Пример #1
0
def test_plot_conn_mat_nonet_mask():
    # Set example inputs
    base_dir = str(Path(__file__).parent / "examples")
    #base_dir = '/Users/rxh180012/PyNets-development/tests/examples'
    dir_path = base_dir + '/997'
    network = None
    ID = '997'
    thr = 0.95
    node_size = 2
    smooth = 2
    conn_model = 'sps'
    atlas_select = 'whole_brain_cluster_labels_PCA200'
    mask = None
    conn_matrix = np.genfromtxt(
        dir_path +
        '/whole_brain_cluster_labels_PCA200/997_Default_est_sps_0.94.txt')
    labels_file_path = dir_path + '/whole_brain_cluster_labels_PCA200/Default_func_labelnames_wb.pkl'
    labels_file = open(labels_file_path, 'rb')
    label_names = pickle.load(labels_file)

    start_time = time.time()
    plotting.plot_conn_mat_func(conn_matrix, conn_model, atlas_select,
                                dir_path, ID, network, label_names, mask, thr,
                                node_size, smooth)
    print("%s%s%s" % ('plot_conn_mat_func (Masking version) --> finished: ',
                      str(np.round(time.time() - start_time, 1)), 's'))
Пример #2
0
def plot_all(conn_matrix, conn_model, atlas_select, dir_path, ID, network,
             label_names, mask, coords, thr, node_size, edge_threshold, smooth,
             prune, uatlas_select):
    import matplotlib
    matplotlib.use('agg')
    from matplotlib import pyplot as plt
    from nilearn import plotting as niplot
    import pkg_resources
    import networkx as nx
    from pynets import plotting, thresholding
    from pynets.netstats import most_important, prune_disconnected
    try:
        import cPickle as pickle
    except ImportError:
        import _pickle as pickle

    coords = list(coords)
    label_names = list(label_names)

    dpi_resolution = 500
    if '\'b' in atlas_select:
        atlas_select = atlas_select.decode('utf-8')
    if (prune == 1 or prune == 2) and len(coords) == conn_matrix.shape[0]:
        G_pre = nx.from_numpy_matrix(conn_matrix)
        if prune == 1:
            [G, pruned_nodes] = prune_disconnected(G_pre)
        elif prune == 2:
            [G, pruned_nodes] = most_important(G_pre)
        else:
            G = G_pre
            pruned_nodes = []
        pruned_nodes.sort(reverse=True)
        print('(Display)')
        coords_pre = list(coords)
        label_names_pre = list(label_names)
        if len(pruned_nodes) > 0:
            for j in pruned_nodes:
                label_names_pre.pop(j)
                coords_pre.pop(j)
            conn_matrix = nx.to_numpy_array(G)
            label_names = label_names_pre
            coords = coords_pre
        else:
            print('No nodes to prune for plot...')

    coords = list(tuple(x) for x in coords)
    # Plot connectogram
    if len(conn_matrix) > 20:
        try:
            plotting.plot_connectogram(conn_matrix, conn_model, atlas_select,
                                       dir_path, ID, network, label_names)
        except:
            print('\n\n\nWarning: Connectogram plotting failed!')
    else:
        print(
            'Warning: Cannot plot connectogram for graphs smaller than 20 x 20!'
        )

    # Plot adj. matrix based on determined inputs
    if not node_size or node_size == 'None':
        node_size = 'parc'
    plotting.plot_conn_mat_func(conn_matrix, conn_model, atlas_select,
                                dir_path, ID, network, label_names, mask, thr,
                                node_size, smooth)

