Пример #1
0
 def test_one_step_min_max(self):
     step = 10
     rsl = np.random.rand(TestRainEstimation.n_samples)
     time = np.linspace(0, TestRainEstimation.n_samples - 1,
                        TestRainEstimation.n_samples).astype('int')
     rain = np.zeros(TestRainEstimation.n_samples)
     l = pnc.Link(rsl, rain, time, pnc.MetaData(0, 2, 3, 4, 5))
     l_min_max = l.create_min_max_link(5)
     model = pnc.rain_estimation.one_step_dynamic_baseline(
         pnc.power_law.PowerLawType.MAX, 0.3, 6)
     res = model(l_min_max.attenuation(), pnc.MetaData(15, 0, 18, 10, 12))
Пример #2
0
    def test_handle_excpetion(self):
        att = torch.ones(100)

        with self.assertRaises(Exception) as context:
            swd = pnc.rain_estimation.two_step_constant_baseline(pnc.power_law.PowerLawType.MAX, 0.3, 6, 0.5)
            res, wd = swd(att, pnc.MetaData(15, 0, 18, 10, 12))
        self.assertTrue(
            'The input attenuation vector dont match min max format or regular format' == str(context.exception))
Пример #3
0
    def test_two_step_constant(self):
        att = torch.ones(10, 100)
        swd = pnc.rain_estimation.two_step_constant_baseline(
            pnc.power_law.PowerLawType.MAX, 0.3, 6, 0.5)

        res, wd = swd(att, pnc.MetaData(15, 0, 18, 10, 12))
        self.assertTrue(res.shape[0] == 10)
        self.assertTrue(res.shape[1] == 100)
        self.assertTrue(res.numpy().sum() == 0)
Пример #4
0
    def test_one_step_dynamic(self):
        att = torch.ones(10, 100)
        model = pnc.rain_estimation.one_step_dynamic_baseline(
            pnc.power_law.PowerLawType.MAX, 0.3, 6)

        res = model(att, pnc.MetaData(15, 0, 18, 10, 12))
        self.assertTrue(res.shape[0] == 10)
        self.assertTrue(res.shape[1] == 100)
        self.assertTrue(res.numpy().sum() == 0)
Пример #5
0
 def test_one_step_network(self):
     att = torch.ones(1, 100, 4)
     swd = pnc.rain_estimation.one_step_network(
         1, pnc.neural_networks.RNNType.GRU)
     res, state = swd(att,
                      pnc.MetaData(15, 0, 18, 10, 12).as_tensor(),
                      swd.init_state(batch_size=1))
     self.assertTrue(res.shape[0] == 1)
     self.assertTrue(res.shape[1] == 100)
     self.assertTrue(state.shape[-1] == pnc.neural_networks.RNN_FEATURES)
Пример #6
0
 def test_wet_dry_network(self):
     att = torch.ones(1, 100, 4)
     swd = pnc.wet_dry.wet_dry_network(1, pnc.neural_networks.RNNType.LSTM)
     res, state = swd(att,
                      pnc.MetaData(15, 0, 18, 10, 12).as_tensor(),
                      swd.init_state(batch_size=1))
     self.assertTrue(res.shape[0] == 1)
     self.assertTrue(res.shape[1] == 100)
     self.assertTrue(state[0].shape[-1] == pnc.neural_networks.RNN_FEATURES)
     self.assertTrue(state[1].shape[-1] == pnc.neural_networks.RNN_FEATURES)
Пример #7
0
 def test_link_with_tsl(self):
     rsl = np.random.rand(TestDataStructure.n_samples)
     tsl = np.random.rand(TestDataStructure.n_samples)
     time = np.linspace(0, TestDataStructure.n_samples - 1, TestDataStructure.n_samples).astype('int')
     rain = np.zeros(TestDataStructure.n_samples)
     l = pnc.Link(rsl, rain, time, pnc.MetaData(0, 2, 3, 4, 5), link_tsl=tsl)
     self.assertTrue(l.start_time().astype('int') == 0)
     self.assertTrue(l.stop_time().astype('int') == 99)
     self.assertTrue(l.delta_time().astype('int') == 99)
     self.assertTrue(l.has_tsl())
     self.assertTrue(np.array_equal(l.time(), time.astype('datetime64[s]')))
     self.assertEqual(len(l.time()), TestDataStructure.n_samples)
     att = l.attenuation().numpy().flatten()
     self.assertTrue(np.round(np.sum(att + tsl - rsl) * 100) == 0)
     l_min_max = l.create_min_max_link(10)
     self.assertTrue(len(l_min_max) == 10)
     self.assertEqual(len(l_min_max.attenuation().shape), 2)
Пример #8
0
    def test_min_max_link_generation(self):
        step = 10
        rsl = np.random.rand(TestDataStructure.n_samples)
        time = np.linspace(0, TestDataStructure.n_samples - 1, TestDataStructure.n_samples).astype('int')
        rain = np.zeros(TestDataStructure.n_samples)
        l = pnc.Link(rsl, rain, time, pnc.MetaData(0, 2, 3, 4, 5))
        res = l.create_min_max_link(step)
        self.assertEqual(l.stop_time(), res.stop_time() + step)
        self.assertEqual(l.start_time(), res.start_time())
        res.plot()
        att = res.attenuation()
        self.assertEqual(len(att.shape), 2)
        self.assertEqual(att.shape[0], 2)
        t = res.as_tensor(5)

        self.assertEqual(len(t.shape), 2)
        self.assertEqual(t.shape[1], 4)
Пример #9
0
    def test_link(self):
        rsl = np.random.rand(TestDataStructure.n_samples)
        time = np.linspace(0, TestDataStructure.n_samples - 1, TestDataStructure.n_samples).astype('int')
        rain = np.zeros(TestDataStructure.n_samples)
        l = pnc.Link(rsl, rain, time, pnc.MetaData(0, 2, 3, 4, 5))
        l.plot()
        self.assertEqual(l.meta_data.as_tensor().shape[1], 5)
        self.assertEqual(l.meta_data.as_tensor().shape[0], 1)
        self.assertEqual(len(l.rain()), TestDataStructure.n_samples)
        self.assertEqual(len(l.cumulative_rain()), TestDataStructure.n_samples)
        self.assertEqual(l.step(), np.diff(time).min() / 3600)

        self.assertTrue(l.start_time().astype('int') == 0)
        self.assertTrue(l.stop_time().astype('int') == 99)
        self.assertTrue(l.delta_time().astype('int') == 99)
        self.assertTrue(not l.has_tsl())
        self.assertTrue(np.array_equal(l.time(), time.astype('datetime64[s]')))
        self.assertEqual(len(l.time()), TestDataStructure.n_samples)
        att = l.attenuation().numpy().flatten()
        self.assertTrue(np.round(np.sum(att + rsl) * 100) == 0)
        l_min_max = l.create_min_max_link(10)
        self.assertTrue(len(l_min_max) == 10)