Пример #1
0
 def endvisit_neuron(self, node):
     # before following checks occur, we need to ensure several simple properties
     CoCosManager.post_symbol_table_builder_checks(
         node, after_ast_rewrite=self.after_ast_rewrite_)
     # the following part is done in order to mark conductance based buffers as such.
     if node.get_input_blocks() is not None and node.get_equations_blocks() is not None and \
             len(node.get_equations_blocks().get_declarations()) > 0:
         # this case should be prevented, since several input blocks result in  a incorrect model
         if isinstance(node.get_input_blocks(), list):
             buffers = (buffer for bufferA in node.get_input_blocks()
                        for buffer in bufferA.get_input_ports())
         else:
             buffers = (
                 buffer
                 for buffer in node.get_input_blocks().get_input_ports())
         from pynestml.meta_model.ast_kernel import ASTKernel
         # todo: ode declarations are not used, is this correct?
         # ode_declarations = (decl for decl in node.get_equations_blocks().get_declarations() if
         #                    not isinstance(decl, ASTKernel))
     # now update the equations
     if node.get_equations_blocks() is not None and len(
             node.get_equations_blocks().get_declarations()) > 0:
         equation_block = node.get_equations_blocks()
         assign_ode_to_variables(equation_block)
     if not self.after_ast_rewrite_:
         CoCosManager.post_ode_specification_checks(node)
     Logger.set_current_node(None)
     return
Пример #2
0
    def visitSynapse(self, ctx):
        from pynestml.generated.PyNestMLLexer import PyNestMLLexer

        name = str(ctx.NAME()) if ctx.NAME() is not None else None
        body = self.visit(
            ctx.synapseBody()) if ctx.synapseBody() is not None else None

        # after we have constructed the meta_model of the neuron,
        # we can ensure some basic properties which should always hold
        # we have to check if each type of block is defined at most once (except for function), and that input,output
        # and update are defined once
        if hasattr(ctx.start.source[1], 'fileName'):
            artifact_name = ntpath.basename(ctx.start.source[1].fileName)
        else:
            artifact_name = 'parsed from string'
        synapse = ASTNodeFactory.create_ast_synapse(
            name=name + FrontendConfiguration.suffix,
            body=body,
            source_position=create_source_pos(ctx),
            artifact_name=artifact_name)

        # update the comments
        update_node_comments(synapse, self.__comments.visit(ctx))

        # in order to enable the logger to print correct messages set as the source the corresponding neuron
        Logger.set_current_node(synapse)
        CoCoEachSynapseBlockUniqueAndDefined.check_co_co(node=synapse)
        # now the meta_model seems to be correct, return it
        Logger.set_current_node(synapse)

        return synapse
Пример #3
0
 def visit_neuron(self, node):
     """
     Private method: Used to visit a single neuron and create the corresponding global as well as local scopes.
     :return: a single neuron.
     :rtype: ast_neuron
     """
     # set current processed neuron
     Logger.set_current_node(node)
     code, message = Messages.get_start_building_symbol_table()
     Logger.log_message(node=node,
                        code=code,
                        error_position=node.get_source_position(),
                        message=message,
                        log_level=LoggingLevel.INFO)
     scope = Scope(scope_type=ScopeType.GLOBAL,
                   source_position=node.get_source_position())
     node.update_scope(scope)
     node.get_body().update_scope(scope)
     # now first, we add all predefined elements to the scope
     variables = PredefinedVariables.get_variables()
     functions = PredefinedFunctions.get_function_symbols()
     types = PredefinedTypes.get_types()
     for symbol in variables.keys():
         node.get_scope().add_symbol(variables[symbol])
     for symbol in functions.keys():
         node.get_scope().add_symbol(functions[symbol])
     for symbol in types.keys():
         node.get_scope().add_symbol(types[symbol])
    def visit_synapse(self, node):
        """
        Private method: Used to visit a single synapse and create the corresponding global as well as local scopes.
        :return: a single synapse.
        :rtype: ast_synapse
        """
        # set current processed synapse
        # Logger.set_current_synapse(node)
        Logger.set_current_node(node)
        code, message = Messages.get_start_building_symbol_table()
        Logger.log_message(node=node, code=code, error_position=node.get_source_position(),
                           message=message, log_level=LoggingLevel.INFO)
        # before starting the work on the synapse, make everything which was implicit explicit
        # but if we have a model without an equations block, just skip this step
        scope = Scope(scope_type=ScopeType.GLOBAL, source_position=node.get_source_position())

        node.update_scope(scope)
        node.get_body().update_scope(scope)
        # now first, we add all predefined elements to the scope
        variables = PredefinedVariables.get_variables()
        functions = PredefinedFunctions.get_function_symbols()
        types = PredefinedTypes.get_types()
        for symbol in variables.keys():
            node.get_scope().add_symbol(variables[symbol])
        for symbol in functions.keys():
            node.get_scope().add_symbol(functions[symbol])
        for symbol in types.keys():
            node.get_scope().add_symbol(types[symbol])
    def endvisit_neuron(self, node):
        # before following checks occur, we need to ensure several simple properties
        CoCosManager.post_symbol_table_builder_checks(node, after_ast_rewrite=self.after_ast_rewrite_)

