data_masked = np.load('parcellation.npy').astype(int) data_masked += 1 data = np.zeros(mask.shape, dtype=int) data[mask] = data_masked m = np.max(data) + 1 colors = np.asarray(colorlist) cmap_vec = np.arange(m) % len(colors) colors_vec = colors[cmap_vec] cmap = matplotlib.colors.ListedColormap(colors_vec) display_options = {} display_options['interpolation'] = 'nearest' display_options['cmap'] = cmap v = Viewer3D.show((data, display_options), title='Demo') def update_color(view, value): cmap_vec[value] = (cmap_vec[value] + 1) % len(colors) print '[', for i in cmap_vec: print '%d,' % i, print ']' colors_vec = colors[cmap_vec] cmap = matplotlib.colors.ListedColormap(colors_vec) for view, _ in v.views: view.layers[-1][1]['cmap'] = cmap view.redraw_layers()
from nisl import datasets, utils from pynax import Viewer3D import pylab as pl import numpy as np nyu = datasets.fetch_nyu_rest(n_subjects=1) func = nyu.func[0] niimg = utils.check_niimg(func) data = niimg.get_data()[..., 0] # Awesome example activation map : take whatever is > .6 max data_act = np.ma.MaskedArray(data, mask=(data < .6 * np.max(data))) vm = np.max(np.abs(data_act)) display_options = {} display_options['interpolation'] = 'nearest' display_options['cmap'] = pl.cm.gray act_display_options = {} act_display_options['interpolation'] = 'nearest' act_display_options['cmap'] = pl.cm.jet act_display_options['vmin'] = -vm act_display_options['vmax'] = vm act_display_options['pynax_colorbar'] = True Viewer3D.show((data, display_options), (data_act, act_display_options), title='Demo') pl.show()