Пример #1
0
def test_apply_warp():
    import pkg_resources
    # Warp original anat to standard space using warp img (had to
    # invwarp first) and linear mats
    base_dir = os.path.abspath(
        pkg_resources.resource_filename("pynets", "../data/examples"))
    anat_dir = f"{base_dir}/003/anat"
    ref = pkg_resources.resource_filename(
        "pynets", f"templates/MNI152_T1_brain_"
        f"2mm.nii.gz")
    inp = f"{anat_dir}/sub-003_T1w.nii.gz"
    out = f"{anat_dir}/highres2standard_test_apply_warp.nii.gz"
    warp = f"{anat_dir}/highres2standard_warp.nii.gz"
    xfm = f"{anat_dir}/highres2standard.mat"

    utils.apply_warp(ref,
                     inp,
                     out,
                     warp,
                     xfm=xfm,
                     mask=None,
                     interp=None,
                     sup=False)
    # highres2standard_apply_warp = f"{anat_dir}/highres2standard_test_apply_warp.nii.gz"
    # highres2standard_apply_warp = nib.load(highres2standard_apply_warp)
    # highres2standard_apply_warp = highres2standard_apply_warp.get_data()
    #
    # highres2standard_align_nonlinear = nib.load(f"{anat_dir}/highres2standard_nonlinear.nii.gz")
    # highres2standard_align_nonlinear = highres2standard_align_nonlinear.get_data()
    # check_eq_arrays = np.allclose(highres2standard_apply_warp.astype('float32'),
    #                                  highres2standard_align_nonlinear.astype('float32'))
    # assert check_eq_arrays is True
    assert os.path.isfile(out)
Пример #2
0
def roi2t1w_align(roi, t1w_brain, mni2t1_xfm, mni2t1w_warp, roi_in_t1w,
                  template, simple):
    """
    A function to perform alignment of a roi from MNI space --> T1w.
    """
    import time
    from pynets.registration import utils as regutils
    from nilearn.image import resample_to_img

    roi_img = nib.load(roi)
    template_img = nib.load(template)

    roi_img_res = resample_to_img(roi_img,
                                  template_img,
                                  interpolation="nearest")
    roi_res = f"{roi.split('.nii')[0]}_res.nii.gz"
    nib.save(roi_img_res, roi_res)

    # Apply warp or transformer resulting from the inverse MNI->T1w created
    # earlier
    if simple is False:
        regutils.apply_warp(t1w_brain, roi_res, roi_in_t1w, warp=mni2t1w_warp)
    else:
        regutils.applyxfm(t1w_brain, roi_res, mni2t1_xfm, roi_in_t1w)

    time.sleep(0.5)

    return roi_in_t1w
Пример #3
0
def waymask2dwi_align(
    waymask,
    t1w_brain,
    ap_path,
    mni2t1w_warp,
    mni2t1_xfm,
    t1wtissue2dwi_xfm,
    waymask_in_t1w,
    waymask_in_dwi,
    B0_mask_tmp_path,
    template,
    simple,
):
    """
    A function to perform alignment of a waymask from
    MNI space --> T1w --> dwi.
    """
    import time
    from pynets.registration import utils as regutils
    from nilearn.image import resample_to_img

    # Apply warp or transformer resulting from the inverse MNI->T1w created
    # earlier
    waymask_img = nib.load(waymask)
    template_img = nib.load(template)

    waymask_img_res = resample_to_img(
        waymask_img,
        template_img,
    )
    waymask_res = f"{waymask.split('.nii')[0]}_res.nii.gz"
    nib.save(waymask_img_res, waymask_res)

    if simple is False:
        regutils.apply_warp(t1w_brain,
                            waymask_res,
                            waymask_in_t1w,
                            warp=mni2t1w_warp)
    else:
        regutils.applyxfm(t1w_brain, waymask_res, mni2t1_xfm, waymask_in_t1w)

    time.sleep(0.5)
    # Apply transform from t1w to native dwi space
    regutils.applyxfm(ap_path, waymask_in_t1w, t1wtissue2dwi_xfm,
                      waymask_in_dwi)

    time.sleep(0.5)

