def main(hdf_file): # Use a pad extractor in order to compensate for the valid convolutions of the network. Actual image information is padded extractor = extr.PadDataExtractor( (2, 2, 2), extr.DataExtractor(categories=(defs.KEY_IMAGES, ))) # Adapted permutation due to the additional dimension transform = tfm.Permute(permutation=(3, 0, 1, 2), entries=(defs.KEY_IMAGES, )) # Creating patch indexing strategy with patch_shape that equal the network output shape indexing_strategy = extr.PatchWiseIndexing(patch_shape=(32, 32, 32)) dataset = extr.PymiaDatasource(hdf_file, indexing_strategy, extractor, transform) direct_extractor = extr.ComposeExtractor([ extr.ImagePropertiesExtractor(), extr.DataExtractor(categories=(defs.KEY_LABELS, defs.KEY_IMAGES)) ]) assembler = assm.SubjectAssembler(dataset) # torch specific handling pytorch_dataset = pymia_torch.PytorchDatasetAdapter(dataset) loader = torch_data.dataloader.DataLoader(pytorch_dataset, batch_size=2, shuffle=False) # dummy CNN with valid convolutions instead of same convolutions dummy_network = nn.Sequential( nn.Conv3d(in_channels=2, out_channels=8, kernel_size=3, padding=0), nn.Conv3d(in_channels=8, out_channels=1, kernel_size=3, padding=0), nn.Sigmoid()) torch.set_grad_enabled(False) nb_batches = len(loader) # looping over the data in the dataset for i, batch in enumerate(loader): x, sample_indices = batch[defs.KEY_IMAGES], batch[ defs.KEY_SAMPLE_INDEX] prediction = dummy_network(x) numpy_prediction = prediction.numpy().transpose((0, 2, 3, 4, 1)) is_last = i == nb_batches - 1 assembler.add_batch(numpy_prediction, sample_indices.numpy(), is_last) for subject_index in assembler.subjects_ready: subject_prediction = assembler.get_assembled_subject(subject_index) direct_sample = dataset.direct_extract(direct_extractor, subject_index) target, image_properties = direct_sample[ defs.KEY_LABELS], direct_sample[defs.KEY_PROPERTIES]
def main(hdf_file, is_meta): if not is_meta: extractor = extr.DataExtractor(categories=(defs.KEY_IMAGES, )) else: extractor = extr.FilesystemDataExtractor( categories=(defs.KEY_IMAGES, )) transform = tfm.Permute(permutation=(2, 0, 1), entries=(defs.KEY_IMAGES, )) indexing_strategy = extr.SliceIndexing() dataset = extr.PymiaDatasource(hdf_file, indexing_strategy, extractor, transform) direct_extractor = extr.ComposeExtractor([ extr.ImagePropertiesExtractor(), extr.DataExtractor(categories=(defs.KEY_LABELS, defs.KEY_IMAGES)) ]) assembler = assm.SubjectAssembler(dataset) # torch specific handling pytorch_dataset = pymia_torch.PytorchDatasetAdapter(dataset) loader = torch_data.dataloader.DataLoader(pytorch_dataset, batch_size=2, shuffle=False) dummy_network = nn.Sequential( nn.Conv2d(in_channels=2, out_channels=8, kernel_size=3, padding=1), nn.Conv2d(in_channels=8, out_channels=1, kernel_size=3, padding=1), nn.Sigmoid()) torch.set_grad_enabled(False) nb_batches = len(loader) # looping over the data in the dataset for i, batch in enumerate(loader): x, sample_indices = batch[defs.KEY_IMAGES], batch[ defs.KEY_SAMPLE_INDEX] prediction = dummy_network(x) numpy_prediction = prediction.numpy().transpose((0, 2, 3, 1)) is_last = i == nb_batches - 1 assembler.add_batch(numpy_prediction, sample_indices.numpy(), is_last) for subject_index in assembler.subjects_ready: subject_prediction = assembler.get_assembled_subject(subject_index) direct_sample = dataset.direct_extract(direct_extractor, subject_index) target, image_properties = direct_sample[ defs.KEY_LABELS], direct_sample[defs.KEY_PROPERTIES]
