Пример #1
0
 def evaluate_hessian_equality_constraints(self):
     c = self._input_values[1]
     F = self._input_values[2]
     irow = np.asarray([2, 2], dtype=np.int64)
     jcol = np.asarray([1, 2], dtype=np.int64)
     nonzeros = self._eq_con_mult_values[0]*np.asarray([8*F, 8*c], dtype=np.float64)
     hess = spa.coo_matrix((nonzeros, (irow, jcol)), shape=(4,4))
     return hess
Пример #2
0
 def evaluate_jacobian_outputs(self):
     c = self._input_values[1]
     F = self._input_values[2]
     irow = np.asarray([0, 0, 0], dtype=np.int64)
     jcol = np.asarray([0, 1, 2], dtype=np.int64)
     nonzeros = np.asarray([1, -4 * F**2, -4 * c * 2 * F], dtype=np.float64)
     jac = spa.coo_matrix((nonzeros, (irow, jcol)), shape=(1, 3))
     return jac
Пример #3
0
 def evaluate_jacobian_equality_constraints(self):
     c = self._input_values[1]
     F = self._input_values[2]
     irow = np.asarray([0, 0, 0, 0, 1, 1, 1, 1], dtype=np.int64)
     jcol = np.asarray([0, 1, 2, 3, 1, 2, 3, 4], dtype=np.int64)
     nonzeros = np.asarray([-1, F**2, 2*c*F, 1, 2*F**2, 4*c*F, -1, 1], dtype=np.float64)
     jac = spa.coo_matrix((nonzeros, (irow, jcol)), shape=(2,5))
     return jac
Пример #4
0
 def evaluate_hessian_outputs(self):
     c = self._input_values[1]
     F = self._input_values[2]
     irow = np.asarray([2, 2], dtype=np.int64)
     jcol = np.asarray([1, 2], dtype=np.int64)
     data = self._output_con_mult_values[0]*np.asarray([-8*F, -8*c], dtype=np.float64)
     hess = spa.coo_matrix((data, (irow, jcol)), shape=(3,3))
     return hess
Пример #5
0
 def evaluate_hessian_outputs(self):
     c = self._input_values[1]
     F = self._input_values[2]
     y1 = self._output_con_mult_values[0]
     y2 = self._output_con_mult_values[1]
     irow = np.asarray([2, 2], dtype=np.int64)
     jcol = np.asarray([1, 2], dtype=np.int64)
     nonzeros = np.asarray([y1*(-2*F) + y2*(-8*F), y1*(-2*c)+y2*(-8*c)], dtype=np.float64)
     hess = spa.coo_matrix((nonzeros, (irow, jcol)), shape=(5,5))
     return hess
Пример #6
0
    def test_interface(self):
        # weird, this is really a test of the test class above
        # but we could add code later, so...
        iom = PressureDropModel()
        iom.set_inputs(np.ones(4))
        o = iom.evaluate_outputs()
        expected_o = np.asarray([0.0, -1.0], dtype=np.float64)
        self.assertTrue(np.array_equal(o, expected_o))

        jac = iom.evaluate_derivatives()
        expected_jac = np.asarray([[1, -1, 0, -2], [1, -1, -1, -4]], dtype=np.float64)
        self.assertTrue(np.array_equal(jac.todense(), expected_jac))
Пример #7
0
 def evaluate_outputs(self):
     Pin = self._input_values[0]
     c = self._input_values[1]
     F = self._input_values[2]
     P1 = self._input_values[3]
     return np.asarray([P1 - c * F**2, Pin - 4 * c * F**2],
                       dtype=np.float64)
Пример #8
0
 def evaluate_outputs(self):
     Pin = self._input_values[0]
     c = self._input_values[1]
     F = self._input_values[2]
     P2 = Pin - 2 * c * F**2
     Pout = Pin - 4 * c * F**2
     return np.asarray([P2, Pout], dtype=np.float64)
Пример #9
0
 def evaluate_equality_constraints(self):
     Pin = self._input_values[0]
     c = self._input_values[1]
     F = self._input_values[2]
     P1 = self._input_values[3]
     P3 = self._input_values[4]
     return np.asarray([P1 - (Pin - c*F**2), P3 - (P1 - 2*c*F**2)], dtype=np.float64)
Пример #10
0
 def evaluate_equality_constraints(self):
     Pin = self._input_values[0]
     c = self._input_values[1]
     F = self._input_values[2]
     P2 = self._input_values[3]
     Pout = self._input_values[4]
     return np.asarray([P2 - (Pin - 2*c*F**2), Pout - (P2 - 2*c*F**2)], dtype=np.float64)
Пример #11
0
 def evaluate_derivatives(self):
     jac = [[1, -self._F**2, 0, -2 * self._c1 * self._F],
            [
                1, -self._F**2, -self._F**2,
                -2 * self._F * (self._c1 + self._c2)
            ]]
     jac = np.asarray(jac, dtype=np.float64)
     return spa.coo_matrix(jac)
Пример #12
0
    def test_util_maps(self):
        anlp = AslNLP(self.filename)
        full_to_compressed_mask = build_compression_mask_for_finite_values(anlp.primals_lb())

        # test build_bounds_mask - should be the same as above
        self.assertTrue(np.array_equal(full_to_compressed_mask, build_bounds_mask(anlp.primals_lb())))

        expected_compressed_primals_lb = np.asarray([-1, 2, -3, -5, -7, -9], dtype=np.float64)

        # test build_compression_matrix
        C = build_compression_matrix(full_to_compressed_mask)
        compressed_primals_lb = C*anlp.primals_lb()
        self.assertTrue(np.array_equal(expected_compressed_primals_lb, compressed_primals_lb))

        # test full_to_compressed
        compressed_primals_lb = full_to_compressed(anlp.primals_lb(), full_to_compressed_mask)
        self.assertTrue(np.array_equal(expected_compressed_primals_lb, compressed_primals_lb))
        # test in place
        compressed_primals_lb = np.zeros(len(expected_compressed_primals_lb))
        ret = full_to_compressed(anlp.primals_lb(), full_to_compressed_mask, out=compressed_primals_lb)
        self.assertTrue(ret is compressed_primals_lb)
        self.assertTrue(np.array_equal(expected_compressed_primals_lb, compressed_primals_lb))
        
        # test compressed_to_full
        expected_full_primals_lb = np.asarray([-1, 2, -3, -np.inf, -5, -np.inf, -7, -np.inf, -9], dtype=np.float64)
        full_primals_lb = compressed_to_full(compressed_primals_lb, full_to_compressed_mask, default=-np.inf)
        self.assertTrue(np.array_equal(expected_full_primals_lb, full_primals_lb))
        # test in place
        full_primals_lb.fill(0.0)
        ret = compressed_to_full(compressed_primals_lb, full_to_compressed_mask, out=full_primals_lb, default=-np.inf)
        self.assertTrue(ret is full_primals_lb)
        self.assertTrue(np.array_equal(expected_full_primals_lb, full_primals_lb))