    waymask_in_dwi = regutils.apply_mask_to_image(waymask_in_dwi,
                                                  B0_mask_tmp_path,
                                                  waymask_in_dwi)

    return waymask_in_dwi
Пример #4
0
def atlas2t1w2dwi_align(
    uatlas,
    uatlas_parcels,
    atlas,
    t1w_brain,
    t1w_brain_mask,
    mni2t1w_warp,
    t1_aligned_mni,
    ap_path,
    mni2t1_xfm,
    t1w2dwi_xfm,
    wm_gm_int_in_dwi,
    aligned_atlas_t1mni,
    aligned_atlas_skull,
    dwi_aligned_atlas,
    dwi_aligned_atlas_wmgm_int,
    B0_mask,
    mni2dwi_xfm,
    simple,
):
    """
    A function to perform atlas alignment atlas --> T1 --> dwi.
    Tries nonlinear registration first, and if that fails, does a linear
    registration instead. For this to succeed, must first have called
    t1w2dwi_align.
    """
    import time
    from nilearn.image import resample_to_img
    from pynets.core.utils import checkConsecutive
    from pynets.registration import utils as regutils
    from nilearn.image import math_img
    from nilearn.masking import intersect_masks

    template_img = nib.load(t1_aligned_mni)
    if uatlas_parcels:
        atlas_img_orig = nib.load(uatlas_parcels)
    else:
        atlas_img_orig = nib.load(uatlas)

    old_count = len(np.unique(np.asarray(atlas_img_orig.dataobj)))

    uatlas_res_template = resample_to_img(atlas_img_orig,
                                          template_img,
                                          interpolation="nearest")

    uatlas_res_template = nib.Nifti1Image(
        np.asarray(uatlas_res_template.dataobj).astype('uint16'),
        affine=uatlas_res_template.affine,
        header=uatlas_res_template.header,
    )
    nib.save(uatlas_res_template, aligned_atlas_t1mni)

    if simple is False:
        try:
            regutils.apply_warp(
                t1w_brain,
                aligned_atlas_t1mni,
                aligned_atlas_skull,
                warp=mni2t1w_warp,
                interp="nn",
                sup=True,
                mask=t1w_brain_mask,
            )
            time.sleep(0.5)

            # Apply linear transformation from template to dwi space
            regutils.applyxfm(ap_path,
                              aligned_atlas_skull,
                              t1w2dwi_xfm,
                              dwi_aligned_atlas,
                              interp="nearestneighbour")
            time.sleep(0.5)
        except BaseException:
            print(
                "Warning: Atlas is not in correct dimensions, or input is low"
                " quality,\nusing linear template registration.")

            regutils.applyxfm(t1w_brain,
                              aligned_atlas_t1mni,
                              mni2t1_xfm,
                              aligned_atlas_skull,
                              interp="nearestneighbour")
            time.sleep(0.5)
            combine_xfms(mni2t1_xfm, t1w2dwi_xfm, mni2dwi_xfm)
            time.sleep(0.5)
            regutils.applyxfm(ap_path,
                              aligned_atlas_t1mni,
                              mni2dwi_xfm,
                              dwi_aligned_atlas,
                              interp="nearestneighbour")
            time.sleep(0.5)
    else:
        regutils.applyxfm(t1w_brain,
                          aligned_atlas_t1mni,
                          mni2t1_xfm,
                          aligned_atlas_skull,
                          interp="nearestneighbour")
        time.sleep(0.5)
        combine_xfms(mni2t1_xfm, t1w2dwi_xfm, mni2dwi_xfm)
        time.sleep(0.5)
        regutils.applyxfm(ap_path,
                          aligned_atlas_t1mni,
                          mni2dwi_xfm,
                          dwi_aligned_atlas,
                          interp="nearestneighbour")
        time.sleep(0.5)

    atlas_img = nib.load(dwi_aligned_atlas)
    wm_gm_img = nib.load(wm_gm_int_in_dwi)
    wm_gm_mask_img = math_img("img > 0", img=wm_gm_img)
    atlas_mask_img = math_img("img > 0", img=atlas_img)

    atlas_img_corr = nib.Nifti1Image(
        np.asarray(atlas_img.dataobj).astype('uint16'),
        affine=atlas_img.affine,
        header=atlas_img.header,
    )

