max_iter=20) net = BrainNetCNN( input_shape=(90, 90), in_channels=1, num_classes=N_CLUSTERS, nb_e2e=32, nb_e2n=64, nb_n2g=30, dropout=0, leaky_alpha=0.1, twice_e2e=False, dense_sml=False) net_params = pynet.NetParameters( network=net, clustering=kmeans, data_loader=train_loader, n_batchs=10, pca_dim=6, assignment_logfile=None, use_cuda=False) model = DeepClusterClassifier( net_params, optimizer_name="SGD", learning_rate=0.001, momentum=0.9, weight_decay=10**-5, # loss=my_loss) loss_name="CrossEntropyLoss") model.board = Board(port=8097, host="http://localhost", env="deepcluster") model.add_observer("before_epoch", update_pseudo_labels) model.add_observer("after_epoch", update_board)
plt.title(y_train[idx]) manager = DataManager.from_numpy(train_inputs=x_train, train_labels=y_train, validation_inputs=x_valid, validation_labels=y_valid, test_inputs=x_test, test_labels=y_test, batch_size=128, continuous_labels=True) interfaces = pynet.get_interfaces()["graph"] net_params = pynet.NetParameters(input_shape=(90, 90), in_channels=1, num_classes=2, nb_e2e=32, nb_e2n=64, nb_n2g=30, dropout=0.5, leaky_alpha=0.1, twice_e2e=False, dense_sml=True) my_loss = pynet.get_tools()["losses"]["MSELoss"]() model = interfaces["BrainNetCNNGraph"](net_params, optimizer_name="Adam", learning_rate=0.01, weight_decay=0.0005, loss_name="MSELoss") model.board = Board(port=8097, host="http://localhost", env="main") model.add_observer("after_epoch", update_board) scheduler = lr_scheduler.ReduceLROnPlateau(optimizer=model.optimizer, mode="min", factor=0.1,
size=len(k_indices)) labels = np.ones((N_SAMPLES, 1)) * labels print("dataset: x {0} - y {1}".format(data.shape, labels.shape)) # Create data manager manager = DataManager.from_numpy(train_inputs=data, train_labels=labels, test_inputs=data, test_labels=labels, batch_size=BATCH_SIZE) # Create model net_params = pynet.NetParameters(in_order=ICO_ORDER, in_channels=2, out_channels=N_CLASSES, depth=3, start_filts=32, conv_mode="1ring", up_mode="transpose", cachedir=os.path.join(OUTDIR, "cache")) model = SphericalUNetEncoder(net_params, optimizer_name="SGD", learning_rate=0.1, momentum=0.99, weight_decay=10**-4, loss_name="CrossEntropyLoss", use_cuda=True) model.board = Board(port=8097, host="http://localhost", env="spherical_unet") model.add_observer("after_epoch", update_board) # Train model test_history, train_history = model.training(manager=manager,