        # test no default
        expected_full_primals_lb = np.asarray([-1, 2, -3, np.nan, -5, np.nan, -7, np.nan, -9], dtype=np.float64)
        full_primals_lb = compressed_to_full(compressed_primals_lb, full_to_compressed_mask)
        print(expected_full_primals_lb)
        print(full_primals_lb)
        np.testing.assert_array_equal(expected_full_primals_lb, full_primals_lb)
        # test in place no default
        expected_full_primals_lb = np.asarray([-1, 2, -3, 0.0, -5, 0.0, -7, 0.0, -9], dtype=np.float64)
        full_primals_lb.fill(0.0)
        ret = compressed_to_full(compressed_primals_lb, full_to_compressed_mask, out=full_primals_lb)
        self.assertTrue(ret is full_primals_lb)
        self.assertTrue(np.array_equal(expected_full_primals_lb, full_primals_lb))
Пример #13
0
    def test_repeated_row_col(self):
        data = [1.0, 0.0, 2.0]
        row = [1, 2, 1]
        col = [2, 2, 2]
        A = scipy.sparse.coo_matrix((data, (row, col)), shape=(3, 3))

        data = [3.0, 0.0]
        row = [1, 2]
        col = [2, 2]
        B = scipy.sparse.coo_matrix((data, (row, col)), shape=(3, 3))

        # Our CondensedSparseSummation should not remove any
        # structural nonzeros
        sparse_sum = utils.CondensedSparseSummation([A, B])
        C = sparse_sum.sum([A, B])
        expected_data = np.asarray([6.0, 0.0], dtype=np.float64)
        expected_row = np.asarray([1, 2], dtype=np.int64)
        expected_col = np.asarray([2, 2], dtype=np.int64)
        self.assertTrue(np.array_equal(expected_data, C.data))
        self.assertTrue(np.array_equal(expected_row, C.row))
        self.assertTrue(np.array_equal(expected_col, C.col))
Пример #14
0
    def test_nlp_interface(self):
        nlp = PyomoNLP(self.pm)
        execute_extended_nlp_interface(self, nlp)
        self.assertTrue(nlp.pyomo_model() is self.pm)

        self.assertEqual(float(nlp.get_obj_scaling()), 5.0)

        xs = nlp.get_primals_scaling()
        expected_xs = np.asarray([2.0, 4.0, 6.0, 8.0, 10.0, 12.0, 14.0, 16.0, 18.0])
        self.assertTrue(np.array_equal(xs, expected_xs))

        cs = nlp.get_constraints_scaling()
        expected_cs = np.asarray([ 3.0,  6.0,  9.0, 12.0, 15.0, 18.0, 21.0, 24.0, 27.0 ])
        self.assertTrue(np.array_equal(cs, expected_cs))

        eqcs = nlp.get_eq_constraints_scaling()
        expected_eqcs = np.asarray([ 6.0, 18.0 ])
        self.assertTrue(np.array_equal(eqcs, expected_eqcs))

        ineqcs = nlp.get_ineq_constraints_scaling()
        expected_ineqcs = np.asarray([ 3.0,  9.0, 12.0, 15.0, 21.0, 24.0, 27.0 ])
        self.assertTrue(np.array_equal(ineqcs, expected_ineqcs))
Пример #15
0
    def test_condensed_sparse_summation(self):
        data = [1.0, 0.0]
        row = [1, 2]
        col = [2, 2]
        A = scipy.sparse.coo_matrix((data, (row, col)), shape=(3, 3))

        data = [3.0, 0.0]
        B = scipy.sparse.coo_matrix((data, (row, col)), shape=(3, 3))

        # By default, scipy will remove structural nonzeros that
        # have zero values
        C = A + B
        self.assertEqual(C.nnz, 1)

        # Our CondensedSparseSummation should not remove any
        # structural nonzeros
        sparse_sum = utils.CondensedSparseSummation([A, B])
        C = sparse_sum.sum([A, B])
        expected_data = np.asarray([4.0, 0.0], dtype=np.float64)
        expected_row = np.asarray([1, 2], dtype=np.int64)
        expected_col = np.asarray([2, 2], dtype=np.int64)
        self.assertTrue(np.array_equal(expected_data, C.data))
        self.assertTrue(np.array_equal(expected_row, C.row))
        self.assertTrue(np.array_equal(expected_col, C.col))

        B.data[1] = 5.0
        C = sparse_sum.sum([A, B])
        expected_data = np.asarray([4.0, 5.0], dtype=np.float64)
        self.assertTrue(np.array_equal(expected_data, C.data))
        self.assertTrue(np.array_equal(expected_row, C.row))
        self.assertTrue(np.array_equal(expected_col, C.col))

        B.data[1] = 0.0
        C = sparse_sum.sum([A, B])
        expected_data = np.asarray([4.0, 0.0], dtype=np.float64)
        self.assertTrue(np.array_equal(expected_data, C.data))
        self.assertTrue(np.array_equal(expected_row, C.row))
        self.assertTrue(np.array_equal(expected_col, C.col))
Пример #16
0
 def evaluate_equality_constraints(self):
     return np.asarray([self._u**2 - 1])
Пример #17
0
    def test_indices_methods(self):
        nlp = PyomoNLP(self.pm)

        # get_pyomo_variables
        variables = nlp.get_pyomo_variables()
        expected_ids = [id(self.pm.x[i]) for i in range(1, 10)]
        ids = [id(variables[i]) for i in range(9)]
        self.assertTrue(expected_ids == ids)

        variable_names = nlp.variable_names()
        expected_names = [self.pm.x[i].getname() for i in range(1, 10)]
        self.assertTrue(variable_names == expected_names)

        # get_pyomo_constraints
        constraints = nlp.get_pyomo_constraints()
        expected_ids = [id(self.pm.c[i]) for i in range(1, 10)]
        ids = [id(constraints[i]) for i in range(9)]
        self.assertTrue(expected_ids == ids)

        constraint_names = nlp.constraint_names()
        expected_names = [c.getname() for c in nlp.get_pyomo_constraints()]
        self.assertTrue(constraint_names == expected_names)

        # get_primal_indices
        expected_primal_indices = [i for i in range(9)]
        self.assertTrue(
            expected_primal_indices == nlp.get_primal_indices([self.pm.x]))
        expected_primal_indices = [0, 3, 8, 4]
        variables = [self.pm.x[1], self.pm.x[4], self.pm.x[9], self.pm.x[5]]
        self.assertTrue(
            expected_primal_indices == nlp.get_primal_indices(variables))

        # get_constraint_indices
        expected_constraint_indices = [i for i in range(9)]
        self.assertTrue(expected_constraint_indices ==
                        nlp.get_constraint_indices([self.pm.c]))
        expected_constraint_indices = [0, 3, 8, 4]
        constraints = [self.pm.c[1], self.pm.c[4], self.pm.c[9], self.pm.c[5]]
        self.assertTrue(expected_constraint_indices ==
                        nlp.get_constraint_indices(constraints))

        # extract_subvector_grad_objective
        expected_gradient = np.asarray(
            [2 * sum((i + 1) * (j + 1) for j in range(9)) for i in range(9)],
            dtype=np.float64)
        grad_obj = nlp.extract_subvector_grad_objective([self.pm.x])
        self.assertTrue(np.array_equal(expected_gradient, grad_obj))

        expected_gradient = np.asarray([
            2 * sum((i + 1) * (j + 1) for j in range(9)) for i in [0, 3, 8, 4]
        ],
                                       dtype=np.float64)
        variables = [self.pm.x[1], self.pm.x[4], self.pm.x[9], self.pm.x[5]]
        grad_obj = nlp.extract_subvector_grad_objective(variables)
        self.assertTrue(np.array_equal(expected_gradient, grad_obj))