    # Get the union of masks
    dwi_aligned_atlas_wmgm_int_img = intersect_masks(
        [wm_gm_mask_img, atlas_mask_img], threshold=0, connected=False)

    nib.save(atlas_img_corr, dwi_aligned_atlas)
    nib.save(dwi_aligned_atlas_wmgm_int_img, dwi_aligned_atlas_wmgm_int)

    dwi_aligned_atlas = regutils.apply_mask_to_image(dwi_aligned_atlas,
                                                     B0_mask,
                                                     dwi_aligned_atlas)

    time.sleep(0.5)

    dwi_aligned_atlas_wmgm_int = regutils.apply_mask_to_image(
        dwi_aligned_atlas_wmgm_int, B0_mask, dwi_aligned_atlas_wmgm_int)

    time.sleep(0.5)
    final_dat = atlas_img_corr.get_fdata()
    unique_a = sorted(set(np.array(final_dat.flatten().tolist())))

    if not checkConsecutive(unique_a):
        print("Warning! Non-consecutive integers found in parcellation...")

    new_count = len(unique_a)
    diff = np.abs(np.int(float(new_count) - float(old_count)))
    print(f"Previous label count: {old_count}")
    print(f"New label count: {new_count}")
    print(f"Labels dropped: {diff}")

    atlas_img.uncache()
    atlas_img_corr.uncache()
    atlas_img_orig.uncache()
    atlas_mask_img.uncache()
    wm_gm_img.uncache()
    wm_gm_mask_img.uncache()

    return dwi_aligned_atlas_wmgm_int, dwi_aligned_atlas, aligned_atlas_skull
Пример #5
0
def atlas2t1w_align(uatlas,
                    uatlas_parcels,
                    atlas,
                    t1w_brain,
                    t1w_brain_mask,
                    t1_aligned_mni,
                    mni2t1w_warp,
                    mni2t1_xfm,
                    gm_mask,
                    aligned_atlas_t1mni,
                    aligned_atlas_skull,
                    aligned_atlas_gm,
                    simple,
                    gm_fail_tol=5):
    """
    A function to perform atlas alignment from atlas --> T1w.
    """
    import time
    from pynets.registration import utils as regutils
    from nilearn.image import resample_to_img
    # from pynets.core.utils import checkConsecutive

    template_img = nib.load(t1_aligned_mni)
    if uatlas_parcels:
        atlas_img_orig = nib.load(uatlas_parcels)
    else:
        atlas_img_orig = nib.load(uatlas)

    # old_count = len(np.unique(np.asarray(atlas_img_orig.dataobj)))

    uatlas_res_template = resample_to_img(atlas_img_orig,
                                          template_img,
                                          interpolation="nearest")

    uatlas_res_template = nib.Nifti1Image(
        np.asarray(uatlas_res_template.dataobj).astype('uint16'),
        affine=uatlas_res_template.affine,
        header=uatlas_res_template.header,
    )
    nib.save(uatlas_res_template, aligned_atlas_t1mni)

    if simple is False:
        try:
            regutils.apply_warp(
                t1w_brain,
                aligned_atlas_t1mni,
                aligned_atlas_skull,
                warp=mni2t1w_warp,
                interp="nn",
                sup=True,
                mask=t1w_brain_mask,
            )
            time.sleep(0.5)
        except BaseException:
            print(
                "Warning: Atlas is not in correct dimensions, or input is low "
                "quality,\nusing linear template registration.")

            regutils.applyxfm(t1w_brain,
                              aligned_atlas_t1mni,
                              mni2t1_xfm,
                              aligned_atlas_skull,
                              interp="nearestneighbour")
            time.sleep(0.5)
    else:
        regutils.applyxfm(t1w_brain,
                          aligned_atlas_t1mni,
                          mni2t1_xfm,
                          aligned_atlas_skull,
                          interp="nearestneighbour")
        time.sleep(0.5)