def main(hdf_file): extractor = extr.DataExtractor(categories=(defs.KEY_IMAGES, )) # no transformation needed because TensorFlow uses channel-last transform = None indexing_strategy = extr.SliceIndexing() dataset = extr.PymiaDatasource(hdf_file, indexing_strategy, extractor, transform) direct_extractor = extr.ComposeExtractor([ extr.ImagePropertiesExtractor(), extr.DataExtractor(categories=(defs.KEY_LABELS, defs.KEY_IMAGES)) ]) assembler = assm.SubjectAssembler(dataset) # TensorFlow specific handling gen_fn = pymia_tf.get_tf_generator(dataset) tf_dataset = tf.data.Dataset.from_generator(generator=gen_fn, output_types={ defs.KEY_IMAGES: tf.float32, defs.KEY_SAMPLE_INDEX: tf.int64 }) tf_dataset = tf_dataset.batch(2) dummy_network = keras.Sequential([ layers.Conv2D(8, kernel_size=3, padding='same'), layers.Conv2D(2, kernel_size=3, padding='same', activation='sigmoid') ]) nb_batches = len(dataset) // 2 # looping over the data in the dataset for i, batch in enumerate(tf_dataset): x, sample_indices = batch[defs.KEY_IMAGES], batch[ defs.KEY_SAMPLE_INDEX] prediction = dummy_network(x) numpy_prediction = prediction.numpy() is_last = i == nb_batches - 1 assembler.add_batch(numpy_prediction, sample_indices.numpy(), is_last) for subject_index in assembler.subjects_ready: subject_prediction = assembler.get_assembled_subject(subject_index) direct_sample = dataset.direct_extract(direct_extractor, subject_index)
def main(hdf_file, plot_dir): os.makedirs(plot_dir, exist_ok=True) # setup the datasource extractor = extr.DataExtractor(categories=(defs.KEY_IMAGES, defs.KEY_LABELS)) indexing_strategy = extr.SliceIndexing() dataset = extr.PymiaDatasource(hdf_file, indexing_strategy, extractor) seed = 1 np.random.seed(seed) sample_idx = 55 # set up transformations without augmentation transforms_augmentation = [] transforms_before_augmentation = [tfm.Permute(permutation=(2, 0, 1)), ] # to have the channel-dimension first transforms_after_augmentation = [tfm.Squeeze(entries=(defs.KEY_LABELS,)), ] # get rid of the channel-dimension for the labels train_transforms = tfm.ComposeTransform(transforms_before_augmentation + transforms_augmentation + transforms_after_augmentation) dataset.set_transform(train_transforms) sample = dataset[sample_idx] plot_sample(plot_dir, 'none', sample) # augmentation with pymia transforms_augmentation = [augm.RandomRotation90(axes=(-2, -1)), augm.RandomMirror()] train_transforms = tfm.ComposeTransform( transforms_before_augmentation + transforms_augmentation + transforms_after_augmentation) dataset.set_transform(train_transforms) sample = dataset[sample_idx] plot_sample(plot_dir, 'pymia', sample) # augmentation with batchgenerators transforms_augmentation = [BatchgeneratorsTransform([ bg_tfm.spatial_transforms.MirrorTransform(axes=(0, 1), data_key=defs.KEY_IMAGES, label_key=defs.KEY_LABELS), bg_tfm.noise_transforms.GaussianBlurTransform(blur_sigma=(0.2, 1.0), data_key=defs.KEY_IMAGES, label_key=defs.KEY_LABELS), ])] train_transforms = tfm.ComposeTransform( transforms_before_augmentation + transforms_augmentation + transforms_after_augmentation) dataset.set_transform(train_transforms) sample = dataset[sample_idx] plot_sample(plot_dir, 'batchgenerators', sample) # augmentation with TorchIO transforms_augmentation = [TorchIOTransform( [tio.RandomFlip(axes=('LR'), flip_probability=1.0, keys=(defs.KEY_IMAGES, defs.KEY_LABELS), seed=seed), tio.RandomAffine(scales=(0.9, 1.2), degrees=(10), isotropic=False, default_pad_value='otsu', image_interpolation='NEAREST', keys=(defs.KEY_IMAGES, defs.KEY_LABELS), seed=seed), ])] train_transforms = tfm.ComposeTransform( transforms_before_augmentation + transforms_augmentation + transforms_after_augmentation) dataset.set_transform(train_transforms) sample = dataset[sample_idx] plot_sample(plot_dir, 'torchio', sample)