        # extract_subvector_constraints
        expected_con = np.asarray(
            [45, 88, 3 * 45, 4 * 45, 5 * 45, 276, 7 * 45, 8 * 45, 9 * 45],
            dtype=np.float64)
        con = nlp.extract_subvector_constraints([self.pm.c])
        self.assertTrue(np.array_equal(expected_con, con))

        expected_con = np.asarray([45, 4 * 45, 9 * 45, 5 * 45],
                                  dtype=np.float64)
        constraints = [self.pm.c[1], self.pm.c[4], self.pm.c[9], self.pm.c[5]]
        con = nlp.extract_subvector_constraints(constraints)
        self.assertTrue(np.array_equal(expected_con, con))

        # extract_submatrix_jacobian
        expected_jac = [[(i) * (j) for j in range(1, 10)]
                        for i in range(1, 10)]
        expected_jac = np.asarray(expected_jac, dtype=np.float64)
        jac = nlp.extract_submatrix_jacobian(pyomo_variables=[self.pm.x],
                                             pyomo_constraints=[self.pm.c])
        dense_jac = jac.todense()
        self.assertTrue(np.array_equal(dense_jac, expected_jac))

        expected_jac = [[(i) * (j) for j in [1, 4, 9, 5]] for i in [2, 6, 4]]
        expected_jac = np.asarray(expected_jac, dtype=np.float64)
        variables = [self.pm.x[1], self.pm.x[4], self.pm.x[9], self.pm.x[5]]
        constraints = [self.pm.c[2], self.pm.c[6], self.pm.c[4]]
        jac = nlp.extract_submatrix_jacobian(pyomo_variables=variables,
                                             pyomo_constraints=constraints)
        dense_jac = jac.todense()
        self.assertTrue(np.array_equal(dense_jac, expected_jac))

        # extract_submatrix_hessian_lag
        expected_hess = [[2.0 * i * j for j in range(1, 10)]
                         for i in range(1, 10)]
        expected_hess = np.asarray(expected_hess, dtype=np.float64)
        hess = nlp.extract_submatrix_hessian_lag(
            pyomo_variables_rows=[self.pm.x], pyomo_variables_cols=[self.pm.x])
        dense_hess = hess.todense()
        self.assertTrue(np.array_equal(dense_hess, expected_hess))

        expected_hess = [[2.0 * i * j for j in [1, 4, 9, 5]]
                         for i in [1, 4, 9, 5]]
        expected_hess = np.asarray(expected_hess, dtype=np.float64)
        variables = [self.pm.x[1], self.pm.x[4], self.pm.x[9], self.pm.x[5]]
        hess = nlp.extract_submatrix_hessian_lag(
            pyomo_variables_rows=variables, pyomo_variables_cols=variables)
        dense_hess = hess.todense()
        self.assertTrue(np.array_equal(dense_hess, expected_hess))
Пример #18
0
def execute_extended_nlp_interface(self, anlp):
    self.assertEqual(anlp.n_primals(), 9)
    self.assertEqual(anlp.n_constraints(), 9)
    self.assertEqual(anlp.n_eq_constraints(), 2)
    self.assertEqual(anlp.n_ineq_constraints(), 7)
    self.assertEqual(anlp.nnz_jacobian(), 9 * 9)
    self.assertEqual(anlp.nnz_jacobian_eq(), 2 * 9)
    self.assertEqual(anlp.nnz_jacobian_ineq(), 7 * 9)
    self.assertEqual(anlp.nnz_hessian_lag(), 9 * 9)

    expected_primals_lb = np.asarray(
        [-1, -np.inf, -3, -np.inf, -5, -np.inf, -7, -np.inf, -9],
        dtype=np.float64)
    expected_primals_ub = np.asarray(
        [1, 2, np.inf, np.inf, 5, 6, np.inf, np.inf, 9], dtype=np.float64)
    self.assertTrue(np.array_equal(expected_primals_lb, anlp.primals_lb()))
    self.assertTrue(np.array_equal(expected_primals_ub, anlp.primals_ub()))

    expected_constraints_lb = np.asarray(
        [-1, 0, -3, -np.inf, -5, 0, -7, -np.inf, -9], dtype=np.float64)
    expected_constraints_ub = np.asarray([1, 0, np.inf, 4, 5, 0, np.inf, 8, 9],
                                         dtype=np.float64)
    self.assertTrue(
        np.array_equal(expected_constraints_lb, anlp.constraints_lb()))
    self.assertTrue(
        np.array_equal(expected_constraints_ub, anlp.constraints_ub()))

    expected_ineq_lb = np.asarray([-1, -3, -np.inf, -5, -7, -np.inf, -9],
                                  dtype=np.float64)
    expected_ineq_ub = np.asarray([1, np.inf, 4, 5, np.inf, 8, 9],
                                  dtype=np.float64)
    self.assertTrue(np.array_equal(expected_ineq_lb, anlp.ineq_lb()))
    self.assertTrue(np.array_equal(expected_ineq_ub, anlp.ineq_ub()))

    expected_init_primals = np.ones(9)
    self.assertTrue(np.array_equal(expected_init_primals, anlp.init_primals()))
    expected_init_duals = np.asarray([1, 2, 3, 4, 5, 6, 7, 8, 9],
                                     dtype=np.float64)
    self.assertTrue(np.array_equal(expected_init_duals, anlp.init_duals()))
    expected_init_duals_ineq = np.asarray([1, 3, 4, 5, 7, 8, 9],
                                          dtype=np.float64)
    self.assertTrue(
        np.array_equal(expected_init_duals_ineq, anlp.init_duals_ineq()))
    expected_init_duals_eq = np.asarray([2, 6], dtype=np.float64)
    self.assertTrue(
        np.array_equal(expected_init_duals_eq, anlp.init_duals_eq()))

    t = anlp.create_new_vector('primals')
    self.assertTrue(t.size == 9)
    t = anlp.create_new_vector('constraints')
    self.assertTrue(t.size == 9)
    t = anlp.create_new_vector('eq_constraints')
    self.assertTrue(t.size == 2)
    t = anlp.create_new_vector('ineq_constraints')
    self.assertTrue(t.size == 7)
    t = anlp.create_new_vector('duals')
    self.assertTrue(t.size == 9)
    t = anlp.create_new_vector('duals_eq')
    self.assertTrue(t.size == 2)
    t = anlp.create_new_vector('duals_ineq')
    self.assertTrue(t.size == 7)

    expected_primals = [i + 1 for i in range(9)]
    new_primals = np.asarray(expected_primals, dtype=np.float64)
    expected_primals = np.asarray(expected_primals, dtype=np.float64)
    anlp.set_primals(new_primals)
    ret = anlp.get_primals()
    self.assertTrue(np.array_equal(new_primals, ret))
    self.assertTrue(np.array_equal(expected_primals, anlp._primals))
    anlp.set_primals(np.ones(9))