    # aligned_atlas_gm = regutils.apply_mask_to_image(aligned_atlas_skull,
    #                                                 gm_mask,
    #                                                 aligned_atlas_gm)
    aligned_atlas_gm = regutils.apply_mask_to_image(aligned_atlas_skull,
                                                    t1w_brain_mask,
                                                    aligned_atlas_gm)

    time.sleep(0.5)
    atlas_img = nib.load(aligned_atlas_gm)

    atlas_img_corr = nib.Nifti1Image(
        np.asarray(atlas_img.dataobj).astype('uint16'),
        affine=atlas_img.affine,
        header=atlas_img.header,
    )
    nib.save(atlas_img_corr, aligned_atlas_gm)
    # final_dat = atlas_img_corr.get_fdata()
    # unique_a = sorted(set(np.array(final_dat.flatten().tolist())))
    #
    # if not checkConsecutive(unique_a):
    #     print("\nWarning! non-consecutive integers found in parcellation...")
    # new_count = len(unique_a)
    # diff = np.abs(np.int(float(new_count) - float(old_count)))
    # print(f"Previous label count: {old_count}")
    # print(f"New label count: {new_count}")
    # print(f"Labels dropped: {diff}")
    # if diff > gm_fail_tol:
    #     print(f"Grey-Matter mask too restrictive >{str(gm_fail_tol)} for this "
    #           f"parcellation. Falling back to the T1w mask...")
    #     aligned_atlas_gm = regutils.apply_mask_to_image(aligned_atlas_skull,
    #                                                     t1w_brain_mask,
    #                                                     aligned_atlas_gm)
    #     time.sleep(5)
    template_img.uncache()
    atlas_img_orig.uncache()
    atlas_img.uncache()
    atlas_img_corr.uncache()

    return aligned_atlas_gm, aligned_atlas_skull
Пример #6
0
def RegisterParcellation2MNIFunc_align(uatlas, template, template_mask,
                                       t1w_brain, t1w2mni_xfm,
                                       aligned_atlas_t1w, aligned_atlas_mni,
                                       t1w2mni_warp, simple):
    """
    A function to perform atlas alignment from T1w atlas --> MNI.
    """
    import time
    from pynets.registration import utils as regutils
    from nilearn.image import resample_to_img

    atlas_img = nib.load(uatlas)
    t1w_brain_img = nib.load(t1w_brain)

    uatlas_res_template = resample_to_img(atlas_img,
                                          t1w_brain_img,
                                          interpolation="nearest")

    uatlas_res_template = nib.Nifti1Image(
        np.asarray(uatlas_res_template.dataobj).astype('uint16'),
        affine=uatlas_res_template.affine,
        header=uatlas_res_template.header,
    )
    nib.save(uatlas_res_template, aligned_atlas_t1w)

    if simple is False:
        try:
            regutils.apply_warp(
                template,
                aligned_atlas_t1w,
                aligned_atlas_mni,
                warp=t1w2mni_warp,
                interp="nn",
                sup=True,
            )
            time.sleep(0.5)
        except BaseException:
            print("Warning: Atlas is not in correct dimensions, or input is "
                  "low quality,\nusing linear template registration.")

            regutils.align(
                aligned_atlas_t1w,
                template,
                init=t1w2mni_xfm,
                out=aligned_atlas_mni,
                dof=6,
                searchrad=True,
                interp="nearestneighbour",
                cost="mutualinfo",
            )
            time.sleep(0.5)
    else:
        regutils.align(
            aligned_atlas_t1w,
            template,
            init=t1w2mni_xfm,
            out=aligned_atlas_mni,
            dof=6,
            searchrad=True,
            interp="nearestneighbour",
            cost="mutualinfo",
        )
        time.sleep(0.5)
    return aligned_atlas_mni
Пример #7
0
    def tissue2dwi_align(self):
        """
        A function to perform alignment of ventricle ROI's from MNI
        space --> dwi and CSF from T1w space --> dwi. First generates and
        performs dwi space alignment of avoidance/waypoint masks for
        tractography. First creates ventricle ROI. Then creates transforms
        from stock MNI template to dwi space. For this to succeed, must first
        have called both t1w2dwi_align.
        """
        import sys
        import time
        import os.path as op
        import pkg_resources
        from pynets.core.utils import load_runconfig
        from nilearn.image import resample_to_img
        from nipype.utils.filemanip import fname_presuffix, copyfile
        from pynets.core.nodemaker import three_to_four_parcellation
        from nilearn.image import math_img, index_img