def main(hdf_file, log_dir): # initialize the evaluator with the metrics and the labels to evaluate metrics = [metric.DiceCoefficient()] labels = {1: 'WHITEMATTER', 2: 'GREYMATTER', 3: 'HIPPOCAMPUS', 4: 'AMYGDALA', 5: 'THALAMUS'} evaluator = eval_.SegmentationEvaluator(metrics, labels) # we want to log the mean and standard deviation of the metrics among all subjects of the dataset functions = {'MEAN': np.mean, 'STD': np.std} statistics_aggregator = writer.StatisticsAggregator(functions=functions) console_writer = writer.ConsoleStatisticsWriter(functions=functions) # initialize TensorBoard writer tb = tensorboard.SummaryWriter(os.path.join(log_dir, 'logging-example-torch')) # setup the training datasource train_subjects, valid_subjects = ['Subject_1', 'Subject_2', 'Subject_3'], ['Subject_4'] extractor = extr.DataExtractor(categories=(defs.KEY_IMAGES, defs.KEY_LABELS)) indexing_strategy = extr.SliceIndexing() augmentation_transforms = [augm.RandomElasticDeformation(), augm.RandomMirror()] transforms = [tfm.Permute(permutation=(2, 0, 1)), tfm.Squeeze(entries=(defs.KEY_LABELS,))] train_transforms = tfm.ComposeTransform(augmentation_transforms + transforms) train_dataset = extr.PymiaDatasource(hdf_file, indexing_strategy, extractor, train_transforms, subject_subset=train_subjects) # setup the validation datasource valid_transforms = tfm.ComposeTransform([tfm.Permute(permutation=(2, 0, 1))]) valid_dataset = extr.PymiaDatasource(hdf_file, indexing_strategy, extractor, valid_transforms, subject_subset=valid_subjects) direct_extractor = extr.ComposeExtractor( [extr.SubjectExtractor(), extr.ImagePropertiesExtractor(), extr.DataExtractor(categories=(defs.KEY_LABELS,))] ) assembler = assm.SubjectAssembler(valid_dataset) # torch specific handling pytorch_train_dataset = pymia_torch.PytorchDatasetAdapter(train_dataset) train_loader = torch_data.dataloader.DataLoader(pytorch_train_dataset, batch_size=16, shuffle=True) pytorch_valid_dataset = pymia_torch.PytorchDatasetAdapter(valid_dataset) valid_loader = torch_data.dataloader.DataLoader(pytorch_valid_dataset, batch_size=16, shuffle=False) u_net = unet.UNetModel(ch_in=2, ch_out=6, n_channels=16, n_pooling=3).to(device) print(u_net) optimizer = optim.Adam(u_net.parameters(), lr=1e-3) train_batches = len(train_loader) # looping over the data in the dataset epochs = 100 for epoch in range(epochs): u_net.train() print(f'Epoch {epoch + 1}/{epochs}') # training print('training') for i, batch in enumerate(train_loader): x, y = batch[defs.KEY_IMAGES].to(device), batch[defs.KEY_LABELS].to(device).long() logits = u_net(x) optimizer.zero_grad() loss = F.cross_entropy(logits, y) loss.backward() optimizer.step() tb.add_scalar('train/loss', loss.item(), epoch*train_batches + i) print(f'[{i + 1}/{train_batches}]\tloss: {loss.item()}') # validation print('validation') with torch.no_grad(): u_net.eval() valid_batches = len(valid_loader) for i, batch in enumerate(valid_loader): x, sample_indices = batch[defs.KEY_IMAGES].to(device), batch[defs.KEY_SAMPLE_INDEX] logits = u_net(x) prediction = logits.argmax(dim=1, keepdim=True) numpy_prediction = prediction.cpu().numpy().transpose((0, 2, 3, 1)) is_last = i == valid_batches - 1 assembler.add_batch(numpy_prediction, sample_indices.numpy(), is_last) for subject_index in assembler.subjects_ready: subject_prediction = assembler.get_assembled_subject(subject_index) direct_sample = train_dataset.direct_extract(direct_extractor, subject_index) target, image_properties = direct_sample[defs.KEY_LABELS], direct_sample[defs.KEY_PROPERTIES] # evaluate the prediction against the reference evaluator.evaluate(subject_prediction[..., 0], target[..., 0], direct_sample[defs.KEY_SUBJECT]) # calculate mean and standard deviation of each metric results = statistics_aggregator.calculate(evaluator.results) # log to TensorBoard into category train for result in results: tb.add_scalar(f'valid/{result.metric}-{result.id_}', result.value, epoch) console_writer.write(evaluator.results) # clear results such that the evaluator is ready for the next evaluation evaluator.clear()
def main(hdf_file: str, log_dir: str): # initialize the evaluator with the metrics and the labels to evaluate metrics = [metric.DiceCoefficient()] labels = {1: 'WHITEMATTER', 2: 'GREYMATTER', 5: 'THALAMUS'} evaluator = eval_.SegmentationEvaluator(metrics, labels) # we want to log the mean and standard deviation of the metrics among all subjects of the dataset functions = {'MEAN': np.mean, 'STD': np.std} statistics_aggregator = writer.StatisticsAggregator(functions=functions) # initialize TensorBoard writer # tb = tensorboard.SummaryWriter(os.path.join(log_dir, 'logging-example-torch')) tb = tf.summary.create_file_writer( os.path.join(log_dir, 'logging-example-tensorflow')) # initialize the data handling dataset = extr.PymiaDatasource( hdf_file, extr.SliceIndexing(), extr.DataExtractor(categories=(defs.KEY_IMAGES, ))) gen_fn = pymia_tf.get_tf_generator(dataset) tf_dataset = tf.data.Dataset.from_generator(generator=gen_fn, output_types={ defs.KEY_IMAGES: tf.float32, defs.KEY_SAMPLE_INDEX: tf.int64 }) loader = tf_dataset.batch(100) assembler = assm.SubjectAssembler(dataset) direct_extractor = extr.ComposeExtractor([ extr.SubjectExtractor(), # extraction of the subject name extr.ImagePropertiesExtractor( ), # Extraction of image properties (origin, spacing, etc.) for storage extr.DataExtractor( categories=(defs.KEY_LABELS, )) # Extraction of "labels" entries for evaluation ]) # initialize a dummy network, which returns a random prediction class DummyNetwork(tf.keras.Model): def call(self, inputs): return tf.random.uniform((*inputs.shape[:-1], 1), 0, 6, dtype=tf.int32) dummy_network = DummyNetwork() tf.random.set_seed(0) # set seed for reproducibility nb_batches = len(dataset) // 2 epochs = 10 for epoch in range(epochs): print(f'Epoch {epoch + 1}/{epochs}') for i, batch in enumerate(loader): # get the data from batch and predict x, sample_indices = batch[defs.KEY_IMAGES], batch[ defs.KEY_SAMPLE_INDEX] prediction = dummy_network(x) # translate the prediction to numpy numpy_prediction = prediction.numpy() # add the batch prediction to the assembler is_last = i == nb_batches - 1 assembler.add_batch(numpy_prediction, sample_indices.numpy(), is_last) # process the subjects/images that are fully assembled for subject_index in assembler.subjects_ready: subject_prediction = assembler.get_assembled_subject( subject_index) # extract the target and image properties via direct extract direct_sample = dataset.direct_extract(direct_extractor, subject_index) reference, image_properties = direct_sample[ defs.KEY_LABELS], direct_sample[defs.KEY_PROPERTIES] # evaluate the prediction against the reference evaluator.evaluate(subject_prediction[..., 0], reference[..., 0], direct_sample[defs.KEY_SUBJECT]) # calculate mean and standard deviation of each metric results = statistics_aggregator.calculate(evaluator.results) # log to TensorBoard into category train for result in results: with tb.as_default(): tf.summary.scalar(f'train/{result.metric}-{result.id_}', result.value, epoch) # clear results such that the evaluator is ready for the next evaluation evaluator.clear()
def main(hdf_file: str): extractor = extr.ComposeExtractor([ extr.NamesExtractor(), extr.DataExtractor(), extr.SelectiveDataExtractor(), extr.DataExtractor(('numerical', ), ignore_indexing=True), extr.DataExtractor(('gender', ), ignore_indexing=True), extr.DataExtractor(('mask', ), ignore_indexing=False), extr.SubjectExtractor(), extr.FilesExtractor(categories=(defs.KEY_IMAGES, defs.KEY_LABELS, 'mask', 'numerical', 'gender')), extr.IndexingExtractor(), extr.ImagePropertiesExtractor() ]) dataset = extr.PymiaDatasource(hdf_file, extr.SliceIndexing(), extractor) for i in range(len(dataset)): item = dataset[i] index_expr = item[defs.KEY_INDEX_EXPR] # type: data.IndexExpression root = item[defs.KEY_FILE_ROOT] image = None # type: sitk.Image for i, file in enumerate( item[defs.KEY_PLACEHOLDER_FILES.format('images')]): image = sitk.ReadImage(os.path.join(root, file)) np_img = sitk.GetArrayFromImage(image).astype(np.float32) np_img = (np_img - np_img.mean()) / np_img.std() np_slice = np_img[index_expr.expression] if (np_slice != item[defs.KEY_IMAGES][..., i]).any(): raise ValueError('slice not equal') # for any image image_properties = conv.ImageProperties(image) if image_properties != item[defs.KEY_PROPERTIES]: raise ValueError('image properties not equal') for file in item[defs.KEY_PLACEHOLDER_FILES.format('labels')]: image = sitk.ReadImage(os.path.join(root, file)) np_img = sitk.GetArrayFromImage(image) np_img = np.expand_dims( np_img, axis=-1 ) # due to the convention of having the last dim as number of channels np_slice = np_img[index_expr.expression] if (np_slice != item[defs.KEY_LABELS]).any(): raise ValueError('slice not equal') for file in item[defs.KEY_PLACEHOLDER_FILES.format('mask')]: image = sitk.ReadImage(os.path.join(root, file)) np_img = sitk.GetArrayFromImage(image) np_img = np.expand_dims( np_img, axis=-1 ) # due to the convention of having the last dim as number of channels np_slice = np_img[index_expr.expression] if (np_slice != item['mask']).any(): raise ValueError('slice not equal') for file in item[defs.KEY_PLACEHOLDER_FILES.format('numerical')]: with open(os.path.join(root, file), 'r') as f: lines = f.readlines() age = float(lines[0].split(':')[1].strip()) gpa = float(lines[1].split(':')[1].strip()) if age != item['numerical'][0][0] or gpa != item['numerical'][0][1]: raise ValueError('value not equal') for file in item[defs.KEY_PLACEHOLDER_FILES.format('gender')]: with open(os.path.join(root, file), 'r') as f: gender = f.readlines()[2].split(':')[1].strip() if gender != str(item['gender'][0]): raise ValueError('value not equal') print('All test passed!')
