def fit(self, X, **kwargs): self._classes = 2 X = self.normalizer.fit_transform(X) self.detector_.fit(X) self.decision_scores_ = invert_order( self.detector_.decision_function(X)) self._process_decision_scores()
def decision_function(self, X): """Predict raw anomaly scores of X using the fitted detector. After invert_order(): the higher score, the more probability of x that is predicted as abnormal Parameters ---------- X : numpy array of shape (n_samples, n_features) The input samples. Sparse matrices are accepted only if they are supported by the base estimator. Returns ------- anomaly_scores : numpy array of shape (n_samples,) The anomaly score of the input samples. """ # check_is_fitted(self, ['decision_scores_', 'threshold_', 'labels_']) return invert_order(self.model_.score_samples(X))
def decision_function(self, X): """Predict raw anomaly score of X using the fitted detector. The anomaly score of an input sample is computed based on different detector algorithms. For consistency, outliers are assigned with larger anomaly scores. Parameters ---------- X : numpy array of shape (n_samples, n_features) The training input samples. Sparse matrices are accepted only if they are supported by the base estimator. Returns ------- anomaly_scores : numpy array of shape (n_samples,) The anomaly score of the input samples. """ # invert outlier scores. Outliers comes with higher outlier scores return invert_order(self.model_.decision_function(X))
def decision_function(self, X): """Predict raw anomaly scores of X using the fitted detector. The anomaly score of an input sample is computed based on the fitted detector. For consistency, outliers are assigned with larger anomaly scores. so use invert_order After invert_order(): the higher score, the more probability of x that is predicted as abnormal Parameters ---------- X : numpy array of shape (n_samples, n_features) The input samples. Sparse matrices are accepted only if they are supported by the base estimator. Returns ------- anomaly_scores : numpy array of shape (n_samples,) The anomaly score of the input samples. """ # check_is_fitted(self, ['decision_scores_', 'threshold_', 'labels_']) return invert_order(logsumexp(self.model_._estimate_weighted_log_prob(X), axis=1))