        hardcoded_params = load_runconfig()
        tiss_class = hardcoded_params['tracking']["tissue_classifier"][0]

        fa_template_path = pkg_resources.resource_filename(
            "pynets", f"templates/standard/FA_{self.vox_size}.nii.gz")

        if sys.platform.startswith('win') is False:
            try:
                fa_template_img = nib.load(fa_template_path)
            except indexed_gzip.ZranError as e:
                print(
                    e, f"\nCannot load FA template. Do you have git-lfs "
                    f"installed?")
        else:
            try:
                fa_template_img = nib.load(fa_template_path)
            except ImportError as e:
                print(e, f"\nCannot load FA template. Do you have git-lfs ")

        mni_template_img = nib.load(self.input_mni_brain)

        if not np.allclose(fa_template_img.affine, mni_template_img.affine) \
            or not \
            np.allclose(fa_template_img.shape, mni_template_img.shape):
            fa_template_img_res = resample_to_img(fa_template_img,
                                                  mni_template_img)
            nib.save(fa_template_img_res, self.fa_template_res)
        else:
            self.fa_template_res = fname_presuffix(fa_template_path,
                                                   suffix="_tmp",
                                                   newpath=op.dirname(
                                                       self.reg_path_img))
            copyfile(fa_template_path,
                     self.fa_template_res,
                     copy=True,
                     use_hardlink=False)

        # Register Lateral Ventricles and Corpus Callosum rois to t1w
        resample_to_img(nib.load(self.mni_atlas),
                        nib.load(self.input_mni_brain),
                        interpolation='nearest').to_filename(self.mni_roi_ref)

        roi_parcels = three_to_four_parcellation(self.mni_roi_ref)

        ventricle_roi = math_img("img1 + img2",
                                 img1=index_img(roi_parcels, 2),
                                 img2=index_img(roi_parcels, 13))

        self.mni_vent_loc = fname_presuffix(self.mni_vent_loc,
                                            suffix="_tmp",
                                            newpath=op.dirname(
                                                self.reg_path_img))
        ventricle_roi.to_filename(self.mni_vent_loc)
        del roi_parcels, ventricle_roi

        # Create transform from the HarvardOxford atlas in MNI to T1w.
        # This will be used to transform the ventricles to dwi space.
        regutils.align(
            self.mni_roi_ref,
            self.input_mni_brain,
            xfm=self.xfm_roi2mni_init,
            init=None,
            bins=None,
            dof=6,
            cost="mutualinfo",
            searchrad=True,
            interp="spline",
            out=None,
        )

        # Create transform to align roi to mni and T1w using flirt
        regutils.applyxfm(
            self.input_mni_brain,
            self.mni_vent_loc,
            self.xfm_roi2mni_init,
            self.vent_mask_mni,
        )
        time.sleep(0.5)
        if self.simple is False:
            # Apply warp resulting from the inverse MNI->T1w created earlier
            regutils.apply_warp(
                self.t1w_brain,
                self.vent_mask_mni,
                self.vent_mask_t1w,
                warp=self.mni2t1w_warp,
                interp="nn",
                sup=True,
            )
            time.sleep(0.5)

            if sys.platform.startswith('win') is False:
                try:
                    nib.load(self.corpuscallosum)
                except indexed_gzip.ZranError as e:
                    print(
                        e, f"\nCannot load Corpus Callosum ROI. "
                        f"Do you have git-lfs installed?")
            else:
                try:
                    nib.load(self.corpuscallosum)
                except ImportError as e:
                    print(
                        e, f"\nCannot load Corpus Callosum ROI. "
                        f"Do you have git-lfs installed?")

            regutils.apply_warp(
                self.t1w_brain,
                self.corpuscallosum,
                self.corpuscallosum_mask_t1w,
                warp=self.mni2t1w_warp,
                interp="nn",
                sup=True,
            )
        else:
            regutils.applyxfm(self.vent_mask_mni, self.t1w_brain,
                              self.mni2t1_xfm, self.vent_mask_t1w)
            time.sleep(0.5)
            regutils.applyxfm(
                self.corpuscallosum,
                self.t1w_brain,
                self.mni2t1_xfm,
                self.corpuscallosum_mask_t1w,
            )
            time.sleep(0.5)