    # Plot connectome
    if mask:
        out_path_fig = "%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s" % (
            dir_path, '/', ID, '_', str(atlas_select), '_', str(conn_model),
            '_', str(os.path.basename(mask).split('.')[0]), "%s" %
            ("%s%s%s" % ('_', network, '_') if network else "_"), str(thr),
            '_', str(node_size), '%s' %
            ("mm_" if node_size != 'parc' else "_"), "%s" %
            ("%s%s" % (smooth, 'fwhm_') if float(smooth) > 0 else 'nosm_'),
            'func_glass_viz.png')
        # Save coords to pickle
        coord_path = "%s%s%s%s" % (dir_path, '/coords_',
                                   os.path.basename(mask).split('.')[0],
                                   '_plotting.pkl')
        with open(coord_path, 'wb') as f:
            pickle.dump(coords, f, protocol=2)
        # Save labels to pickle
        labels_path = "%s%s%s%s" % (dir_path, '/labelnames_',
                                    os.path.basename(mask).split('.')[0],
                                    '_plotting.pkl')
        with open(labels_path, 'wb') as f:
            pickle.dump(label_names, f, protocol=2)
    else:
        out_path_fig = "%s%s%s%s%s%s%s%s%s%s%s%s%s%s" % (
            dir_path, '/', ID, '_', str(atlas_select), '_', str(conn_model),
            "%s" % ("%s%s%s" % ('_', network, '_') if network else "_"),
            str(thr), '_', str(node_size), '%s' %
            ("mm_" if node_size != 'parc' else "_"), "%s" %
            ("%s%s" % (smooth, 'fwhm_') if float(smooth) > 0 else 'nosm_'),
            'func_glass_viz.png')
        # Save coords to pickle
        coord_path = "%s%s" % (dir_path, '/coords_plotting.pkl')
        with open(coord_path, 'wb') as f:
            pickle.dump(coords, f, protocol=2)
        # Save labels to pickle
        labels_path = "%s%s" % (dir_path, '/labelnames_plotting.pkl')
        with open(labels_path, 'wb') as f:
            pickle.dump(label_names, f, protocol=2)

    ch2better_loc = pkg_resources.resource_filename(
        "pynets", "templates/ch2better.nii.gz")
    connectome = niplot.plot_connectome(np.zeros(shape=(1, 1)), [(0, 0, 0)],
                                        node_size=0.0001,
                                        black_bg=True)
    connectome.add_overlay(ch2better_loc, alpha=0.35, cmap=plt.cm.gray)
    conn_matrix = np.array(np.array(thresholding.autofix(conn_matrix)))
    [z_min, z_max] = -np.abs(conn_matrix).max(), np.abs(conn_matrix).max()
    if node_size == 'parc':
        node_size_plot = int(2)
        if uatlas_select:
            connectome.add_contours(uatlas_select,
                                    filled=False,
                                    alpha=0.3,
                                    colors='black')
    else:
        node_size_plot = int(node_size)
    if len(coords) != conn_matrix.shape[0]:
        raise RuntimeWarning(
            'WARNING: Number of coordinates does not match conn_matrix dimensions. If you are using disparity filtering, try relaxing the α threshold.'
        )
    else:
        connectome.add_graph(conn_matrix,
                             coords,
                             edge_threshold=edge_threshold,
                             edge_cmap='Blues',
                             edge_vmax=float(z_max),
                             edge_vmin=float(z_min),
                             node_size=node_size_plot,
                             node_color='auto')
        connectome.savefig(out_path_fig, dpi=dpi_resolution)
    return
Пример #3
0
def plot_all(conn_matrix, conn_model, atlas_select, dir_path, ID, network,
             label_names, mask, coords, thr, node_size, edge_threshold):
    import matplotlib
    matplotlib.use('Agg')
    from matplotlib import pyplot as plt
    from nilearn import plotting as niplot
    import pkg_resources
    import networkx as nx
    from pynets import plotting
    from pynets.netstats import most_important
    try:
        import cPickle as pickle
    except ImportError:
        import _pickle as pickle

    pruning = True
    dpi_resolution = 500
    G_pre = nx.from_numpy_matrix(conn_matrix)
    if pruning == True:
        [G, pruned_nodes, pruned_edges] = most_important(G_pre)
    else:
        G = G_pre
    conn_matrix = nx.to_numpy_array(G)

    pruned_nodes.sort(reverse=True)
    for j in pruned_nodes:
        del label_names[label_names.index(label_names[j])]
        del coords[coords.index(coords[j])]

    pruned_edges.sort(reverse=True)
    for j in pruned_edges:
        del label_names[label_names.index(label_names[j])]
        del coords[coords.index(coords[j])]

    # Plot connectogram
    if len(conn_matrix) > 20:
        try:
            plotting.plot_connectogram(conn_matrix, conn_model, atlas_select,
                                       dir_path, ID, network, label_names)
        except RuntimeError:
            print('\n\n\nError: Connectogram plotting failed!')
    else:
        print(
            'Error: Cannot plot connectogram for graphs smaller than 20 x 20!')