    expected_duals = [i + 1 for i in range(9)]
    new_duals = np.asarray(expected_duals, dtype=np.float64)
    expected_duals = np.asarray(expected_duals, dtype=np.float64)
    anlp.set_duals(new_duals)
    self.assertTrue(np.array_equal(expected_duals, anlp._duals_full))
    ret = anlp.get_duals()
    self.assertTrue(np.array_equal(new_duals, ret))
    expected_duals_eq = np.asarray([2, 6], dtype=np.float64)
    self.assertTrue(np.array_equal(expected_duals_eq, anlp._duals_eq))
    expected_duals_ineq = np.asarray([1, 3, 4, 5, 7, 8, 9], dtype=np.float64)
    self.assertTrue(np.array_equal(expected_duals_ineq, anlp._duals_ineq))
    anlp.set_duals(np.ones(9))

    expected_duals_eq = [i + 1 for i in range(2)]
    new_duals_eq = np.asarray(expected_duals_eq, dtype=np.float64)
    anlp.set_duals_eq(new_duals_eq)
    ret = anlp.get_duals_eq()
    self.assertTrue(np.array_equal(new_duals_eq, ret))
    self.assertTrue(np.array_equal(expected_duals_eq, anlp._duals_eq))
    expected_duals = np.asarray([1, 1, 1, 1, 1, 2, 1, 1, 1], dtype=np.float64)
    self.assertTrue(np.array_equal(expected_duals, anlp._duals_full))
    expected_duals_ineq = np.asarray([1, 1, 1, 1, 1, 1, 1], dtype=np.float64)
    self.assertTrue(np.array_equal(expected_duals_ineq, anlp._duals_ineq))
    anlp.set_duals_eq(np.ones(2))
    expected_duals = np.asarray([1, 1, 1, 1, 1, 1, 1, 1, 1], dtype=np.float64)
    self.assertTrue(np.array_equal(expected_duals, anlp._duals_full))

    expected_duals_ineq = [i + 1 for i in range(7)]
    new_duals_ineq = np.asarray(expected_duals_ineq, dtype=np.float64)
    anlp.set_duals_ineq(new_duals_ineq)
    ret = anlp.get_duals_ineq()
    self.assertTrue(np.array_equal(new_duals_ineq, ret))
    self.assertTrue(np.array_equal(expected_duals_ineq, anlp._duals_ineq))
    expected_duals = np.asarray([1, 1, 2, 3, 4, 1, 5, 6, 7], dtype=np.float64)
    self.assertTrue(np.array_equal(expected_duals, anlp._duals_full))
    expected_duals_eq = np.asarray([1, 1], dtype=np.float64)
    self.assertTrue(np.array_equal(expected_duals_eq, anlp._duals_eq))
    anlp.set_duals_ineq(np.ones(7))
    expected_duals = np.asarray([1, 1, 1, 1, 1, 1, 1, 1, 1], dtype=np.float64)
    self.assertTrue(np.array_equal(expected_duals, anlp._duals_full))

    # objective function
    expected_objective = sum(
        (i + 1) * (j + 1) for i in range(9) for j in range(9))
    self.assertEqual(expected_objective, anlp.evaluate_objective())
    # change the value of the primals
    anlp.set_primals(2.0 * np.ones(9))
    expected_objective = sum(2.0**2 * (i + 1) * (j + 1) for i in range(9)
                             for j in range(9))
    self.assertEqual(expected_objective, anlp.evaluate_objective())
    anlp.set_primals(np.ones(9))

    # gradient of the objective
    expected_gradient = np.asarray(
        [2 * sum((i + 1) * (j + 1) for j in range(9)) for i in range(9)],
        dtype=np.float64)
    grad_obj = anlp.evaluate_grad_objective()
    self.assertTrue(np.array_equal(expected_gradient, grad_obj))
    # test inplace
    grad_obj = np.ones(9)
    ret = anlp.evaluate_grad_objective(out=grad_obj)
    self.assertTrue(ret is grad_obj)
    self.assertTrue(np.array_equal(expected_gradient, grad_obj))
    # change the value of the primals
    anlp.set_primals(2.0 * np.ones(9))
    expected_gradient = np.asarray(
        [2 * 2 * sum((i + 1) * (j + 1) for j in range(9)) for i in range(9)],
        dtype=np.float64)
    grad_obj = np.ones(9)
    anlp.evaluate_grad_objective(out=grad_obj)
    self.assertTrue(np.array_equal(expected_gradient, grad_obj))
    anlp.set_primals(np.ones(9))

    # full constraints
    con = anlp.evaluate_constraints()
    expected_con = np.asarray(
        [45, 88, 3 * 45, 4 * 45, 5 * 45, 276, 7 * 45, 8 * 45, 9 * 45],
        dtype=np.float64)
    self.assertTrue(np.array_equal(expected_con, con))
    # test inplace
    con = np.zeros(9)
    ret = anlp.evaluate_constraints(out=con)
    self.assertTrue(ret is con)
    self.assertTrue(np.array_equal(expected_con, con))
    # change the value of the primals
    anlp.set_primals(2.0 * np.ones(9))
    con = np.zeros(9)
    anlp.evaluate_constraints(out=con)
    expected_con = np.asarray([
        2 * 45, 2 * (88 + 2) - 2, 2 * 3 * 45, 2 * 4 * 45, 2 * 5 * 45, 2 *
        (276 - 6) + 6, 2 * 7 * 45, 2 * 8 * 45, 2 * 9 * 45
    ],
                              dtype=np.float64)
    self.assertTrue(np.array_equal(expected_con, con))
    anlp.set_primals(np.ones(9))

    # equality constraints
    con_eq = anlp.evaluate_eq_constraints()
    expected_con_eq = np.asarray([88, 276], dtype=np.float64)
    self.assertTrue(np.array_equal(expected_con_eq, con_eq))
    # test inplace
    con_eq = np.zeros(2)
    ret = anlp.evaluate_eq_constraints(out=con_eq)
    self.assertTrue(ret is con_eq)
    self.assertTrue(np.array_equal(expected_con_eq, con_eq))
    # change the value of the primals
    anlp.set_primals(2.0 * np.ones(9))
    con_eq = np.zeros(2)
    anlp.evaluate_eq_constraints(out=con_eq)
    expected_con_eq = np.asarray([2 * (88 + 2) - 2, 2 * (276 - 6) + 6],
                                 dtype=np.float64)
    self.assertTrue(np.array_equal(expected_con_eq, con_eq))
    anlp.set_primals(np.ones(9))

    # inequality constraints
    con_ineq = anlp.evaluate_ineq_constraints()
    expected_con_ineq = np.asarray(
        [45, 3 * 45, 4 * 45, 5 * 45, 7 * 45, 8 * 45, 9 * 45], dtype=np.float64)
    self.assertTrue(np.array_equal(expected_con_ineq, con_ineq))
    # test inplace
    con_ineq = np.zeros(7)
    ret = anlp.evaluate_ineq_constraints(out=con_ineq)
    self.assertTrue(ret is con_ineq)
    self.assertTrue(np.array_equal(expected_con_ineq, con_ineq))
    # change the value of the primals
    anlp.set_primals(2.0 * np.ones(9))
    con_ineq = np.zeros(7)
    anlp.evaluate_ineq_constraints(out=con_ineq)
    expected_con_ineq = 2.0 * expected_con_ineq
    self.assertTrue(np.array_equal(expected_con_ineq, con_ineq))
    anlp.set_primals(np.ones(9))