        # Applyxfm to map FA template image to T1w space
        regutils.applyxfm(self.t1w_brain, self.fa_template_res,
                          self.mni2t1_xfm, self.fa_template_t1w)
        time.sleep(0.5)

        # Applyxfm tissue maps to dwi space
        if self.t1w_brain_mask is not None:
            regutils.applyxfm(
                self.ap_path,
                self.t1w_brain_mask,
                self.t1wtissue2dwi_xfm,
                self.t1w_brain_mask_in_dwi,
            )
            time.sleep(0.5)
        regutils.applyxfm(self.ap_path, self.vent_mask_t1w,
                          self.t1wtissue2dwi_xfm, self.vent_mask_dwi)
        time.sleep(0.5)
        regutils.applyxfm(self.ap_path, self.csf_mask, self.t1wtissue2dwi_xfm,
                          self.csf_mask_dwi)
        time.sleep(0.5)
        regutils.applyxfm(self.ap_path, self.gm_mask, self.t1wtissue2dwi_xfm,
                          self.gm_in_dwi)
        time.sleep(0.5)
        regutils.applyxfm(self.ap_path, self.wm_mask, self.t1wtissue2dwi_xfm,
                          self.wm_in_dwi)
        time.sleep(0.5)

        regutils.applyxfm(
            self.ap_path,
            self.corpuscallosum_mask_t1w,
            self.t1wtissue2dwi_xfm,
            self.corpuscallosum_dwi,
        )
        time.sleep(0.5)

        csf_thr = 0.95
        wm_thr = 0.05
        gm_thr = 0.05

        # Threshold WM to binary in dwi space
        nib.save(math_img(f"img > {wm_thr}", img=nib.load(self.wm_in_dwi)),
                 self.wm_in_dwi_bin)

        # Threshold GM to binary in dwi space
        nib.save(math_img(f"img > {gm_thr}", img=nib.load(self.gm_in_dwi)),
                 self.gm_in_dwi_bin)

        # Threshold CSF to binary in dwi space
        nib.save(math_img(f"img > {csf_thr}", img=nib.load(self.csf_mask_dwi)),
                 self.csf_mask_dwi_bin)

        # Threshold WM to binary in dwi space
        self.wm_in_dwi = regutils.apply_mask_to_image(self.wm_in_dwi,
                                                      self.wm_in_dwi_bin,
                                                      self.wm_in_dwi)

        # Threshold GM to binary in dwi space
        self.gm_in_dwi = regutils.apply_mask_to_image(self.gm_in_dwi,
                                                      self.gm_in_dwi_bin,
                                                      self.gm_in_dwi)

        # Threshold CSF to binary in dwi space
        self.csf_mask = regutils.apply_mask_to_image(self.csf_mask_dwi,
                                                     self.csf_mask_dwi_bin,
                                                     self.csf_mask_dwi)

        # Create ventricular CSF mask
        print("Creating Ventricular CSF mask...")
        math_img("(img1 + img2) > 0.0001",
                 img1=nib.load(self.csf_mask_dwi),
                 img2=nib.load(self.vent_mask_dwi)).to_filename(
                     self.vent_csf_in_dwi)

        print("Creating Corpus Callosum mask...")
        math_img("(img1*img2 - img3) > 0.0001",
                 img1=nib.load(self.corpuscallosum_dwi),
                 img2=nib.load(self.wm_in_dwi_bin),
                 img3=nib.load(self.vent_csf_in_dwi)).to_filename(
                     self.corpuscallosum_dwi)

