.solution.status.MIP_optimal:
            raise RuntimeError("Solver status: %s" % status)

        obj = self.lp.solution.get_objective_value()

        cvs = CriteriaValues()
        m = ['m_%d' % i for i in range(len(self.mindices))]
        mindices_map = dict(zip(self.mindices, m))
        for m, vname in mindices_map.items():
            cv = CriterionValue()
            if len(m) > 1:
                cv.id = CriteriaSet(m)
            else:
                cv.id = next(iter(m))
            cv.value = self.lp.solution.get_values(vname)
            cvs.append(cv)

        self.model.cv = cvs
        self.model.lbda = self.lp.solution.get_values("lambda")

        return obj
def capacities_to_mobius(criteria, capacities):
    cvs = CriteriaValues()
    n = len(criteria)
    for i in range(1, n + 1):
        for combi in [c for c in combinations(criteria.keys(), i)]:
            cid = combi[0] if (i == 1) else CriteriaSet(combi)
            m = capacities[cid].value
            for j in range(1, i):
                for combi2 in [c for c in combinations(combi, j)]:
                    cidj = combi2[0] if (j == 1) else CriteriaSet(combi2)
                    m -= cvs[cidj].value

            cv = CriterionValue(cid, m)
            cvs.append(cv)

    return cvs
def mobius_to_capacities(criteria, mobius):
    cvs = CriteriaValues()
    n = len(criteria)
    for i in range(1, n + 1):
        for combi in [c for c in combinations(criteria.keys(), i)]:
            cid = combi[0] if (i == 1) else CriteriaSet(combi)
            v = 0
            for j in range(1, i + 1):
                for combi2 in [c for c in combinations(combi, j)]:
                    cidj = combi2[0] if (j == 1) else CriteriaSet(combi2)
                    if cidj in mobius:
                        v += mobius[cidj].value

            cv = CriterionValue(cid, v)
            cvs.append(cv)

    return cvs
    def test002(self):
        c = generate_criteria(3)
        cat = generate_categories(3)
        cps = generate_categories_profiles(cat)

        bp1 = AlternativePerformances('b1', {
            'c1': 0.75,
            'c2': 0.75,
            'c3': 0.75
        })
        bp2 = AlternativePerformances('b2', {
            'c1': 0.25,
            'c2': 0.25,
            'c3': 0.25
        })
        bpt = PerformanceTable([bp1, bp2])

        cv1 = CriterionValue('c1', 0.2)
        cv2 = CriterionValue('c2', 0.2)
        cv3 = CriterionValue('c3', 0.2)
        cv12 = CriterionValue(CriteriaSet(['c1', 'c2']), -0.1)
        cv23 = CriterionValue(CriteriaSet(['c2', 'c3']), 0.2)
        cv13 = CriterionValue(CriteriaSet(['c1', 'c3']), 0.3)
        cvs = CriteriaValues([cv1, cv2, cv3, cv12, cv23, cv13])

        lbda = 0.6

        model = MRSort(c, cvs, bpt, lbda, cps)

        a = generate_alternatives(10000)
        pt = generate_random_performance_table(a, model.criteria)
        aa = model.get_assignments(pt)

        model2 = MRSort(c, None, bpt, None, cps)
        lp = LpMRSortMobius(model2, pt, aa)
        obj = lp.solve()

        aa2 = model2.get_assignments(pt)

        self.assertEqual(obj, 0)
        self.assertEqual(aa, aa2)
    def solve_cplex(self):
        self.lp.solve()

        status = self.lp.solution.get_status()
        if status != self.lp.solution.status.MIP_optimal:
            raise RuntimeError("Solver status: %s" % status)

        obj = self.lp.solution.get_objective_value()

        cvs = CriteriaValues()
        for c in self.criteria:
            cv = CriterionValue()
            cv.id = c.id
            cv.value = self.lp.solution.get_values('m_' + c.id)
            cvs.append(cv)

        for c in self.m2indices:
            cv = CriterionValue()
            cv.id = CriteriaSet(c)
            cv.value = self.lp.solution.get_values("m2p_%s" % c)
            cv.value -= self.lp.solution.get_values("m2n_%s" % c)
            cvs.append(cv)

        self.model.cv = cvs

        self.model.lbda = self.lp.solution.get_values("lambda")

        pt = PerformanceTable()
        for p in self.__profiles:
            ap = AlternativePerformances(p)
            for c in self.criteria:
                perf = self.lp.solution.get_values("g_%s_%s" % (p, c.id))
                ap.performances[c.id] = round(perf, 5)
            pt.append(ap)