    # jacobian of all constraints
    jac = anlp.evaluate_jacobian()
    dense_jac = jac.todense()
    expected_jac = [[(i) * (j) for j in range(1, 10)] for i in range(1, 10)]
    expected_jac = np.asarray(expected_jac, dtype=np.float64)
    self.assertTrue(np.array_equal(dense_jac, expected_jac))
    # test inplace
    jac.data = 0 * jac.data
    ret = anlp.evaluate_jacobian(out=jac)
    self.assertTrue(ret is jac)
    dense_jac = jac.todense()
    self.assertTrue(np.array_equal(dense_jac, expected_jac))
    # change the value of the primals
    # ToDo: not a great test since this problem is linear
    anlp.set_primals(2.0 * np.ones(9))
    anlp.evaluate_jacobian(out=jac)
    dense_jac = jac.todense()
    self.assertTrue(np.array_equal(dense_jac, expected_jac))

    # jacobian of equality constraints
    jac_eq = anlp.evaluate_jacobian_eq()
    dense_jac_eq = jac_eq.todense()
    expected_jac_eq = np.asarray([[2, 4, 6, 8, 10, 12, 14, 16, 18],
                                  [6, 12, 18, 24, 30, 36, 42, 48, 54]],
                                 dtype=np.float64)
    self.assertTrue(np.array_equal(dense_jac_eq, expected_jac_eq))
    # test inplace
    jac_eq.data = 0 * jac_eq.data
    ret = anlp.evaluate_jacobian_eq(out=jac_eq)
    self.assertTrue(ret is jac_eq)
    dense_jac_eq = jac_eq.todense()
    self.assertTrue(np.array_equal(dense_jac_eq, expected_jac_eq))
    # change the value of the primals
    # ToDo: not a great test since this problem is linear
    anlp.set_primals(2.0 * np.ones(9))
    anlp.evaluate_jacobian_eq(out=jac_eq)
    dense_jac_eq = jac_eq.todense()
    self.assertTrue(np.array_equal(dense_jac_eq, expected_jac_eq))

    # jacobian of inequality constraints
    jac_ineq = anlp.evaluate_jacobian_ineq()
    dense_jac_ineq = jac_ineq.todense()
    expected_jac_ineq = [[(i) * (j) for j in range(1, 10)]
                         for i in [1, 3, 4, 5, 7, 8, 9]]
    expected_jac_ineq = np.asarray(expected_jac_ineq, dtype=np.float64)
    self.assertTrue(np.array_equal(dense_jac_ineq, expected_jac_ineq))
    # test inplace
    jac_ineq.data = 0 * jac_ineq.data
    ret = anlp.evaluate_jacobian_ineq(out=jac_ineq)
    self.assertTrue(ret is jac_ineq)
    dense_jac_ineq = jac_ineq.todense()
    self.assertTrue(np.array_equal(dense_jac_ineq, expected_jac_ineq))
    # change the value of the primals
    # ToDo: not a great test since this problem is linear
    anlp.set_primals(2.0 * np.ones(9))
    anlp.evaluate_jacobian_ineq(out=jac_ineq)
    dense_jac_ineq = jac_ineq.todense()
    self.assertTrue(np.array_equal(dense_jac_ineq, expected_jac_ineq))

    # hessian
    hess = anlp.evaluate_hessian_lag()
    dense_hess = hess.todense()
    expected_hess = [[2.0 * i * j for j in range(1, 10)] for i in range(1, 10)]
    expected_hess = np.asarray(expected_hess, dtype=np.float64)
    self.assertTrue(np.array_equal(dense_hess, expected_hess))
    # test inplace
    hess.data = np.zeros(len(hess.data))
    ret = anlp.evaluate_hessian_lag(out=hess)
    self.assertTrue(ret is hess)
    dense_hess = hess.todense()
    self.assertTrue(np.array_equal(dense_hess, expected_hess))
    # change the value of the primals
    anlp.set_primals(2.0 * np.ones(9))
    anlp.evaluate_hessian_lag(out=hess)
    dense_hess = hess.todense()
    self.assertTrue(np.array_equal(dense_hess, expected_hess))
    # change the value of the obj factor
    anlp.set_obj_factor(2.0)
    hess = anlp.evaluate_hessian_lag()
    dense_hess = hess.todense()
    expected_hess = [[4.0 * i * j for j in range(1, 10)] for i in range(1, 10)]
    expected_hess = np.asarray(expected_hess, dtype=np.float64)
    self.assertTrue(np.array_equal(dense_hess, expected_hess))
Пример #19
0
 def evaluate_outputs(self):
     P1 = self._Pin - self._c1*self._F**2
     P2 = P1 - self._c2*self._F**2
     return np.asarray([P1, P2], dtype=np.float64)
Пример #20
0
    def test_model1(self):
        model = create_model1()
        nlp = PyomoNLP(model)
        cynlp = CyIpoptNLP(nlp)

        # test x_init
        expected_xinit = np.asarray([4.0, 4.0, 4.0], dtype=np.float64)
        xinit = cynlp.x_init()
        self.assertTrue(np.array_equal(xinit, expected_xinit))

        # test x_lb
        expected_xlb = list()
        for v in nlp.get_pyomo_variables():
            if v.lb == None:
                expected_xlb.append(-np.inf)
            else:
                expected_xlb.append(v.lb)
        expected_xlb = np.asarray(expected_xlb)
        xlb = cynlp.x_lb()
        self.assertTrue(np.array_equal(xlb, expected_xlb))

        # test x_ub
        expected_xub = list()
        for v in nlp.get_pyomo_variables():
            if v.ub == None:
                expected_xub.append(np.inf)
            else:
                expected_xub.append(v.ub)
        expected_xub = np.asarray(expected_xub)
        xub = cynlp.x_ub()
        self.assertTrue(np.array_equal(xub, expected_xub))

        # test g_lb
        expected_glb = np.asarray([-np.inf, 0.0], dtype=np.float64)
        glb = cynlp.g_lb()
        self.assertTrue(np.array_equal(glb, expected_glb))

        # test g_ub
        expected_gub = np.asarray([18, 0.0], dtype=np.float64)
        gub = cynlp.g_ub()
        print(expected_gub)
        print(gub)
        self.assertTrue(np.array_equal(gub, expected_gub))

        x = cynlp.x_init()
        # test objective
        self.assertEqual(cynlp.objective(x), -504)
        # test gradient
        expected = np.asarray([-576, 8, 64], dtype=np.float64)
        self.assertTrue(np.allclose(expected, cynlp.gradient(x)))
        # test constraints
        expected = np.asarray([20, -5], dtype=np.float64)
        constraints = cynlp.constraints(x)
        self.assertTrue(np.allclose(expected, constraints)) 
        
        # test jacobian
        expected = np.asarray([[8.0, 0, 1.0],[0.0, 8.0, 1.0]])
        spexpected = spa.coo_matrix(expected).todense()
        rows, cols = cynlp.jacobianstructure()
        values = cynlp.jacobian(x)
        jac = spa.coo_matrix((values, (rows,cols)), shape=(len(constraints), len(x))).todense()
        self.assertTrue(np.allclose(spexpected, jac))

