def test_preserve_data_params(self): dp1 = { "n_bits_in": 14, "n_bits_out": 10, "n_ones_in": 3, "n_ones_out": 3, "n_samples": 40, "n_bits": -1, "algorithm": "unique" } dp2 = { "n_bits_in": 8, "n_bits_out": 16, "n_ones_in": 2, "n_ones_out": 4, "n_samples": 50, "n_bits": -1, "algorithm": "random" } net1 = NetworkBuilder(data_params=dp1) net2 = NetworkBuilder(data_params=dp2) pool = NetworkPool(net1.build()) pool.add_network(net2.build()) output = (stub_simulation(net1.mat_out, data_params=dp1) + stub_simulation(net2.mat_out, data_params=dp2)) analysis_instances = pool.build_analysis(output) self.assertEqual(len(analysis_instances), 2) self.assertEqual(dp1, analysis_instances[0]["data_params"]) self.assertEqual(dp2, analysis_instances[1]["data_params"])
def test_neuron_count(self): mat_in, mat_out = test_data() builder = NetworkBuilder(mat_in, mat_out) pool = NetworkPool() pool.add_network(builder.build()) pool.add_network(builder.build(topology_params={"multiplicity": 3})) self.assertEqual(20, pool.neuron_count())
def test_calculate_latencies(self): dp1 = { "n_bits_in": 14, "n_bits_out": 10, "n_ones_in": 3, "n_ones_out": 3, "n_samples": 40 } dp2 = { "n_bits_in": 8, "n_bits_out": 16, "n_ones_in": 2, "n_ones_out": 4, "n_samples": 50 } net1 = NetworkBuilder(data_params=dp1) net2 = NetworkBuilder(data_params=dp2) pool = NetworkPool(net1.build()) pool.add_network(net2.build()) output = ( stub_simulation(net1.mat_out, data_params=dp1, latency=20.0) + stub_simulation(net2.mat_out, data_params=dp2, latency=30.0)) analysis_instances = pool.build_analysis(output) np.testing.assert_almost_equal( [20.0] * dp1["n_samples"], analysis_instances[0].calculate_latencies()) np.testing.assert_almost_equal( [30.0] * dp2["n_samples"], analysis_instances[1].calculate_latencies())
def test_calculate_latencies(self): dp1 = { "n_bits_in": 14, "n_bits_out": 10, "n_ones_in": 3, "n_ones_out": 3, "n_samples": 40 } dp2 = { "n_bits_in": 8, "n_bits_out": 16, "n_ones_in": 2, "n_ones_out": 4, "n_samples": 50 } net1 = NetworkBuilder(data_params=dp1) net2 = NetworkBuilder(data_params=dp2) pool = NetworkPool(net1.build()) pool.add_network(net2.build()) output = (stub_simulation(net1.mat_out, data_params=dp1, latency=20.0) + stub_simulation(net2.mat_out, data_params=dp2, latency=30.0)) analysis_instances = pool.build_analysis(output) np.testing.assert_almost_equal( [20.0] * dp1["n_samples"], analysis_instances[0].calculate_latencies()) np.testing.assert_almost_equal( [30.0] * dp2["n_samples"], analysis_instances[1].calculate_latencies())
def test_neuron_count(self): mat_in, mat_out = test_data() builder = NetworkBuilder(mat_in, mat_out) net = builder.build() self.assertEqual(5, net.neuron_count()) self.assertEqual(10, net.neuron_count(count_sources=True)) net = builder.build(topology_params={"multiplicity": 3}) self.assertEqual(15, net.neuron_count()) self.assertEqual(30, net.neuron_count(count_sources=True))
def test_preserve_meta_data(self): ud1 = {"foo": "bar"} ud2 = {"foo2": "bar2"} net1 = NetworkBuilder(data_params={}) net2 = NetworkBuilder(data_params={}) pool = NetworkPool(net1.build(meta_data=ud1)) pool.add_network(net2.build(meta_data=ud2)) output = (stub_simulation(net1.mat_out) + stub_simulation(net2.mat_out)) analysis_instances = pool.build_analysis(output) self.assertEqual(len(analysis_instances), 2) self.assertEqual(ud1, analysis_instances[0]["meta_data"]) self.assertEqual(ud2, analysis_instances[1]["meta_data"])
def test_build_analysis(self): mat_in, mat_out = test_data() builder = NetworkBuilder(mat_in, mat_out) net = builder.build(input_params=[{"multiplicity": 1}, {"multiplicity": 2}]) analysis_instances = net.build_analysis(time_mux_output_data) test_time_mux_res(self, analysis_instances)
def test_add_net_build_analysis(self): mat_in, mat_out = test_data() builder = NetworkBuilder(mat_in, mat_out) net = builder.build(input_params=[{}, {}]) pool = NetworkPool() pool.add_network(net) analysis_instances = pool.build_analysis(time_mux_output_data) test_time_mux_res(self, analysis_instances)
