Пример #1
0
    def _create_integrals(self):
        _model = self._model
        _parameters = self._parameters

        def _force_expr(_mod, _pos):
            # to offset for having optimum at the target velocity
            steady_motor_force_coef = 2 * _mod.air_fric_coef * _mod.v_target ** 3  # THERE SHOULD BE A FACTOR 2 IN THERE BUT IF IT'S THERE IT MESSES IT UP ARGH. AAAAARGH i found it.

            # add a constant to show cost departure from equilibrium rather than abs
            cost_balancer = (_mod.air_fric_coef * _mod.v_target ** 2
                             - _mod.rolling_friction[_pos]
                             - _mod.gravity[_pos]
                             + steady_motor_force_coef / _mod.v_target)
            return (_mod.motor_force[_pos] + steady_motor_force_coef * _mod.v_inv[_pos]
                    - cost_balancer
                    if _pos < _parameters["episode_dist_end"] else 0)

        # for soft constraint on velocity
        _model.v_softlim = env.Var(_model.x_local, domain=env.Reals,
                                   initialize=BaseModel._create_const_rule(0))
        _model.v_softconstraint = env.Constraint(_model.x_local,
                                                 rule=BaseModel._create_soft_constraint_fn(
                                                     _model.v,
                                                     _model.v_softlim,
                                                     (_model.v_soft_min,
                                                      _model.v_soft_max)))

        def _motor_smooth_expr(_mod, _pos):
            return (_mod.d2m_dx2[_pos] ** 2
                    + _mod.d2b_dx2[_pos] ** 2
                    if _pos < _parameters["episode_dist_end"] else 0)

        def _vel_expr(_mod, _pos):
            return (abs(_mod.v_softlim[_pos])**2 * _mod.v_inv[_pos]
                    if _pos < _parameters["episode_dist_end"] else 0)

        def _v_2ndtimederiv_expr(_mod, _pos):
            return (_mod.v[_pos]*(_mod.dv_dx[_pos]**2 +
                                  _mod.v[_pos] * _mod.dv_dx[_pos].derivative(_mod.x_local)
                                  )**2
                    if _pos < _parameters["episode_dist_end"] else 0)

        _model.energy_integral      = dae.Integral(_model.x_local, wrt=_model.x_local,
                                                   rule=_force_expr)
        _model.velocity_integral    = dae.Integral(_model.x_local, wrt=_model.x_local,
                                                   rule=_vel_expr)
        _model.acc_smooth_integral  = dae.Integral(_model.x_local, wrt=_model.x_local,
                                                   rule=_v_2ndtimederiv_expr)
        _model.motor_smooth_integral= dae.Integral(_model.x_local, wrt=_model.x_local,
                                                   rule=_motor_smooth_expr)

        _model.inst_cost = env.Expression(_model.x_local,
                                          rule=lambda _mod, _pos: (
                                              _mod.motor_cost_coef * _force_expr(_mod, _pos)
                                              + _mod.vel_cost_coef * _vel_expr(_mod, _pos)
                                              + _mod.acc_cost_coef * _v_2ndtimederiv_expr(_mod, _pos)
                                              + _mod.motor_smooth_coef * _motor_smooth_expr(_mod, _pos)
                                              # to compensate for the cost compensation
                                              - _mod.gravity[_pos]
                                              - _mod.rolling_friction[_pos]))
Пример #2
0
def create_problem(begin, end):

    m = aml.ConcreteModel()
    m.t = dae.ContinuousSet(bounds=(begin, end))

    m.x = aml.Var([1, 2], m.t, initialize=1.0)
    m.u = aml.Var(m.t, bounds=(None, 0.8), initialize=0)

    m.xdot = dae.DerivativeVar(m.x)

    def _x1dot(M, i):
        if i == M.t.first():
            return aml.Constraint.Skip
        return M.xdot[1,
                      i] == (1 - M.x[2, i]**2) * M.x[1, i] - M.x[2, i] + M.u[i]

    m.x1dotcon = aml.Constraint(m.t, rule=_x1dot)

    def _x2dot(M, i):
        if i == M.t.first():
            return aml.Constraint.Skip
        return M.xdot[2, i] == M.x[1, i]

    m.x2dotcon = aml.Constraint(m.t, rule=_x2dot)

    def _init(M):
        t0 = M.t.first()
        yield M.x[1, t0] == 0
        yield M.x[2, t0] == 1
        yield aml.ConstraintList.End

    m.init_conditions = aml.ConstraintList(rule=_init)

    def _int_rule(M, i):
        return M.x[1, i]**2 + M.x[2, i]**2 + M.u[i]**2

    m.integral = dae.Integral(m.t, wrt=m.t, rule=_int_rule)

    m.obj = aml.Objective(expr=m.integral)

    m.init_condition_names = ['init_conditions']
    return m
Пример #3
0
    def build_burgers_model(self,
                            nfe_x=50,
                            nfe_t=50,
                            start_t=0,
                            end_t=1,
                            add_init_conditions=True):
        dt = (end_t - start_t) / float(nfe_t)

        start_x = 0
        end_x = 1
        dx = (end_x - start_x) / float(nfe_x)

        m = pe.Block(concrete=True)
        m.omega = pe.Param(initialize=0.02)
        m.v = pe.Param(initialize=0.01)
        m.r = pe.Param(initialize=0)

        m.x = dae.ContinuousSet(bounds=(start_x, end_x))
        m.t = dae.ContinuousSet(bounds=(start_t, end_t))

