def _reset(): build_indexed_BlockWVars.model = Block(concrete=True) build_indexed_BlockWVars.model.ndx = RangeSet(0, N - 1) build_indexed_BlockWVars.indexed_Block_rule = _indexed_Block_rule
def _reset(): build_indexed_Constraint.model = Block(concrete=True) build_indexed_Constraint.model.ndx = RangeSet(0, N - 1) build_indexed_Constraint.rule = _con_rule
def _create_using(self, model, **kwds): precision = kwds.pop('precision', 8) user_discretize = kwds.pop('discretize', set()) verbose = kwds.pop('verbose', False) M = model.clone() # TODO: if discretize is not empty, we must translate those # components over to the components on the cloned instance _discretize = {} if user_discretize: for _var in user_discretize: _v = M.find_component(_var.name) if _v.component() is _v: for _vv in _v.itervalues(): _discretize.setdefault(id(_vv), len(_discretize)) else: _discretize.setdefault(id(_v), len(_discretize)) # Iterate over all Constraints and identify the bilinear and # quadratic terms bilinear_terms = [] quadratic_terms = [] for constraint in M.component_map(Constraint, active=True).itervalues(): for cname, c in constraint._data.iteritems(): if c.body.polynomial_degree() != 2: continue self._collect_bilinear(c.body, bilinear_terms, quadratic_terms) # We want to find the (minimum?) number of variables to # discretize so that we cover all the bilinearities -- without # discretizing both sides of any single bilinear expression. # First step: figure out how many expressions each term appears # in _counts = {} for q in quadratic_terms: if not q[1].is_continuous(): continue _id = id(q[1]) if _id not in _counts: _counts[_id] = (q[1], set()) _counts[_id][1].add(_id) for bi in bilinear_terms: for i in (0, 1): if not bi[i + 1].is_continuous(): continue _id = id(bi[i + 1]) if _id not in _counts: _counts[_id] = (bi[i + 1], set()) _counts[_id][1].add(id(bi[2 - i])) _tmp_counts = dict(_counts) # First, remove the variables that the user wants to have discretized for _id in _discretize: for _i in _tmp_counts[_id][1]: if _i == _id: continue _tmp_counts[_i][1].remove(_id) del _tmp_counts[_id] # All quadratic terms must be discretized (?) #for q in quadratic_terms: # _id = id(q[1]) # if _id not in _tmp_counts: # continue # _discretize.setdefault(_id, len(_discretize)) # for _i in _tmp_counts[_id][1]: # if _i == _id: # continue # _tmp_counts[_i][1].remove(_id) # del _tmp_counts[_id] # Now pick a (minimal) subset of the terms in bilinear expressions while _tmp_counts: _ct, _id = max((len(_tmp_counts[i][1]), i) for i in _tmp_counts) if not _ct: break _discretize.setdefault(_id, len(_discretize)) for _i in list(_tmp_counts[_id][1]): if _i == _id: continue _tmp_counts[_i][1].remove(_id) del _tmp_counts[_id] # # Discretize things # # Define a block (namespace) for holding the disaggregated # variables and new constraints if False: # Set to true when the LP writer is fixed M._radix_linearization = Block() _block = M._radix_linearization else: _block = M _block.DISCRETIZATION = RangeSet(precision) _block.DISCRETIZED_VARIABLES = RangeSet(0, len(_discretize) - 1) _block.z = Var(_block.DISCRETIZED_VARIABLES, _block.DISCRETIZATION, within=Binary) _block.dv = Var(_block.DISCRETIZED_VARIABLES, bounds=(0, 2**-precision)) # Actually discretize the terms we have marked for discretization for _id, _idx in iteritems(_discretize): if verbose: logger.info("Discretizing variable %s as %s" % (_counts[_id][0].name, _idx)) self._discretize_variable(_block, _counts[_id][0], _idx) _known_bilinear = {} # For each quadratic term, if it hasn't been discretized / # generated, do so, and remember the resulting W term for later # use... #for _expr, _x1 in quadratic_terms: # self._discretize_term( _expr, _x1, _x1, # _block, _discretize, _known_bilinear ) # For each bilinear term, if it hasn't been discretized / # generated, do so, and remember the resulting W term for later # use... for _expr, _x1, _x2 in bilinear_terms: self._discretize_term(_expr, _x1, _x2, _block, _discretize, _known_bilinear) # Return the discretized instance! return M
def _reset(): build_indexed_Var.model = Block(concrete=True) build_indexed_Var.model.ndx = RangeSet(0, N - 1) build_indexed_Var.bounds_rule = _bounds_rule build_indexed_Var.initialize_rule = _initialize_rule
def create_model(self): """ Create and return the mathematical model. """ if options.DEBUG: logging.info("Creating model for day %d" % self.day_id) # Obtain the orders book book = self.orders complexOrders = self.complexOrders # Create the optimization model model = ConcreteModel() model.periods = Set(initialize=book.periods) maxPeriod = max(book.periods) model.bids = Set(initialize=range(len(book.bids))) model.L = Set(initialize=book.locations) model.sBids = Set(initialize=[ i for i in range(len(book.bids)) if book.bids[i].type == 'SB' ]) model.bBids = Set(initialize=[ i for i in range(len(book.bids)) if book.bids[i].type == 'BB' ]) model.cBids = RangeSet(len(complexOrders)) # Complex orders model.C = RangeSet(len(self.connections)) model.directions = RangeSet(2) # 1 == up, 2 = down TODO: clean # Variables model.xs = Var(model.sBids, domain=Reals, bounds=(0.0, 1.0)) # Single period bids acceptance model.xb = Var(model.bBids, domain=Binary) # Block bids acceptance model.xc = Var(model.cBids, domain=Binary) # Complex orders acceptance model.pi = Var(model.L * model.periods, domain=Reals, bounds=self.priceCap) # Market prices model.s = Var(model.bids, domain=NonNegativeReals) # Bids model.sc = Var(model.cBids, domain=NonNegativeReals) # complex orders model.complexVolume = Var(model.cBids, model.periods, domain=Reals) # Bids model.pi_lg_up = Var(model.cBids * model.periods, domain=NonNegativeReals) # Market prices model.pi_lg_down = Var(model.cBids * model.periods, domain=NonNegativeReals) # Market prices model.pi_lg = Var(model.cBids * model.periods, domain=Reals) # Market prices def flowBounds(m, c, d, t): capacity = self.connections[c - 1].capacity_up[t] if d == 1 else \ self.connections[c - 1].capacity_down[t] return (0, capacity) model.f = Var(model.C * model.directions * model.periods, domain=NonNegativeReals, bounds=flowBounds) model.u = Var(model.C * model.directions * model.periods, domain=NonNegativeReals) # Objective def primalObj(m): # Single period bids cost expr = summation( {i: book.bids[i].price * book.bids[i].volume for i in m.sBids}, m.xs) # Block bids cost expr += summation( { i: book.bids[i].price * sum(book.bids[i].volumes.values()) for i in m.bBids }, m.xb) return -expr if options.PRIMAL and not options.DUAL: model.obj = Objective(rule=primalObj, sense=maximize) def primalDualObj(m): return primalObj(m) + sum(1e-5 * m.xc[i] for i in model.cBids) if options.PRIMAL and options.DUAL: model.obj = Objective(rule=primalDualObj, sense=maximize) # Complex order constraint if options.PRIMAL and options.DUAL: model.deactivate_suborders = ConstraintList() for o in model.cBids: sub_ids = complexOrders[o - 1].ids curves = complexOrders[o - 1].curves for id in sub_ids: bid = book.bids[id] if bid.period <= complexOrders[o - 1].SSperiods and bid.price == \ curves[bid.period].bids[0].price: pass # This bid, first step of the cruve in the scheduled stop periods, is not automatically deactivated when MIC constraint is not satisfied else: model.deactivate_suborders.add( model.xs[id] <= model.xc[o]) # Ramping constraints for complex orders def complex_volume_def_rule(m, o, p): sub_ids = complexOrders[o - 1].ids return m.complexVolume[o, p] == sum(m.xs[i] * book.bids[i].volume for i in sub_ids if book.bids[i].period == p) if options.PRIMAL: model.complex_volume_def = Constraint(model.cBids, model.periods, rule=complex_volume_def_rule) def complex_lg_down_rule(m, o, p): if p + 1 > maxPeriod or complexOrders[o - 1].ramp_down == None: return Constraint.Skip else: return m.complexVolume[o, p] - m.complexVolume[o, p + 1] <= complexOrders[ o - 1].ramp_down * \ m.xc[o] if options.PRIMAL and options.APPLY_LOAD_GRADIENT: model.complex_lg_down = Constraint(model.cBids, model.periods, rule=complex_lg_down_rule) def complex_lg_up_rule(m, o, p): if p + 1 > maxPeriod or complexOrders[o - 1].ramp_up == None: return Constraint.Skip else: return m.complexVolume[o, p + 1] - m.complexVolume[ o, p] <= complexOrders[o - 1].ramp_up if options.PRIMAL and options.APPLY_LOAD_GRADIENT: model.complex_lg_up = Constraint( model.cBids, model.periods, rule=complex_lg_up_rule) # Balance constraint # Energy balance constraints balanceExpr = {l: {t: 0.0 for t in model.periods} for l in model.L} for i in model.sBids: # Simple bids bid = book.bids[i] balanceExpr[bid.location][bid.period] += bid.volume * model.xs[i] for i in model.bBids: # Block bids bid = book.bids[i] for t, v in bid.volumes.items(): balanceExpr[bid.location][t] += v * model.xb[i] def balanceCstr(m, l, t): export = 0.0 for c in model.C: if self.connections[c - 1].from_id == l: export += m.f[c, 1, t] - m.f[c, 2, t] elif self.connections[c - 1].to_id == l: export += m.f[c, 2, t] - m.f[c, 1, t] return balanceExpr[l][t] == export if options.PRIMAL: model.balance = Constraint(model.L * book.periods, rule=balanceCstr) # Surplus of single period bids def sBidSurplus(m, i): # For the "usual" step orders bid = book.bids[i] if i in self.plain_single_orders: return m.s[i] >= (m.pi[bid.location, bid.period] - bid.price) * bid.volume else: return Constraint.Skip if options.DUAL: model.sBidSurplus = Constraint(model.sBids, rule=sBidSurplus) # Surplus definition for complex suborders accounting for impact of load gradient condition if options.DUAL: model.complex_sBidSurplus = ConstraintList() for o in model.cBids: sub_ids = complexOrders[o - 1].ids l = complexOrders[o - 1].location for i in sub_ids: bid = book.bids[i] model.complex_sBidSurplus.add( model.s[i] >= (model.pi[l, bid.period] + model.pi_lg[o, bid.period] - bid.price) * bid.volume) def LG_price_def_rule(m, o, p): l = complexOrders[o - 1].location exp = 0 if options.APPLY_LOAD_GRADIENT: D = complexOrders[o - 1].ramp_down U = complexOrders[o - 1].ramp_up if D is not None: exp += (m.pi_lg_down[o, p - 1] if p > 1 else 0) - (m.pi_lg_down[o, p] if p < maxPeriod else 0) if U is not None: exp -= (m.pi_lg_up[o, p - 1] if p > 1 else 0) - (m.pi_lg_up[o, p] if p < maxPeriod else 0) return m.pi_lg[o, p] == exp if options.DUAL: model.LG_price_def = Constraint(model.cBids, model.periods, rule=LG_price_def_rule) # Surplus of block bids def bBidSurplus(m, i): bid = book.bids[i] bidVolume = -sum(bid.volumes.values()) bigM = (self.priceCap[1] - self.priceCap[0]) * bidVolume # FIXME tighten BIGM return m.s[i] + sum([ m.pi[bid.location, t] * -v for t, v in bid.volumes.items() ]) >= bid.cost * bidVolume + bigM * (1 - m.xb[i]) if options.DUAL: model.bBidSurplus = Constraint(model.bBids, rule=bBidSurplus) # Surplus of complex orders def cBidSurplus(m, o): complexOrder = complexOrders[o - 1] sub_ids = complexOrder.ids if book.bids[sub_ids[0]].volume > 0: # supply bigM = sum((self.priceCap[1] - book.bids[i].price) * book.bids[i].volume for i in sub_ids) else: bigM = sum((book.bids[i].price - self.priceCap[0]) * book.bids[i].volume for i in sub_ids) return m.sc[o] + bigM * (1 - m.xc[o]) >= sum(m.s[i] for i in sub_ids) if options.DUAL: model.cBidSurplus = Constraint(model.cBids, rule=cBidSurplus) # Surplus of complex orders def cBidSurplus_2(m, o): complexOrder = complexOrders[o - 1] expr = 0 for i in complexOrder.ids: bid = book.bids[i] if (bid.period <= complexOrder.SSperiods) and ( bid.price == complexOrder.curves[bid.period].bids[0].price): expr += m.s[i] return m.sc[o] >= expr if options.DUAL: model.cBidSurplus_2 = Constraint( model.cBids, rule=cBidSurplus_2) # MIC constraint def cMIC(m, o): complexOrder = complexOrders[o - 1] if complexOrder.FT == 0 and complexOrder.VT == 0: return Constraint.Skip expr = 0 bigM = complexOrder.FT for i in complexOrder.ids: bid = book.bids[i] if (bid.period <= complexOrder.SSperiods) and ( bid.price == complexOrder.curves[bid.period].bids[0].price): bigM += (bid.volume * (self.priceCap[1] - bid.price) ) # FIXME assumes order is supply expr += bid.volume * m.xs[i] * (bid.price - complexOrder.VT) return m.sc[o] + expr + bigM * (1 - m.xc[o]) >= complexOrder.FT if options.DUAL and options.PRIMAL: model.cMIC = Constraint(model.cBids, rule=cMIC) # Dual connections capacity def dualCapacity(m, c, t): exportPrices = 0.0 for l in m.L: if l == self.connections[c - 1].from_id: exportPrices += m.pi[l, t] elif l == self.connections[c - 1].to_id: exportPrices -= m.pi[l, t] return m.u[c, 1, t] - m.u[c, 2, t] + exportPrices == 0.0 if options.DUAL: model.dualCapacity = Constraint(model.C * model.periods, rule=dualCapacity) # Dual optimality def dualObj(m): dualObj = summation(m.s) + summation(m.sc) for o in m.cBids: sub_ids = complexOrders[o - 1].ids for id in sub_ids: dualObj -= m.s[ id] # Remove contribution of complex suborders which were accounted for in prevous summation over single bids if options.APPLY_LOAD_GRADIENT: ramp_down = complexOrders[o - 1].ramp_down ramp_up = complexOrders[o - 1].ramp_up for p in m.periods: if p == maxPeriod: continue if ramp_down is not None: dualObj += ramp_down * m.pi_lg_down[ o, p] # Add contribution of load gradient if ramp_up is not None: dualObj += ramp_up * m.pi_lg_up[ o, p] # Add contribution of load gradient for c in model.C: for t in m.periods: dualObj += self.connections[c - 1].capacity_up[t] * m.u[c, 1, t] dualObj += self.connections[c - 1].capacity_down[t] * m.u[c, 2, t] return dualObj if not options.PRIMAL: model.obj = Objective(rule=dualObj, sense=minimize) def primalEqualsDual(m): return primalObj(m) >= dualObj(m) if options.DUAL and options.PRIMAL: model.primalEqualsDual = Constraint(rule=primalEqualsDual) self.model = model