        # Create GM-WM interface image
        math_img("((img1*img2 + img3)*img4) > 0.0001",
                 img1=nib.load(self.gm_in_dwi_bin),
                 img2=nib.load(self.wm_in_dwi_bin),
                 img3=nib.load(self.corpuscallosum_dwi),
                 img4=nib.load(self.B0_mask)).to_filename(
                     self.wm_gm_int_in_dwi)

        return
Пример #8
0
    def tissue2dwi_align(self):
        """
        A function to perform alignment of ventricle ROI's from MNI
        space --> dwi and CSF from T1w space --> dwi. First generates and
        performs dwi space alignment of avoidance/waypoint masks for
        tractography. First creates ventricle ROI. Then creates transforms
        from stock MNI template to dwi space. For this to succeed, must first
        have called both t1w2dwi_align.
        """
        import sys
        import time
        import os.path as op
        import pkg_resources
        from pynets.core.utils import load_runconfig
        from nilearn.image import resample_to_img

        hardcoded_params = load_runconfig()
        tiss_class = hardcoded_params['tracking']["tissue_classifier"][0]

        fa_template_path = pkg_resources.resource_filename(
            "pynets", f"templates/FA_{self.vox_size}.nii.gz")

        if sys.platform.startswith('win') is False:
            try:
                fa_template_img = nib.load(fa_template_path)
            except indexed_gzip.ZranError as e:
                print(
                    e, f"\nCannot load FA template. Do you have git-lfs "
                    f"installed?")
        else:
            try:
                fa_template_img = nib.load(fa_template_path)
            except ImportError as e:
                print(e, f"\nCannot load FA template. Do you have git-lfs ")

        mni_template_img = nib.load(self.input_mni_brain)
        fa_template_img_res = resample_to_img(fa_template_img,
                                              mni_template_img)

        nib.save(fa_template_img_res, self.fa_template_res)

        # Register Lateral Ventricles and Corpus Callosum rois to t1w
        if not op.isfile(self.mni_atlas):
            raise FileNotFoundError("FSL atlas for ventricle reference not"
                                    " found!")

        # Create transform to MNI atlas to T1w using flirt. This will be use to
        # transform the ventricles to dwi space.
        regutils.align(
            self.mni_atlas,
            self.input_mni_brain,
            xfm=self.xfm_roi2mni_init,
            init=None,
            bins=None,
            dof=6,
            cost="mutualinfo",
            searchrad=True,
            interp="spline",
            out=None,
        )
        time.sleep(0.5)

        if sys.platform.startswith('win') is False:
            try:
                nib.load(self.mni_vent_loc)
            except indexed_gzip.ZranError as e:
                print(
                    e, f"\nCannot load ventricle ROI. Do you have git-lfs "
                    f"installed?")
        else:
            try:
                nib.load(self.mni_vent_loc)
            except ImportError as e:
                print(
                    e, f"\nCannot load ventricle ROI. Do you have git-lfs "
                    f"installed?")

        # Create transform to align roi to mni and T1w using flirt
        regutils.applyxfm(
            self.input_mni_brain,
            self.mni_vent_loc,
            self.xfm_roi2mni_init,
            self.vent_mask_mni,
        )
        time.sleep(0.5)
        if self.simple is False:
            # Apply warp resulting from the inverse MNI->T1w created earlier
            regutils.apply_warp(
                self.t1w_brain,
                self.vent_mask_mni,
                self.vent_mask_t1w,
                warp=self.mni2t1w_warp,
                interp="nn",
                sup=True,
            )
            time.sleep(0.5)

            if sys.platform.startswith('win') is False:
                try:
                    nib.load(self.corpuscallosum)
                except indexed_gzip.ZranError as e:
                    print(
                        e, f"\nCannot load Corpus Callosum ROI. "
                        f"Do you have git-lfs installed?")
            else:
                try:
                    nib.load(self.corpuscallosum)
                except ImportError as e:
                    print(
                        e, f"\nCannot load Corpus Callosum ROI. "
                        f"Do you have git-lfs installed?")

            regutils.apply_warp(
                self.t1w_brain,
                self.corpuscallosum,
                self.corpuscallosum_mask_t1w,
                warp=self.mni2t1w_warp,
                interp="nn",
                sup=True,
            )
        else:
            regutils.applyxfm(self.vent_mask_mni, self.t1w_brain,
                              self.mni2t1_xfm, self.vent_mask_t1w)
            time.sleep(0.5)
            regutils.applyxfm(
                self.corpuscallosum,
                self.t1w_brain,
                self.mni2t1_xfm,
                self.corpuscallosum_mask_t1w,
            )
            time.sleep(0.5)

        # Applyxfm to map FA template image to T1w space
        regutils.applyxfm(self.t1w_brain, self.fa_template_res,
                          self.mni2t1_xfm, self.fa_template_t1w)
        time.sleep(0.5)