        # update the equations
        if node.get_equations_blocks() is not None and len(node.get_equations_blocks().get_declarations()) > 0:
            equation_block = node.get_equations_blocks()
            assign_ode_to_variables(equation_block)

        Logger.set_current_node(None)
 def test(self):
     Logger.init_logger(LoggingLevel.INFO)
     model = ModelParser.parse_model(
         os.path.join(
             os.path.realpath(
                 os.path.join(os.path.dirname(__file__), 'resources',
                              'ExpressionTypeTest.nestml'))))
     Logger.set_current_node(model.get_neuron_list()[0])
     model.accept(ExpressionTestVisitor())
     # ExpressionTestVisitor().handle(model)
     Logger.set_current_node(None)
     self.assertEqual(
         len(
             Logger.get_all_messages_of_level_and_or_node(
                 model.get_neuron_list()[0], LoggingLevel.ERROR)), 2)
Пример #7
0
    def visitSynapse(self, ctx):
        from pynestml.generated.PyNestMLLexer import PyNestMLLexer

        name = str(ctx.NAME()) if ctx.NAME() is not None else None
        body = self.visit(ctx.synapseBody()) if ctx.synapseBody() is not None else None

        # after we have constructed the meta_model of the neuron,
        # we can ensure some basic properties which should always hold
        # we have to check if each type of block is defined at most once (except for function), and that input,output
        # and update are defined once
        if hasattr(ctx.start.source[1], 'fileName'):
            artifact_name = ntpath.basename(ctx.start.source[1].fileName)
        else:
            artifact_name = 'parsed from string'
        synapse = ASTNodeFactory.create_ast_synapse(name=name + FrontendConfiguration.suffix, body=body, source_position=create_source_pos(ctx),
                                                    artifact_name=artifact_name)

        # # find the @heterogeneous/@homogeneous magic keyword
        """for parameter_block in body.get_parameter_blocks():
            for i, astDeclaration in enumerate(parameter_block.declarations):
                assert not (PyNestMLLexer.MAGIC_KEYWORD_HOMOGENEOUS in astDeclaration.get_variables() \
                    and PyNestMLLexer.MAGIC_KEYWORD_HOMOGENEOUS in astDeclaration.get_variables()), PyNestMLLexer.MAGIC_KEYWORD_HETEROGENEOUS + " and " + PyNestMLLexer.MAGIC_KEYWORD_HOMOGENEOUS + " keywords cannot be combined"
                if PyNestMLLexer.MAGIC_KEYWORD_HETEROGENEOUS in astDeclaration.get_magic_keywords():
                    assert len(astDeclaration.get_variables()) == 1, PyNestMLLexer.MAGIC_KEYWORD_HETEROGENEOUS + " keyword can only apply to a single variable"
                    # synapse.set_default_weight(astDeclaration.get_variables()[0])
                    synapse.set_parameter_heterogeneous(var=astDeclaration.get_variables()[0])
                elif PyNestMLLexer.MAGIC_KEYWORD_HOMOGENEOUS in astDeclaration.get_magic_keywords():
                    assert len(astDeclaration.get_variables()) == 1, PyNestMLLexer.MAGIC_KEYWORD_HOMOGENEOUS + " keyword can only apply to a single variable"
                    synapse.set_parameter_homogeneous(var=astDeclaration.get_variables()[0])"""

        # update the comments
        update_node_comments(synapse, self.__comments.visit(ctx))

        # in order to enable the logger to print correct messages set as the source the corresponding neuron
        Logger.set_current_node(synapse)
        CoCoEachSynapseBlockUniqueAndDefined.check_co_co(node=synapse)
        # now the meta_model seems to be correct, return it
        Logger.set_current_node(synapse)

        return synapse
 def endvisit_synapse(self, node):
     # before following checks occur, we need to ensure several simple properties
     CoCosManager.post_symbol_table_builder_checks(node)
     Logger.set_current_node(None)