Пример #1
0
    def visualize(self, U, codim=2, **kwargs):
        """Visualize scalar data associated to the grid as a patch plot.

        Parameters
        ----------
        U
            |NumPy array| of the data to visualize. If `U.dim == 2 and len(U) > 1`, the
            data is visualized as a time series of plots. Alternatively, a tuple of
            |Numpy arrays| can be provided, in which case a subplot is created for
            each entry of the tuple. The lengths of all arrays have to agree.
        codim
            The codimension of the entities the data in `U` is attached to (either 0 or 2).
        kwargs
            See :func:`~pymor.discretizers.builtin.gui.qt.visualize_patch`
        """
        from pymor.discretizers.builtin.gui.qt import visualize_patch
        from pymor.vectorarrays.interface import VectorArray
        from pymor.vectorarrays.numpy import NumpyVectorSpace, NumpyVectorArray
        if isinstance(U, (np.ndarray, VectorArray)):
            U = (U, )
        assert all(isinstance(u, (np.ndarray, VectorArray)) for u in U)
        U = tuple(
            NumpyVectorSpace.make_array(u) if isinstance(u, np.ndarray) else
            u if isinstance(u, NumpyVectorArray
                            ) else NumpyVectorSpace.make_array(u.to_numpy())
            for u in U)
        bounding_box = kwargs.pop('bounding_box', self.domain)
        visualize_patch(self,
                        U,
                        codim=codim,
                        bounding_box=bounding_box,
                        **kwargs)
Пример #2
0
def test_visualize_patch(backend_gridtype):
    backend, gridtype = backend_gridtype
    domain = LineDomain() if gridtype is OnedGrid else RectDomain()
    dim = 1 if gridtype is OnedGrid else 2
    rhs = GenericFunction(lambda X: np.ones(X.shape[:-1]) * 10, dim)  # NOQA
    dirichlet = GenericFunction(lambda X: np.zeros(X.shape[:-1]), dim)  # NOQA
    diffusion = GenericFunction(lambda X: np.ones(X.shape[:-1]), dim)  # NOQA
    problem = StationaryProblem(domain=domain, rhs=rhs, dirichlet_data=dirichlet, diffusion=diffusion)
    grid, bi = discretize_domain_default(problem.domain, grid_type=gridtype)
    m, data = discretize_stationary_cg(analytical_problem=problem, grid=grid, boundary_info=bi)
    U = m.solve()
    try:
        visualize_patch(data['grid'], U=U, backend=backend)
    except QtMissing as ie:
        pytest.xfail("Qt missing")
    finally:
        stop_gui_processes()
Пример #3
0
    def visualize(self, U, m, title=None, legend=None, separate_colorbars=False,
                  rescale_colorbars=False, block=None, filename=None, columns=2):
        """Visualize the provided data.

        Parameters
        ----------
        U
            |VectorArray| of the data to visualize. If `len(U) > 1`, the data is visualized
            as a time series of plots. Alternatively, a tuple of |VectorArrays| can be
            provided, in which case a subplot is created for each entry of the tuple. The
            lengths of all arrays have to agree.
        m
            Filled in by :meth:`pymor.models.interface.Model.visualize` (ignored).
        title
            Title of the plot.
        legend
            Description of the data that is plotted. Most useful if `U` is a tuple in which
            case `legend` has to be a tuple of strings of the same length.
        separate_colorbars
            If `True`, use separate colorbars for each subplot.
        rescale_colorbars
            If `True`, rescale colorbars to data in each frame.
        block
            If `True`, block execution until the plot window is closed. If `None`, use the
            default provided during instantiation.
        filename
            If specified, write the data to a VTK-file using
            :func:`~pymor.discretizers.builtin.grids.vtkio.write_vtk` instead of displaying it.
        columns
            The number of columns in the visualizer GUI in case multiple plots are displayed
            at the same time.
        """
        assert isinstance(U, VectorArray) \
            or (isinstance(U, tuple)
                and all(isinstance(u, VectorArray) for u in U)
                and all(len(u) == len(U[0]) for u in U))
        if filename:
            if not isinstance(U, tuple):
                write_vtk(self.grid, U, filename, codim=self.codim)
            else:
                for i, u in enumerate(U):
                    write_vtk(self.grid, u, f'{filename}-{i}', codim=self.codim)
        else:
            if self.backend == 'jupyter':
                from pymor.discretizers.builtin.gui.jupyter import get_visualizer
                return get_visualizer()(self.grid, U, bounding_box=self.bounding_box, codim=self.codim, title=title,
                                legend=legend, separate_colorbars=separate_colorbars,
                                rescale_colorbars=rescale_colorbars, columns=columns)
            else:
                block = self.block if block is None else block
                from pymor.discretizers.builtin.gui.qt import visualize_patch
                return visualize_patch(self.grid, U, bounding_box=self.bounding_box, codim=self.codim, title=title,
                                legend=legend, separate_colorbars=separate_colorbars,
                                rescale_colorbars=rescale_colorbars, backend=self.backend, block=block,
                                columns=columns)