        # Applyxfm tissue maps to dwi space
        if self.t1w_brain_mask is not None:
            regutils.applyxfm(
                self.ap_path,
                self.t1w_brain_mask,
                self.t1wtissue2dwi_xfm,
                self.t1w_brain_mask_in_dwi,
            )
            time.sleep(0.5)
        regutils.applyxfm(self.ap_path, self.vent_mask_t1w,
                          self.t1wtissue2dwi_xfm, self.vent_mask_dwi)
        time.sleep(0.5)
        regutils.applyxfm(self.ap_path, self.csf_mask, self.t1wtissue2dwi_xfm,
                          self.csf_mask_dwi)
        time.sleep(0.5)
        regutils.applyxfm(self.ap_path, self.gm_mask, self.t1wtissue2dwi_xfm,
                          self.gm_in_dwi)
        time.sleep(0.5)
        regutils.applyxfm(self.ap_path, self.wm_mask, self.t1wtissue2dwi_xfm,
                          self.wm_in_dwi)
        time.sleep(0.5)

        regutils.applyxfm(
            self.ap_path,
            self.corpuscallosum_mask_t1w,
            self.t1wtissue2dwi_xfm,
            self.corpuscallosum_dwi,
        )
        time.sleep(0.5)

        if tiss_class == 'wb' or tiss_class == 'cmc':
            csf_thr = 0.50
            wm_thr = 0.15
            gm_thr = 0.10
        else:
            csf_thr = 0.99
            wm_thr = 0.10
            gm_thr = 0.075

        # Threshold WM to binary in dwi space
        thr_img = nib.load(self.wm_in_dwi)
        thr_img = math_img(f"img > {wm_thr}", img=thr_img)
        nib.save(thr_img, self.wm_in_dwi_bin)

        # Threshold GM to binary in dwi space
        thr_img = nib.load(self.gm_in_dwi)
        thr_img = math_img(f"img > {gm_thr}", img=thr_img)
        nib.save(thr_img, self.gm_in_dwi_bin)

        # Threshold CSF to binary in dwi space
        thr_img = nib.load(self.csf_mask_dwi)
        thr_img = math_img(f"img > {csf_thr}", img=thr_img)
        nib.save(thr_img, self.csf_mask_dwi_bin)

        # Threshold WM to binary in dwi space
        self.wm_in_dwi = regutils.apply_mask_to_image(self.wm_in_dwi,
                                                      self.wm_in_dwi_bin,
                                                      self.wm_in_dwi)
        time.sleep(0.5)
        # Threshold GM to binary in dwi space
        self.gm_in_dwi = regutils.apply_mask_to_image(self.gm_in_dwi,
                                                      self.gm_in_dwi_bin,
                                                      self.gm_in_dwi)
        time.sleep(0.5)
        # Threshold CSF to binary in dwi space
        self.csf_mask = regutils.apply_mask_to_image(self.csf_mask_dwi,
                                                     self.csf_mask_dwi_bin,
                                                     self.csf_mask_dwi)
        time.sleep(0.5)
        # Create ventricular CSF mask
        print("Creating Ventricular CSF mask...")
        os.system(f"fslmaths {self.vent_mask_dwi} -kernel sphere 10 -ero "
                  f"-bin {self.vent_mask_dwi}")
        time.sleep(1)
        os.system(f"fslmaths {self.csf_mask_dwi} -add {self.vent_mask_dwi} "
                  f"-bin {self.vent_csf_in_dwi}")
        time.sleep(1)
        print("Creating Corpus Callosum mask...")
        os.system(
            f"fslmaths {self.corpuscallosum_dwi} -mas {self.wm_in_dwi_bin} "
            f"-sub {self.vent_csf_in_dwi} "
            f"-bin {self.corpuscallosum_dwi}")
        time.sleep(1)
        # Create gm-wm interface image
        os.system(f"fslmaths {self.gm_in_dwi_bin} -mul {self.wm_in_dwi_bin} "
                  f"-add {self.corpuscallosum_dwi} "
                  f"-mas {self.B0_mask} -bin {self.wm_gm_int_in_dwi}")
        time.sleep(1)
        return