        # test hessian
        y = constraints.copy()
        y.fill(1.0)
        rows, cols = cynlp.hessianstructure()
        values = cynlp.hessian(x, y, obj_factor=1.0)
        hess_lower = spa.coo_matrix((values, (rows,cols)), shape=(len(x), len(x))).todense()
        expected_hess_lower = np.asarray([[-286.0, 0.0, 0.0], [0.0, 4.0, 0.0], [-144.0, 0.0, 192.0]], dtype=np.float64)
        self.assertTrue(np.allclose(expected_hess_lower, hess_lower))
Пример #21
0
    def test_indices_methods(self):
        nlp = PyomoNLP(self.pm)

        # get_pyomo_variables
        variables = nlp.get_pyomo_variables()
        expected_ids = [id(self.pm.x[i]) for i in range(1, 10)]
        ids = [id(variables[i]) for i in range(9)]
        self.assertTrue(expected_ids == ids)

        variable_names = nlp.variable_names()
        expected_names = [self.pm.x[i].getname() for i in range(1, 10)]
        self.assertTrue(variable_names == expected_names)

        # get_pyomo_constraints
        constraints = nlp.get_pyomo_constraints()
        expected_ids = [id(self.pm.c[i]) for i in range(1, 10)]
        ids = [id(constraints[i]) for i in range(9)]
        self.assertTrue(expected_ids == ids)

        constraint_names = nlp.constraint_names()
        expected_names = [c.getname() for c in nlp.get_pyomo_constraints()]
        self.assertTrue(constraint_names == expected_names)

        # get_pyomo_equality_constraints
        eq_constraints = nlp.get_pyomo_equality_constraints()
        # 2 and 6 are the equality constraints
        eq_indices = [2, 6]  # "indices" here is a bit overloaded
        expected_eq_ids = [id(self.pm.c[i]) for i in eq_indices]
        eq_ids = [id(con) for con in eq_constraints]
        self.assertEqual(eq_ids, expected_eq_ids)

        eq_constraint_names = nlp.equality_constraint_names()
        expected_eq_names = [
            c.getname(fully_qualified=True)
            for c in nlp.get_pyomo_equality_constraints()
        ]
        self.assertEqual(eq_constraint_names, expected_eq_names)

        # get_pyomo_inequality_constraints
        ineq_constraints = nlp.get_pyomo_inequality_constraints()
        # 1, 3, 4, 5, 7, 8, and 9 are the inequality constraints
        ineq_indices = [1, 3, 4, 5, 7, 8, 9]
        expected_ineq_ids = [id(self.pm.c[i]) for i in ineq_indices]
        ineq_ids = [id(con) for con in ineq_constraints]
        self.assertEqual(eq_ids, expected_eq_ids)

        # get_primal_indices
        expected_primal_indices = [i for i in range(9)]
        self.assertTrue(
            expected_primal_indices == nlp.get_primal_indices([self.pm.x]))
        expected_primal_indices = [0, 3, 8, 4]
        variables = [self.pm.x[1], self.pm.x[4], self.pm.x[9], self.pm.x[5]]
        self.assertTrue(
            expected_primal_indices == nlp.get_primal_indices(variables))

        # get_constraint_indices
        expected_constraint_indices = [i for i in range(9)]
        self.assertTrue(expected_constraint_indices ==
                        nlp.get_constraint_indices([self.pm.c]))
        expected_constraint_indices = [0, 3, 8, 4]
        constraints = [self.pm.c[1], self.pm.c[4], self.pm.c[9], self.pm.c[5]]
        self.assertTrue(expected_constraint_indices ==
                        nlp.get_constraint_indices(constraints))

        # get_equality_constraint_indices
        pyomo_eq_indices = [2, 6]
        with self.assertRaises(KeyError):
            # At least one data object in container is not an equality
            nlp.get_equality_constraint_indices([self.pm.c])
        eq_constraints = [self.pm.c[i] for i in pyomo_eq_indices]
        expected_eq_indices = [0, 1]
        # ^indices in the list of equality constraints
        eq_constraint_indices = nlp.get_equality_constraint_indices(
            eq_constraints)
        self.assertEqual(expected_eq_indices, eq_constraint_indices)

        # get_inequality_constraint_indices
        pyomo_ineq_indices = [1, 3, 4, 5, 7, 9]
        with self.assertRaises(KeyError):
            # At least one data object in container is not an equality
            nlp.get_inequality_constraint_indices([self.pm.c])
        ineq_constraints = [self.pm.c[i] for i in pyomo_ineq_indices]
        expected_ineq_indices = [0, 1, 2, 3, 4, 6]
        # ^indices in the list of equality constraints; didn't include 8
        ineq_constraint_indices = nlp.get_inequality_constraint_indices(
            ineq_constraints)
        self.assertEqual(expected_ineq_indices, ineq_constraint_indices)

        # extract_subvector_grad_objective
        expected_gradient = np.asarray(
            [2 * sum((i + 1) * (j + 1) for j in range(9)) for i in range(9)],
            dtype=np.float64)
        grad_obj = nlp.extract_subvector_grad_objective([self.pm.x])
        self.assertTrue(np.array_equal(expected_gradient, grad_obj))

        expected_gradient = np.asarray([
            2 * sum((i + 1) * (j + 1) for j in range(9)) for i in [0, 3, 8, 4]
        ],
                                       dtype=np.float64)
        variables = [self.pm.x[1], self.pm.x[4], self.pm.x[9], self.pm.x[5]]
        grad_obj = nlp.extract_subvector_grad_objective(variables)
        self.assertTrue(np.array_equal(expected_gradient, grad_obj))

        # extract_subvector_constraints
        expected_con = np.asarray(
            [45, 88, 3 * 45, 4 * 45, 5 * 45, 276, 7 * 45, 8 * 45, 9 * 45],
            dtype=np.float64)
        con = nlp.extract_subvector_constraints([self.pm.c])
        self.assertTrue(np.array_equal(expected_con, con))

        expected_con = np.asarray([45, 4 * 45, 9 * 45, 5 * 45],
                                  dtype=np.float64)
        constraints = [self.pm.c[1], self.pm.c[4], self.pm.c[9], self.pm.c[5]]
        con = nlp.extract_subvector_constraints(constraints)
        self.assertTrue(np.array_equal(expected_con, con))

        # extract_submatrix_jacobian
        expected_jac = [[(i) * (j) for j in range(1, 10)]
                        for i in range(1, 10)]
        expected_jac = np.asarray(expected_jac, dtype=np.float64)
        jac = nlp.extract_submatrix_jacobian(pyomo_variables=[self.pm.x],
                                             pyomo_constraints=[self.pm.c])
        dense_jac = jac.todense()
        self.assertTrue(np.array_equal(dense_jac, expected_jac))

        expected_jac = [[(i) * (j) for j in [1, 4, 9, 5]] for i in [2, 6, 4]]
        expected_jac = np.asarray(expected_jac, dtype=np.float64)
        variables = [self.pm.x[1], self.pm.x[4], self.pm.x[9], self.pm.x[5]]
        constraints = [self.pm.c[2], self.pm.c[6], self.pm.c[4]]
        jac = nlp.extract_submatrix_jacobian(pyomo_variables=variables,
                                             pyomo_constraints=constraints)
        dense_jac = jac.todense()
        self.assertTrue(np.array_equal(dense_jac, expected_jac))