def main(hdf_file: str, log_dir: str): # initialize the evaluator with the metrics and the labels to evaluate metrics = [metric.DiceCoefficient()] labels = {1: 'WHITEMATTER', 2: 'GREYMATTER', 5: 'THALAMUS'} evaluator = eval_.SegmentationEvaluator(metrics, labels) # we want to log the mean and standard deviation of the metrics among all subjects of the dataset functions = {'MEAN': np.mean, 'STD': np.std} statistics_aggregator = writer.StatisticsAggregator(functions=functions) # initialize TensorBoard writer tb = tensorboard.SummaryWriter( os.path.join(log_dir, 'logging-example-torch')) # initialize the data handling transform = tfm.Permute(permutation=(2, 0, 1), entries=(defs.KEY_IMAGES, )) dataset = extr.PymiaDatasource( hdf_file, extr.SliceIndexing(), extr.DataExtractor(categories=(defs.KEY_IMAGES, )), transform) pytorch_dataset = pymia_torch.PytorchDatasetAdapter(dataset) loader = torch_data.dataloader.DataLoader(pytorch_dataset, batch_size=100, shuffle=False) assembler = assm.SubjectAssembler(dataset) direct_extractor = extr.ComposeExtractor([ extr.SubjectExtractor(), # extraction of the subject name extr.ImagePropertiesExtractor( ), # Extraction of image properties (origin, spacing, etc.) for storage extr.DataExtractor( categories=(defs.KEY_LABELS, )) # Extraction of "labels" entries for evaluation ]) # initialize a dummy network, which returns a random prediction class DummyNetwork(nn.Module): def forward(self, x): return torch.randint(0, 6, (x.size(0), 1, *x.size()[2:])) dummy_network = DummyNetwork() torch.manual_seed(0) # set seed for reproducibility nb_batches = len(loader) epochs = 10 for epoch in range(epochs): print(f'Epoch {epoch + 1}/{epochs}') for i, batch in enumerate(loader): # get the data from batch and predict x, sample_indices = batch[defs.KEY_IMAGES], batch[ defs.KEY_SAMPLE_INDEX] prediction = dummy_network(x) # translate the prediction to numpy and back to (B)HWC (channel last) numpy_prediction = prediction.numpy().transpose((0, 2, 3, 1)) # add the batch prediction to the assembler is_last = i == nb_batches - 1 assembler.add_batch(numpy_prediction, sample_indices.numpy(), is_last) # process the subjects/images that are fully assembled for subject_index in assembler.subjects_ready: subject_prediction = assembler.get_assembled_subject( subject_index) # extract the target and image properties via direct extract direct_sample = dataset.direct_extract(direct_extractor, subject_index) reference, image_properties = direct_sample[ defs.KEY_LABELS], direct_sample[defs.KEY_PROPERTIES] # evaluate the prediction against the reference evaluator.evaluate(subject_prediction[..., 0], reference[..., 0], direct_sample[defs.KEY_SUBJECT]) # calculate mean and standard deviation of each metric results = statistics_aggregator.calculate(evaluator.results) # log to TensorBoard into category train for result in results: tb.add_scalar(f'train/{result.metric}-{result.id_}', result.value, epoch) # clear results such that the evaluator is ready for the next evaluation evaluator.clear()
def main(hdf_file, log_dir): # initialize the evaluator with the metrics and the labels to evaluate metrics = [metric.DiceCoefficient()] labels = { 1: 'WHITEMATTER', 2: 'GREYMATTER', 3: 'HIPPOCAMPUS', 4: 'AMYGDALA', 5: 'THALAMUS' } evaluator = eval_.SegmentationEvaluator(metrics, labels) # we want to log the mean and standard deviation of the metrics among all subjects of the dataset functions = {'MEAN': np.mean, 'STD': np.std} statistics_aggregator = writer.StatisticsAggregator(functions=functions) console_writer = writer.ConsoleStatisticsWriter(functions=functions) # initialize TensorBoard writer summary_writer = tf.summary.create_file_writer( os.path.join(log_dir, 'logging-example-tensorflow')) # setup the training datasource train_subjects, valid_subjects = ['Subject_1', 