        self.model.bpt = pt
        self.model.bpt.update_direction(self.model.criteria)

        return obj
Пример #9
0
from __future__ import division
import os, sys
sys.path.insert(0, os.path.dirname(os.path.abspath(__file__)) + "/../")
from collections import OrderedDict
from pymcda.types import CriteriaSet
from pymcda.types import PerformanceTable, AlternativePerformances
from pymcda.types import AlternativeAssignment, AlternativesAssignments
from pymcda.utils import powerset

fmin1 = [
    CriteriaSet(['c1', 'c2']),
    CriteriaSet(['c1', 'c3']),
    CriteriaSet(['c2', 'c4']),
    CriteriaSet(['c3', 'c4'])
]
gmax1 = [CriteriaSet(['c2', 'c3']), CriteriaSet(['c1', 'c4'])]

fmin2 = [
    CriteriaSet(['c1', 'c2']),
    CriteriaSet(['c1', 'c3']),
    CriteriaSet(['c2', 'c4'])
]
gmax2 = [
    CriteriaSet(['c2', 'c3']),
    CriteriaSet(['c1', 'c4']),
    CriteriaSet(['c3', 'c4'])
]

fmin3 = [
    CriteriaSet(['c1', 'c2']),
    CriteriaSet(['c1', 'c3']),
    from pymcda.types import CriteriaValues, CriterionValue
    from pymcda.types import CriteriaSet
    from pymcda.utils import print_pt_and_assignments
    from pymcda.utils import compute_ca
    from pymcda.utils import compute_number_of_winning_coalitions
    from pymcda.pt_sorted import SortedPerformanceTable
    from pymcda.ui.graphic import display_electre_tri_models

    # Generate a random ELECTRE TRI BM model
    model = generate_random_mrsort_model(5, 3, 123)
    cv1 = CriterionValue('c1', 0.2)
    cv2 = CriterionValue('c2', 0.2)
    cv3 = CriterionValue('c3', 0.2)
    cv4 = CriterionValue('c4', 0.2)
    cv5 = CriterionValue('c5', 0.2)
    cv12 = CriterionValue(CriteriaSet(['c1', 'c2']), -0.1)
    cv13 = CriterionValue(CriteriaSet(['c1', 'c3']), 0.1)
    cv14 = CriterionValue(CriteriaSet(['c1', 'c4']), -0.1)
    cv15 = CriterionValue(CriteriaSet(['c1', 'c5']), 0.1)
    cv23 = CriterionValue(CriteriaSet(['c2', 'c3']), 0.1)
    cv24 = CriterionValue(CriteriaSet(['c2', 'c4']), -0.1)
    cv25 = CriterionValue(CriteriaSet(['c2', 'c5']), 0.1)
    cv34 = CriterionValue(CriteriaSet(['c3', 'c4']), 0.1)
    cv35 = CriterionValue(CriteriaSet(['c3', 'c5']), -0.1)
    cv45 = CriterionValue(CriteriaSet(['c4', 'c5']), -0.1)
    cvs = CriteriaValues([
        cv1, cv2, cv3, cv4, cv5, cv12, cv13, cv14, cv15, cv23, cv24, cv25,
        cv34, cv35, cv45
    ])
    model.cv = cvs
    model.lbda = 0.6
XMCDA_URL = 'http://www.decision-deck.org/2009/XMCDA-2.1.0'

if __name__ == "__main__":
    f = bz2.BZ2File(sys.argv[1])

    tree = ElementTree.parse(f)
    root = tree.getroot()

    xmcda_criteria = root.find(".//criteria")
    c = Criteria().from_xmcda(xmcda_criteria)
    print(c)
    cids = c.keys()

    f.close()

    c_pset = CriteriaSets(set(CriteriaSet(i) for i in powerset(c.keys())))

    xmcda_csets = root.findall(".//criteriaSets")

    i = 0
    xmcda2 = ElementTree.Element("{%s}XMCDA" % XMCDA_URL)
    xmcda2.append(xmcda_criteria)
    xmcda3 = ElementTree.Element("{%s}XMCDA" % XMCDA_URL)
    xmcda3.append(xmcda_criteria)
    for xmcda in xmcda_csets:
        fmins = CriteriaSets().from_xmcda(xmcda)
        gmaxs = compute_gmax(c_pset, fmins)
        lbdas = cplex_lbda_minmax(cids, fmins, gmaxs)
        if lbdas is None:
            i += 1
            xmcda2.append(xmcda)