def test_build_analysis(self): mat_in, mat_out = test_data() builder = NetworkBuilder(mat_in, mat_out) net = builder.build(input_params=[{ "multiplicity": 1 }, { "multiplicity": 2 }]) analysis_instances = net.build_analysis(time_mux_output_data) test_time_mux_res(self, analysis_instances)
def test_match(self): mat_in, mat_out = test_data() builder = NetworkBuilder(mat_in, mat_out) net = builder.build() output = [ {}, {"spikes": [[0.0, 100.0], [101.0], [300.0, 301.0], [200.0], [201.0, 101.0]]}, ] output_spikes, output_indices = net.match(output) self.assertEqual([[0.0, 100.0], [101.0], [300.0, 301.0], [200.0], [201.0, 101.0]], output_spikes) self.assertEqual([[0, 0], [1], [2, 2], [1], [2, 1]], output_indices)
def test_add_nets_build_analysis(self): mat_in, mat_out = test_data() builder = NetworkBuilder(mat_in, mat_out) net = builder.build(input_params=[{"multiplicity": 1}, {"multiplicity": 2}]) pool = NetworkPool() pool.add_networks([net, net, net]) analysis_instances = pool.build_analysis(time_mux_output_data * 3) self.assertEqual(6, len(analysis_instances)) test_time_mux_res(self, analysis_instances[0:2]) test_time_mux_res(self, analysis_instances[2:4]) test_time_mux_res(self, analysis_instances[4:6])
def test_add_nets_build_analysis(self): mat_in, mat_out = test_data() builder = NetworkBuilder(mat_in, mat_out) net = builder.build(input_params=[{ "multiplicity": 1 }, { "multiplicity": 2 }]) pool = NetworkPool() pool.add_networks([net, net, net]) analysis_instances = pool.build_analysis(time_mux_output_data * 3) self.assertEqual(6, len(analysis_instances)) test_time_mux_res(self, analysis_instances[0:2]) test_time_mux_res(self, analysis_instances[2:4]) test_time_mux_res(self, analysis_instances[4:6])
def test_match(self): mat_in, mat_out = test_data() builder = NetworkBuilder(mat_in, mat_out) net = builder.build() output = [ {}, { "spikes": [[0.0, 100.0], [101.0], [300.0, 301.0], [200.0], [201.0, 101.0]] }, ] output_spikes, output_indices = net.match(output) self.assertEqual( [[0.0, 100.0], [101.0], [300.0, 301.0], [200.0], [201.0, 101.0]], output_spikes) self.assertEqual([[0, 0], [1], [2, 2], [1], [2, 1]], output_indices)
def test_build(self): mat_in, mat_out = test_data() builder = NetworkBuilder(mat_in, mat_out) net = builder.build(topology_params={"params": {"cm": 0.2}}) topo = { "connections": net["connections"], "populations": net["populations"] } times = net["input_times"] indices = net["input_indices"] compare({'connections': [ ((0, 0), (1, 1), 0.03, 0.0), ((0, 0), (1, 4), 0.03, 0.0), ((0, 1), (1, 1), 0.03, 0.0), ((0, 1), (1, 4), 0.03, 0.0), ((0, 2), (1, 0), 0.03, 0.0), ((0, 2), (1, 1), 0.03, 0.0), ((0, 2), (1, 2), 0.03, 0.0), ((0, 2), (1, 3), 0.03, 0.0), ((0, 3), (1, 0), 0.03, 0.0), ((0, 3), (1, 1), 0.03, 0.0), ((0, 4), (1, 2), 0.03, 0.0), ((0, 4), (1, 3), 0.03, 0.0)], 'populations': [ {'count': 5, 'params': [ {'spike_times': [100.0]}, {'spike_times': [100.0]}, {'spike_times': [0.0, 200.0]}, {'spike_times': [200.0]}, {'spike_times': [0.0]} ], 'record': [], 'type': 'SpikeSourceArray' }, {'count': 5, 'params': [ {'tau_refrac': 0.1, 'tau_m': 20.0, 'e_rev_E': 0.0, 'i_offset': 0.0, 'cm': 0.2, 'e_rev_I': -70.0, 'v_thresh': -50.0, 'tau_syn_E': 5.0, 'v_rest': -65.0, 'tau_syn_I': 5.0, 'v_reset': -65.0}] * 5, 'type': 'IF_cond_exp', 'record': ['spikes']}], }, topo) self.assertEqual([[100.0], [100.0], [0.0, 200.0], [200.0], [0.0]], times) self.assertEqual([[1], [1], [0, 2], [2], [0]], indices)