'Subject_2', 'Subject_3'], ['Subject_4'] extractor = extr.DataExtractor(categories=(defs.KEY_IMAGES, defs.KEY_LABELS)) indexing_strategy = extr.SliceIndexing() augmentation_transforms = [ augm.RandomElasticDeformation(), augm.RandomMirror() ] transforms = [tfm.Squeeze(entries=(defs.KEY_LABELS, ))] train_transforms = tfm.ComposeTransform(augmentation_transforms + transforms) train_dataset = extr.PymiaDatasource(hdf_file, indexing_strategy, extractor, train_transforms, subject_subset=train_subjects) # setup the validation datasource batch_size = 16 valid_transforms = tfm.ComposeTransform([]) valid_dataset = extr.PymiaDatasource(hdf_file, indexing_strategy, extractor, valid_transforms, subject_subset=valid_subjects) direct_extractor = extr.ComposeExtractor([ extr.SubjectExtractor(), extr.ImagePropertiesExtractor(), extr.DataExtractor(categories=(defs.KEY_LABELS, )) ]) assembler = assm.SubjectAssembler(valid_dataset) # tensorflow specific handling train_gen_fn = pymia_tf.get_tf_generator(train_dataset) tf_train_dataset = tf.data.Dataset.from_generator( generator=train_gen_fn, output_types={ defs.KEY_IMAGES: tf.float32, defs.KEY_LABELS: tf.int64, defs.KEY_SAMPLE_INDEX: tf.int64 }) tf_train_dataset = tf_train_dataset.batch(batch_size).shuffle( len(train_dataset)) valid_gen_fn = pymia_tf.get_tf_generator(valid_dataset) tf_valid_dataset = tf.data.Dataset.from_generator( generator=valid_gen_fn, output_types={ defs.KEY_IMAGES: tf.float32, defs.KEY_LABELS: tf.int64, defs.KEY_SAMPLE_INDEX: tf.int64 }) tf_valid_dataset = tf_valid_dataset.batch(batch_size) u_net = unet.build_model(channels=2, num_classes=6, layer_depth=3, filters_root=16) optimizer = tf.keras.optimizers.Adam(learning_rate=1e-3) train_loss = tf.keras.metrics.Mean('train_loss', dtype=tf.float32) train_batches = len(train_dataset) // batch_size # looping over the data in the dataset epochs = 100 for epoch in range(epochs): print(f'Epoch {epoch + 1}/{epochs}') # training print('training') for i, batch in enumerate(tf_train_dataset): x, y = batch[defs.KEY_IMAGES], batch[defs.KEY_LABELS] with tf.GradientTape() as tape: logits = u_net(x, training=True) loss = tf.keras.losses.sparse_categorical_crossentropy( y, logits, from_logits=True) grads = tape.gradient(loss, u_net.trainable_variables) optimizer.apply_gradients(zip(grads, u_net.trainable_variables)) train_loss(loss) with summary_writer.as_default(): tf.summary.scalar('train/loss', train_loss.result(), step=epoch * train_batches + i) print( f'[{i + 1}/{train_batches}]\tloss: {train_loss.result().numpy()}' ) # validation print('validation') valid_batches = len(valid_dataset) // batch_size for i, batch in enumerate(tf_valid_dataset): x, sample_indices = batch[defs.KEY_IMAGES], batch[ defs.KEY_SAMPLE_INDEX] logits = u_net(x) prediction = tf.expand_dims(tf.math.argmax(logits, -1), -1) numpy_prediction = prediction.numpy() is_last = i == valid_batches - 1 assembler.add_batch(numpy_prediction, sample_indices.numpy(), is_last) for subject_index in assembler.subjects_ready: subject_prediction = assembler.get_assembled_subject( subject_index) direct_sample = train_dataset.direct_extract( direct_extractor, subject_index) target, image_properties = direct_sample[ defs.KEY_LABELS], direct_sample[defs.KEY_PROPERTIES] # evaluate the prediction against the reference evaluator.evaluate(subject_prediction[..., 0], target[..., 0], direct_sample[defs.KEY_SUBJECT]) # calculate mean and standard deviation of each metric results = statistics_aggregator.calculate(evaluator.results) # log to TensorBoard into category train with summary_writer.as_default(): for result in results: tf.summary.scalar(f'valid/{result.metric}-{result.id_}', result.value, epoch) console_writer.write(evaluator.results) # clear results such that the evaluator is ready for the next evaluation evaluator.clear()