        # extract_submatrix_hessian_lag
        expected_hess = [[2.0 * i * j for j in range(1, 10)]
                         for i in range(1, 10)]
        expected_hess = np.asarray(expected_hess, dtype=np.float64)
        hess = nlp.extract_submatrix_hessian_lag(
            pyomo_variables_rows=[self.pm.x], pyomo_variables_cols=[self.pm.x])
        dense_hess = hess.todense()
        self.assertTrue(np.array_equal(dense_hess, expected_hess))

        expected_hess = [[2.0 * i * j for j in [1, 4, 9, 5]]
                         for i in [1, 4, 9, 5]]
        expected_hess = np.asarray(expected_hess, dtype=np.float64)
        variables = [self.pm.x[1], self.pm.x[4], self.pm.x[9], self.pm.x[5]]
        hess = nlp.extract_submatrix_hessian_lag(
            pyomo_variables_rows=variables, pyomo_variables_cols=variables)
        dense_hess = hess.todense()
        self.assertTrue(np.array_equal(dense_hess, expected_hess))
Пример #22
0
    def test_pyomo_external_model_ndarray_scaling(self):
        m = pyo.ConcreteModel()
        m.Pin = pyo.Var(initialize=100, bounds=(0, None))
        m.c1 = pyo.Var(initialize=1.0, bounds=(0, None))
        m.c2 = pyo.Var(initialize=1.0, bounds=(0, None))
        m.F = pyo.Var(initialize=10, bounds=(0, None))

        m.P1 = pyo.Var()
        m.P2 = pyo.Var()

        m.F_con = pyo.Constraint(expr=m.F == 10)
        m.Pin_con = pyo.Constraint(expr=m.Pin == 100)

        # simple parameter estimation test
        m.obj = pyo.Objective(expr=(m.P1 - 90)**2 + (m.P2 - 40)**2)

        # set scaling parameters for the pyomo variables and constraints
        m.scaling_factor = pyo.Suffix(direction=pyo.Suffix.EXPORT)
        m.scaling_factor[m.obj] = 0.1  # scale the objective
        m.scaling_factor[m.Pin] = 2.0  # scale the variable
        m.scaling_factor[m.c1] = 3.0  # scale the variable
        m.scaling_factor[m.c2] = 4.0  # scale the variable
        m.scaling_factor[m.F] = 5.0  # scale the variable
        m.scaling_factor[m.P1] = 6.0  # scale the variable
        m.scaling_factor[m.P2] = 7.0  # scale the variable
        m.scaling_factor[m.F_con] = 8.0  # scale the pyomo constraint
        m.scaling_factor[m.Pin_con] = 9.0  # scale the pyomo constraint

        # test that this all works with ndarray input as well
        cyipopt_problem = \
            PyomoExternalCyIpoptProblem(pyomo_model=m,
                                        ex_input_output_model=PressureDropModel(),
                                        inputs=[m.Pin, m.c1, m.c2, m.F],
                                        outputs=[m.P1, m.P2],
                                        outputs_eqn_scaling=np.asarray([10.0, 11.0], dtype=np.float64)
                                        )

        # solve the problem
        options = {
            'hessian_approximation': 'limited-memory',
            'nlp_scaling_method': 'user-scaling',
            'output_file': '_cyipopt-pyomo-ext-scaling-ndarray.log',
            'file_print_level': 10,
            'max_iter': 0
        }
        solver = CyIpoptSolver(cyipopt_problem, options=options)
        x, info = solver.solve(tee=False)

        with open('_cyipopt-pyomo-ext-scaling-ndarray.log', 'r') as fd:
            solver_trace = fd.read()
        os.remove('_cyipopt-pyomo-ext-scaling-ndarray.log')

        self.assertIn('nlp_scaling_method = user-scaling', solver_trace)
        self.assertIn('output_file = _cyipopt-pyomo-ext-scaling-ndarray.log',
                      solver_trace)
        self.assertIn('objective scaling factor = 0.1', solver_trace)
        self.assertIn('x scaling provided', solver_trace)
        self.assertIn('c scaling provided', solver_trace)
        self.assertIn('d scaling provided', solver_trace)
        self.assertIn('DenseVector "x scaling vector" with 7 elements:',
                      solver_trace)
        self.assertIn('x scaling vector[    1]= 6.0000000000000000e+00',
                      solver_trace)
        self.assertIn('x scaling vector[    2]= 7.0000000000000000e+00',
                      solver_trace)
        self.assertIn('x scaling vector[    3]= 2.0000000000000000e+00',
                      solver_trace)
        self.assertIn('x scaling vector[    4]= 3.0000000000000000e+00',
                      solver_trace)
        self.assertIn('x scaling vector[    5]= 4.0000000000000000e+00',
                      solver_trace)
        self.assertIn('x scaling vector[    6]= 5.0000000000000000e+00',
                      solver_trace)
        self.assertIn('x scaling vector[    7]= 1.0000000000000000e+00',
                      solver_trace)
        self.assertIn('DenseVector "c scaling vector" with 5 elements:',
                      solver_trace)
        self.assertIn('c scaling vector[    1]= 8.0000000000000000e+00',
                      solver_trace)
        self.assertIn('c scaling vector[    2]= 9.0000000000000000e+00',
                      solver_trace)
        self.assertIn('c scaling vector[    3]= 1.0000000000000000e+00',
                      solver_trace)
        self.assertIn('c scaling vector[    4]= 1.0000000000000000e+01',
                      solver_trace)
        self.assertIn('c scaling vector[    5]= 1.1000000000000000e+01',
                      solver_trace)
Пример #23
0
    def test_projected(self):
        m = create_pyomo_model()
        nlp = PyomoNLP(m)
        projected_nlp = ProjectedNLP(nlp, ['x[0]', 'x[1]', 'x[2]'])
        expected_names = ['x[0]', 'x[1]', 'x[2]']
        self.assertEqual(projected_nlp.primals_names(), expected_names)
        self.assertTrue(
            np.array_equal(projected_nlp.get_primals(),
                           np.asarray([1.0, 2.0, 4.0])))
        self.assertTrue(
            np.array_equal(projected_nlp.evaluate_grad_objective(),
                           np.asarray([8.0, 1.0, 9.0])))
        self.assertEqual(projected_nlp.nnz_jacobian(), 5)
        self.assertEqual(projected_nlp.nnz_hessian_lag(), 6)

        J = projected_nlp.evaluate_jacobian()
        self.assertEqual(len(J.data), 5)
        denseJ = J.todense()
        expected_jac = np.asarray([[6.0, 1.0, 1.0], [1.0, 0.0, 1.0]])
        self.assertTrue(np.array_equal(denseJ, expected_jac))

        # test the use of "out"
        J = 0.0 * J
        projected_nlp.evaluate_jacobian(out=J)
        denseJ = J.todense()
        self.assertTrue(np.array_equal(denseJ, expected_jac))

        H = projected_nlp.evaluate_hessian_lag()
        self.assertEqual(len(H.data), 6)
        expectedH = np.asarray([[2.0, 1.0, 1.0], [1.0, 0.0, 0.0],
                                [1.0, 0.0, 2.0]])
        denseH = H.todense()
        self.assertTrue(np.array_equal(denseH, expectedH))

