Пример #1
0
def setup2():
    # Setting up a two component mixture over four features.
    # Two features are Normal distributions, two discrete.

    # initializing atomar distributions for first component
    n1 = mixture.NormalDistribution(1.0,1.5)
    n2 = mixture.NormalDistribution(2.0,0.5)
    d1 = mixture.DiscreteDistribution(4,[0.1,0.4,0.4,0.1])
    
    c1 = mixture.ProductDistribution([n1,n2])
    c2 = mixture.ProductDistribution([n1,d1])
    
    # intializing mixture
    pi = [0.4,0.6]
    m = mixture.MixtureModel(2,pi,[c1,c2])
    return m
Пример #2
0
def testLymphData():

	k = 5
	d = 11

	aux = [0]*d

	models = []

	for i in range(k):
	    aux1 = [0]*d
	    aux2 = [0]*d
	    aux3 = [0]*d
  	    models.append(mixture.ProductDistribution([mixture.DependenceTreeDistribution(d,aux1,aux2,aux3)]))

        pi = [1.0]*k
	pi = np.array(pi)/k


        train = mixture.MixtureModel(k,pi,models)

        data = mixture.DataSet()
	data.fromFiles(['data/ltree2_2fold.txt'],)

	train.modelInitialization(data)

        train.EM(data,100,0.01,silent=1)
Пример #3
0
def getBayesModel(G, p, mixPrior=None):
    """
    Constructs a PWM CSI BayesMixtureModel.

    @param G: number of components
    @param p: number of positions of the binding site
    @return: BayesMixtureModel object
    """

    if not mixPrior:
        piPrior = mixture.DirichletPrior(G, [1.0] * G)
        compPrior = []
        for i in range(p):
            compPrior.append(
                mixture.DirichletPrior(4, [1.02, 1.02, 1.02, 1.02]))

        # arbitrary values of struct and comp parameters. Values should be
        # reset by user using the structPriorHeuristic method.
        mixPrior = mixture.MixtureModelPrior(0.05, 0.05, piPrior, compPrior)

    DNA = mixture.Alphabet(['A', 'C', 'G', 'T'])
    comps = []
    for i in range(G):
        dlist = []
        for j in range(p):
            phi = mixture.random_vector(4)
            dlist.append(mixture.DiscreteDistribution(4, phi, DNA))
        comps.append(mixture.ProductDistribution(dlist))
    pi = mixture.random_vector(G)
    m = mixture.BayesMixtureModel(G, pi, comps, mixPrior, struct=1)
    return m
Пример #4
0
def setup():
    # Setting up a two component mixture over four features.
    # Two features are Normal distributions, two discrete.

    # initializing atomar distributions for first component
    n11 = mixture.NormalDistribution(1.0,1.5)
    n12 = mixture.NormalDistribution(2.0,0.5)
    d13 = mixture.DiscreteDistribution(4,[0.1,0.4,0.4,0.1])
    d14 = mixture.DiscreteDistribution(4,[0.25,0.25,0.25,0.25])

    # initializing atomar distributions for second component
    n21 = mixture.NormalDistribution(4.0,0.5)
    n22 = mixture.NormalDistribution(-6.0,0.5)
    d23 = mixture.DiscreteDistribution(4,[0.7,0.1,0.1,0.1])
    d24 = mixture.DiscreteDistribution(4,[0.1,0.1,0.2,0.6])

    # creating component distributions
    c1 = mixture.ProductDistribution([n11,n12,d13,d14])
    c2 = mixture.ProductDistribution([n21,n22,d23,d24])

    # intializing mixture
    pi = [0.4,0.6]
    m = mixture.MixtureModel(2,pi,[c1,c2])
    return m
Пример #5
0
def getModel(G, p):
    """
    Constructs a PWM MixtureModel.

    @param G: number of components
    @param p: number of positions of the binding site
    @return: MixtureModel object
    """
    DNA = mixture.Alphabet(['A', 'C', 'G', 'T'])
    comps = []
    for i in range(G):
        dlist = []
        for j in range(p):
            phi = mixture.random_vector(4)
            dlist.append(mixture.DiscreteDistribution(4, phi, DNA))
        comps.append(mixture.ProductDistribution(dlist))
    pi = mixture.random_vector(G)
    m = mixture.MixtureModel(G, pi, comps)
    return m
Пример #6
0
def testdtree():

        tree = {}
        tree[0] = -1
        tree[1] = 0
        tree[2] = 1


        n1 = mixture.ProductDistribution([mixture.ConditionalGaussDistribution(3,[0, 1, 0],
                                                                                 [0, -0.1, 0.1],
                                                                                 [0.5,0.5,0.5],tree)])
        tree2 = {}
        tree2[0] = -1
        tree2[1] = 0
        tree2[2] = 0
        n2 = mixture.ProductDistribution([mixture.ConditionalGaussDistribution(3,[-1, 0, 1],
                                                                                 [0, 0.1, -0.1],
                                                                                 [0.5,0.5,0.5],tree2)])

        pi = [0.4, 0.6]
        gen = mixture.MixtureModel(2,pi,[n1,n2])