    # Plot adj. matrix based on determined inputs
    plotting.plot_conn_mat_func(conn_matrix, conn_model, atlas_select,
                                dir_path, ID, network, label_names, mask, thr,
                                node_size)

    # Plot connectome
    if mask:
        if network:
            out_path_fig = "%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s" % (
                dir_path, '/', ID, '_', str(atlas_select), '_',
                str(conn_model), '_', str(
                    os.path.basename(mask).split('.')[0]), '_', str(network),
                '_', str(thr), '_', str(node_size), '_func_glass_viz.png')
        else:
            out_path_fig = "%s%s%s%s%s%s%s%s%s%s%s%s%s%s" % (
                dir_path, '/', ID, '_', str(atlas_select), '_',
                str(conn_model), '_', str(
                    os.path.basename(mask).split('.')[0]), '_', str(thr), '_',
                str(node_size), '_func_glass_viz.png')
        # Save coords to pickle
        coord_path = "%s%s%s%s" % (dir_path, '/coords_',
                                   os.path.basename(mask).split('.')[0],
                                   '_plotting.pkl')
        with open(coord_path, 'wb') as f:
            pickle.dump(coords, f, protocol=2)
        net_parcels_map_nifti = None
        # Save labels to pickle
        labels_path = "%s%s%s%s" % (dir_path, '/labelnames_',
                                    os.path.basename(mask).split('.')[0],
                                    '_plotting.pkl')
        with open(labels_path, 'wb') as f:
            pickle.dump(label_names, f, protocol=2)
    else:
        if network:
            out_path_fig = "%s%s%s%s%s%s%s%s%s%s%s%s%s%s" % (
                dir_path, '/', ID, '_', str(atlas_select), '_',
                str(conn_model), '_', str(network), '_', str(thr), '_',
                str(node_size), '_func_glass_viz.png')
        else:
            out_path_fig = "%s%s%s%s%s%s%s%s%s%s%s%s" % (
                dir_path, '/', ID, '_',
                str(atlas_select), '_', str(conn_model), '_', str(thr), '_',
                str(node_size), '_func_glass_viz.png')
        # Save coords to pickle
        coord_path = "%s%s" % (dir_path, '/coords_plotting.pkl')
        with open(coord_path, 'wb') as f:
            pickle.dump(coords, f, protocol=2)
        # Save labels to pickle
        labels_path = "%s%s" % (dir_path, '/labelnames_plotting.pkl')
        with open(labels_path, 'wb') as f:
            pickle.dump(label_names, f, protocol=2)
    #niplot.plot_connectome(conn_matrix, coords, edge_threshold=edge_threshold, node_size=20, colorbar=True, output_file=out_path_fig)
    ch2better_loc = pkg_resources.resource_filename(
        "pynets", "templates/ch2better.nii.gz")
    connectome = niplot.plot_connectome(np.zeros(shape=(1, 1)), [(0, 0, 0)],
                                        node_size=0.0001)
    connectome.add_overlay(ch2better_loc, alpha=0.4, cmap=plt.cm.gray)
    [z_min, z_max] = -np.abs(conn_matrix).max(), np.abs(conn_matrix).max()
    connectome.add_graph(conn_matrix,
                         coords,
                         edge_threshold=edge_threshold,
                         edge_cmap='Greens',
                         edge_vmax=z_max,
                         edge_vmin=z_min,
                         node_size=4)
    connectome.savefig(out_path_fig, dpi=dpi_resolution)
    #connectome.savefig(out_path_fig, dpi=dpi_resolution, facecolor ='k', edgecolor ='k')
    return