def test_calculate_output_matrix_stub_sim(self): dp1 = { "n_bits_in": 14, "n_bits_out": 10, "n_ones_in": 3, "n_ones_out": 3, "n_samples": 40 } dp2 = { "n_bits_in": 8, "n_bits_out": 16, "n_ones_in": 2, "n_ones_out": 4, "n_samples": 50 } dp3 = { "n_bits_in": 5, "n_bits_out": 8, "n_ones_in": 1, "n_ones_out": 3, "n_samples": 20 } tp1 = { "multiplicity": 1 } tp2 = { "multiplicity": 3 } tp3 = { "multiplicity": 2 } # Build three networks net1 = NetworkBuilder(data_params=dp1) net2 = NetworkBuilder(data_params=dp2) net3 = NetworkBuilder(data_params=dp3) # Add them to a network pool pool = NetworkPool() pool.add_networks([ net1.build(topology_params=tp1), net2.build(topology_params=tp2), net3.build(topology_params=tp3)]) # Simulate some expected output output = ( stub_simulation(net1.mat_out, data_params=dp1, topology_params=tp1, latency=20.0) + stub_simulation(net2.mat_out, data_params=dp2, topology_params=tp2, latency=30.0) + stub_simulation(net3.mat_out, data_params=dp3, topology_params=tp3, latency=10.0)) # Fetch the analysis instance for the output analysis_instances = pool.build_analysis(output) # Compare the output matrices m1 = analysis_instances[0].calculate_output_matrix() m2 = analysis_instances[1].calculate_output_matrix() m3 = analysis_instances[2].calculate_output_matrix() np.testing.assert_almost_equal(net1.mat_out, m1) np.testing.assert_almost_equal(net2.mat_out, m2) np.testing.assert_almost_equal(net3.mat_out, m3)
def test_calculate_output_matrix_stub_sim(self): dp1 = { "n_bits_in": 14, "n_bits_out": 10, "n_ones_in": 3, "n_ones_out": 3, "n_samples": 40 } dp2 = { "n_bits_in": 8, "n_bits_out": 16, "n_ones_in": 2, "n_ones_out": 4, "n_samples": 50 } dp3 = { "n_bits_in": 5, "n_bits_out": 8, "n_ones_in": 1, "n_ones_out": 3, "n_samples": 20 } tp1 = {"multiplicity": 1} tp2 = {"multiplicity": 3} tp3 = {"multiplicity": 2} # Build three networks net1 = NetworkBuilder(data_params=dp1) net2 = NetworkBuilder(data_params=dp2) net3 = NetworkBuilder(data_params=dp3) # Add them to a network pool pool = NetworkPool() pool.add_networks([ net1.build(topology_params=tp1), net2.build(topology_params=tp2), net3.build(topology_params=tp3) ]) # Simulate some expected output output = (stub_simulation( net1.mat_out, data_params=dp1, topology_params=tp1, latency=20.0) + stub_simulation(net2.mat_out, data_params=dp2, topology_params=tp2, latency=30.0) + stub_simulation(net3.mat_out, data_params=dp3, topology_params=tp3, latency=10.0)) # Fetch the analysis instance for the output analysis_instances = pool.build_analysis(output) # Compare the output matrices m1 = analysis_instances[0].calculate_output_matrix() m2 = analysis_instances[1].calculate_output_matrix() m3 = analysis_instances[2].calculate_output_matrix() np.testing.assert_almost_equal(net1.mat_out, m1) np.testing.assert_almost_equal(net2.mat_out, m2) np.testing.assert_almost_equal(net3.mat_out, m3)
def test_build(self): mat_in, mat_out = test_data() builder = NetworkBuilder(mat_in, mat_out) net = builder.build(topology_params={"params": {"cm": 0.2}}) topo = { "connections": net["connections"], "populations": net["populations"] } times = net["input_times"] indices = net["input_indices"] compare( { 'connections': [((0, 0), (1, 1), 0.03, 0.0), ((0, 0), (1, 4), 0.03, 0.0), ((0, 1), (1, 1), 0.03, 0.0), ((0, 1), (1, 4), 0.03, 0.0), ((0, 2), (1, 0), 0.03, 0.0), ((0, 2), (1, 1), 0.03, 0.0), ((0, 2), (1, 2), 0.03, 0.0), ((0, 2), (1, 3), 0.03, 0.0), ((0, 3), (1, 0), 0.03, 0.0), ((0, 3), (1, 1), 0.03, 0.0), ((0, 4), (1, 2), 0.03, 0.0), ((0, 4), (1, 3), 0.03, 0.0)], 'populations': [{ 'count': 5, 'params': [{ 'spike_times': [100.0] }, { 'spike_times': [100.0] }, { 'spike_times': [0.0, 200.0] }, { 'spike_times': [200.0] }, { 'spike_times': [0.0] }], 'record': [], 'type': 'SpikeSourceArray' }, { 'count': 5, 'params': [{ 'tau_refrac': 0.1, 'tau_m': 20.0, 'e_rev_E': 0.0, 'i_offset': 0.0, 'cm': 0.2, 'e_rev_I': -70.0, 'v_thresh': -50.0, 'tau_syn_E': 5.0, 'v_rest': -65.0, 'tau_syn_I': 5.0, 'v_reset': -65.0 }] * 5, 'type': 'IF_cond_exp', 'record': ['spikes'] }], }, topo) self.assertEqual([[100.0], [100.0], [0.0, 200.0], [200.0], [0.0]], times) self.assertEqual([[1], [1], [0, 2], [2], [0]], indices)