        # test the use of "out"
        H = 0.0 * H
        projected_nlp.evaluate_hessian_lag(out=H)
        denseH = H.todense()
        self.assertTrue(np.array_equal(denseH, expectedH))

        # now test a reordering
        projected_nlp = ProjectedNLP(nlp, ['x[0]', 'x[2]', 'x[1]'])
        expected_names = ['x[0]', 'x[2]', 'x[1]']
        self.assertEqual(projected_nlp.primals_names(), expected_names)
        self.assertTrue(
            np.array_equal(projected_nlp.get_primals(),
                           np.asarray([1.0, 4.0, 2.0])))
        self.assertTrue(
            np.array_equal(projected_nlp.evaluate_grad_objective(),
                           np.asarray([8.0, 9.0, 1.0])))
        self.assertEqual(projected_nlp.nnz_jacobian(), 5)
        self.assertEqual(projected_nlp.nnz_hessian_lag(), 6)

        J = projected_nlp.evaluate_jacobian()
        self.assertEqual(len(J.data), 5)
        denseJ = J.todense()
        expected_jac = np.asarray([[6.0, 1.0, 1.0], [1.0, 1.0, 0.0]])
        self.assertTrue(np.array_equal(denseJ, expected_jac))

        # test the use of "out"
        J = 0.0 * J
        projected_nlp.evaluate_jacobian(out=J)
        denseJ = J.todense()
        self.assertTrue(np.array_equal(denseJ, expected_jac))

        H = projected_nlp.evaluate_hessian_lag()
        self.assertEqual(len(H.data), 6)
        expectedH = np.asarray([[2.0, 1.0, 1.0], [1.0, 2.0, 0.0],
                                [1.0, 0.0, 0.0]])
        denseH = H.todense()
        self.assertTrue(np.array_equal(denseH, expectedH))

        # test the use of "out"
        H = 0.0 * H
        projected_nlp.evaluate_hessian_lag(out=H)
        denseH = H.todense()
        self.assertTrue(np.array_equal(denseH, expectedH))

        # now test an expansion
        projected_nlp = ProjectedNLP(nlp, ['x[0]', 'x[2]', 'y', 'x[1]'])
        expected_names = ['x[0]', 'x[2]', 'y', 'x[1]']
        self.assertEqual(projected_nlp.primals_names(), expected_names)
        np.testing.assert_equal(projected_nlp.get_primals(),
                                np.asarray([1.0, 4.0, np.nan, 2.0]))

        self.assertTrue(
            np.array_equal(projected_nlp.evaluate_grad_objective(),
                           np.asarray([8.0, 9.0, 0.0, 1.0])))
        self.assertEqual(projected_nlp.nnz_jacobian(), 5)
        self.assertEqual(projected_nlp.nnz_hessian_lag(), 6)

        J = projected_nlp.evaluate_jacobian()
        self.assertEqual(len(J.data), 5)
        denseJ = J.todense()
        expected_jac = np.asarray([[6.0, 1.0, 0.0, 1.0], [1.0, 1.0, 0.0, 0.0]])
        self.assertTrue(np.array_equal(denseJ, expected_jac))

        # test the use of "out"
        J = 0.0 * J
        projected_nlp.evaluate_jacobian(out=J)
        denseJ = J.todense()
        self.assertTrue(np.array_equal(denseJ, expected_jac))

        H = projected_nlp.evaluate_hessian_lag()
        self.assertEqual(len(H.data), 6)
        expectedH = np.asarray([[2.0, 1.0, 0.0, 1.0], [1.0, 2.0, 0.0, 0.0],
                                [0.0, 0.0, 0.0, 0.0], [1.0, 0.0, 0.0, 0.0]])
        denseH = H.todense()
        self.assertTrue(np.array_equal(denseH, expectedH))

        # test the use of "out"
        H = 0.0 * H
        projected_nlp.evaluate_hessian_lag(out=H)
        denseH = H.todense()
        self.assertTrue(np.array_equal(denseH, expectedH))

        # now test an expansion
        projected_nlp = ProjectedNLP(nlp, ['x[0]', 'x[2]'])
        expected_names = ['x[0]', 'x[2]']
        self.assertEqual(projected_nlp.primals_names(), expected_names)
        np.testing.assert_equal(projected_nlp.get_primals(),
                                np.asarray([1.0, 4.0]))

        self.assertTrue(
            np.array_equal(projected_nlp.evaluate_grad_objective(),
                           np.asarray([8.0, 9.0])))
        self.assertEqual(projected_nlp.nnz_jacobian(), 4)
        self.assertEqual(projected_nlp.nnz_hessian_lag(), 4)

        J = projected_nlp.evaluate_jacobian()
        self.assertEqual(len(J.data), 4)
        denseJ = J.todense()
        expected_jac = np.asarray([[6.0, 1.0], [1.0, 1.0]])
        self.assertTrue(np.array_equal(denseJ, expected_jac))

        # test the use of "out"
        J = 0.0 * J
        projected_nlp.evaluate_jacobian(out=J)
        denseJ = J.todense()
        self.assertTrue(np.array_equal(denseJ, expected_jac))

        H = projected_nlp.evaluate_hessian_lag()
        self.assertEqual(len(H.data), 4)
        expectedH = np.asarray([[2.0, 1.0], [1.0, 2.0]])
        denseH = H.todense()
        self.assertTrue(np.array_equal(denseH, expectedH))

        # test the use of "out"
        H = 0.0 * H
        projected_nlp.evaluate_hessian_lag(out=H)
        denseH = H.todense()
        self.assertTrue(np.array_equal(denseH, expectedH))
Пример #24
0
 def evaluate_hessian_equality_constraints(self):
     irow = np.asarray([0], dtype=np.int64)
     jcol = np.asarray([0], dtype=np.int64)
     data = np.asarray([self._equality_mult * 2.0], dtype=np.float64)
     hess = spa.coo_matrix((data, (irow, jcol)), shape=(1, 1))
     return hess
Пример #25
0
 def evaluate_hessian_outputs(self):
     irow = np.asarray([], dtype=np.int64)
     jcol = np.asarray([], dtype=np.int64)
     data = np.asarray([], dtype=np.float64)
     hess = spa.coo_matrix((data, (irow, jcol)), shape=(1, 1))
     return hess
Пример #26
0
 def evaluate_jacobian_outputs(self):
     irow = np.asarray([0], dtype=np.int64)
     jcol = np.asarray([0], dtype=np.int64)
     nonzeros = np.asarray([5.0], dtype=np.float64)
     jac = spa.coo_matrix((nonzeros, (irow, jcol)), shape=(1, 1))
     return jac
Пример #27
0
 def evaluate_jacobian_equality_constraints(self):
     irow = np.asarray([0], dtype=np.int64)
     jcol = np.asarray([0], dtype=np.int64)
     nonzeros = np.asarray([2 * self._u], dtype=np.float64)
     jac = spa.coo_matrix((nonzeros, (irow, jcol)), shape=(1, 1))
     return jac
Пример #28
0
 def evaluate_outputs(self):
     return np.asarray([5 * self._u])
Пример #29
0
 def get_equality_constraint_scaling_factors(self):
     return np.asarray([3.1, 3.2], dtype=np.float64)
Пример #30
0
 def get_output_constraint_scaling_factors(self):
     return np.asarray([4.1, 4.2])