        random.seed(1)
        data = gen.sampleDataSet(1000)

        print data



        n1 = mixture.ProductDistribution([mixture.DependenceTreeDistribution(3,[0.1, 1.1, 0.1],
                                                                                 [0, 0, 0],
                                                                                 [1.0,1.0,1.0])])
        n2 = mixture.ProductDistribution([mixture.DependenceTreeDistribution(3,[-1, 0, -0.1],
                                                                                 [0, 0, 0],
                                                                                 [1.0,1.0,1.0])])


        n1 = mixture.ProductDistribution([mixture.ConditionalGaussDistribution(3,[0, 1, 0],
                                                                                 [0.0, 0.1, 0.1],
                                                                                 [0.1,0.1,0.1],tree)])
        n2 = mixture.ProductDistribution([mixture.ConditionalGaussDistribution(3,[-1, 0, 1],
                                                                                 [0.0, 0.1, 0.1],
                                                                                 [0.1,0.1,0.1],tree2)])

        train = mixture.MixtureModel(2,pi,[n1,n2])
	train.modelInitialization(data)
        train.EM(data,100,0.01,silent=1)
Пример #7
0
def getBackgroundModel(p, dist=None):
    """
    Construct background model

    @param p: number of positions of the binding site
    @param dist: background nucleotide frequencies, uniform is default

    @return: MixtureModel representing the background
    """
    DNA = mixture.Alphabet(['A', 'C', 'G', 'T'])
    dlist = []

    if dist == None:
        phi = [0.25] * 4
    else:
        phi = dist

    for j in range(p):
        dlist.append(mixture.DiscreteDistribution(4, phi, DNA))
    comps = [mixture.ProductDistribution(dlist)]

    m = mixture.MixtureModel(1, [1.0], comps)
    return m
Пример #8
0
                                        [dist_spelling, missing_spelling],
                                        compFix=[0, 2])

    # diagnoses for cormobidit disorders
    #"ODD"	"CONDUCT"	"SOC PHO"	"SEP ANX"	"SPEC PHO"	"ENUR NOC"	"ENUR DIU"	"ENCOPRES"	"TOURET"	"TIC CRON"	"TIC TRAN"
    comor = []
    for j in range(COMOR):
        p_comor = [0.0] + mixture.random_vector(3)
        comor_missing = mixture.MultinomialDistribution(
            1, 4, [1.0, 0.0, 0.0, 0.0], DIAG)
        comor_mult = mixture.MultinomialDistribution(1, 4, p_comor, DIAG)
        comor_mix = mixture.MixtureModel(2, [0.999, 0.001],
                                         [comor_mult, comor_missing],
                                         compFix=[0, 2])
        comor.append(comor_mix)
    pd_comor = mixture.ProductDistribution(comor)

    # the drd4 VNTR are represented as a discrete distribution over the observed lengths,
    # the specific repeat sequence tpyes are not considered at this time
    p_drd4_vntr_len = [0.0] + mixture.random_vector(10)

    dist_drd4_vntr_len = mixture.MultinomialDistribution(
        1, 11, p_drd4_vntr_len, VNTR)
    vntr_missing = mixture.MultinomialDistribution(1, 11, [1.0] + [0.0] * 10,
                                                   VNTR)
    mix_drd4_vntr_len = mixture.MixtureModel(
        2, [0.999, 0.001], [dist_drd4_vntr_len, vntr_missing], compFix=[0, 2])

    components.append(
        mixture.ProductDistribution([
            mix_bd, mix_voc, mix_read, mix_math, mix_spelling, pd_comor,
Пример #9
0
Файл: gmm.py Проект: spyke/spyke
                                                         1237], [27, 1250],
                  [-35, 1213], [-36, 1176], [-38, 1151], [-38, 1044],
                  [12, 1036], [-19, 995], [-37, 962], [-23, 925], [55, 950],
                  [23, 931], [-20, 873], [20, 855], [23, 800], [-7, 781],
                  [-28, 741], [30, 548], [-16, 482], [9, 289], [-31, 272],
                  [-35, 167], [-19, 155], [30, 151], [62, 149], [-35, 110],
                  [-24, 100], [38, 102], [-30, 73], [-24, 49]])

ndistribs = 50
distribs = []
for mu in pos:
    #mu = np.random.random(nd)
    #mu = mins + mu * ranges
    xd = pm.NormalDistribution(mu[0], 30)
    yd = pm.NormalDistribution(mu[1], 30)
    distrib = pm.ProductDistribution([xd, yd])
    distribs.append(distrib)
# add some extra random ones
for i in range(len(pos), ndistribs):
    mu = np.random.random(nd)
    mu = mins + mu * ranges
    xd = pm.NormalDistribution(mu[0], 30)
    yd = pm.NormalDistribution(mu[1], 30)
    distrib = pm.ProductDistribution([xd, yd])
    distribs.append(distrib)
'''
# add background noise distrib, see 2006 Bar-Hillel
#datamu = data.mean(axis=0)
#datasigma = data.std(axis=0)
#k = 2
#xd = pm.NormalDistribution(datamu[0], k*datasigma[0])