        m.y = pe.Var(m.x, m.t)
        m.dydt = dae.DerivativeVar(m.y, wrt=m.t)
        m.dydx = dae.DerivativeVar(m.y, wrt=m.x)
        m.dydx2 = dae.DerivativeVar(m.y, wrt=(m.x, m.x))

        m.u = pe.Var(m.x, m.t)

        def _y_init_rule(m, x):
            if x <= 0.5 * end_x:
                return 1
            return 0

        m.y0 = pe.Param(m.x, default=_y_init_rule)

        def _upper_x_bound(m, t):
            return m.y[end_x, t] == 0

        m.upper_x_bound = pe.Constraint(m.t, rule=_upper_x_bound)

        def _lower_x_bound(m, t):
            return m.y[start_x, t] == 0

        m.lower_x_bound = pe.Constraint(m.t, rule=_lower_x_bound)

        def _upper_x_ubound(m, t):
            return m.u[end_x, t] == 0

        m.upper_x_ubound = pe.Constraint(m.t, rule=_upper_x_ubound)

        def _lower_x_ubound(m, t):
            return m.u[start_x, t] == 0

        m.lower_x_ubound = pe.Constraint(m.t, rule=_lower_x_ubound)

        def _lower_t_bound(m, x):
            if x == start_x or x == end_x:
                return pe.Constraint.Skip
            return m.y[x, start_t] == m.y0[x]

        def _lower_t_ubound(m, x):
            if x == start_x or x == end_x:
                return pe.Constraint.Skip
            return m.u[x, start_t] == 0

        if add_init_conditions:
            m.lower_t_bound = pe.Constraint(m.x, rule=_lower_t_bound)
            m.lower_t_ubound = pe.Constraint(m.x, rule=_lower_t_ubound)

        # PDE
        def _pde(m, x, t):
            if t == start_t or x == end_x or x == start_x:
                e = pe.Constraint.Skip
            else:
                # print(foo.last_t, t-dt, abs(foo.last_t - (t-dt)))
                # assert math.isclose(foo.last_t, t - dt, abs_tol=1e-6)
                e = m.dydt[x, t] - m.v * m.dydx2[x, t] + m.dydx[x, t] * m.y[
                    x, t] == m.r + m.u[x, self.last_t]
            self.last_t = t
            return e

        m.pde = pe.Constraint(m.x, m.t, rule=_pde)

        # Discretize Model
        disc = pe.TransformationFactory('dae.finite_difference')
        disc.apply_to(m, nfe=nfe_t, wrt=m.t, scheme='BACKWARD')
        disc.apply_to(m, nfe=nfe_x, wrt=m.x, scheme='CENTRAL')

        # Solve control problem using Pyomo.DAE Integrals
        def _intX(m, x, t):
            return (m.y[x, t] - m.y0[x])**2 + m.omega * m.u[x, t]**2

        m.intX = dae.Integral(m.x, m.t, wrt=m.x, rule=_intX)

        def _intT(m, t):
            return m.intX[t]

        m.intT = dae.Integral(m.t, wrt=m.t, rule=_intT)

        def _obj(m):
            e = 0.5 * m.intT
            for x in sorted(m.x):
                if x == start_x or x == end_x:
                    pass
                else:
                    e += 0.5 * 0.5 * dx * dt * m.omega * m.u[x, start_t]**2
            return e

        m.obj = pe.Objective(rule=_obj)

        return m
def motion_model(tf):
    """Motion model for car maneuvering task from given intial
        conditions to final conditions.

    Parameters
    ----------
    tf : float
        Final time of the maneuvering.

    Returns
    -------
    m
        A pyomo model with all the variables and constraints described.

    """

    m = pyo.ConcreteModel()
    m.time = pyod.ContinuousSet(bounds=(0, tf))

    # Append dependent variables
    dependent_variables = {
        'x': (0, None),
        'y': (0, None),
        't': (None, None),
        'u': (None, None),
        'p': (-0.5, 0.5)
    }
    for key, value in dependent_variables.items():
        m.add_component(key, pyo.Var(m.time, bounds=value))

    # Append derivatives
    derivative = {
        'x': 'dxdt',
        'y': 'dydt',
        't': 'dtdt',
        'u': 'dudt',
        'p': 'dpdt'
    }
    for var in m.component_objects(pyo.Var, active=True):
        m.add_component(derivative[str(var)],
                        pyod.DerivativeVar(var, wrt=m.time))

    # Append control variables
    control_inputs = {'a': (None, None), 'v': (-0.1, 0.1)}
    for key, value in control_inputs.items():
        m.add_component(key, pyo.Var(m.time, bounds=value))

    # Append differential equations as constraints
    L = 2
    m.ode_x = pyo.Constraint(
        m.time,
        rule=lambda m, time: m.dxdt[time] == m.u[time] * pyo.cos(m.t[time]))
    m.ode_y = pyo.Constraint(
        m.time,
        rule=lambda m, time: m.dydt[time] == m.u[time] * pyo.sin(m.t[time]))
    m.ode_t = pyo.Constraint(m.time,
                             rule=lambda m, time: m.dtdt[time] == m.u[time] *
                             pyo.tan(m.p[time]) / L)
    m.ode_u = pyo.Constraint(m.time,
                             rule=lambda m, time: m.dudt[time] == m.a[time])
    m.ode_p = pyo.Constraint(m.time,
                             rule=lambda m, time: m.dpdt[time] == m.v[time])

    # Add final and initial values
    m.ic = pyo.ConstraintList()
    intial_condition = {'x': 0, 'y': 0, 't': 0, 'u': 0, 'p': 0, 'a': 0, 'v': 0}
    for i, var in enumerate(m.component_objects(pyo.Var, active=True)):
        m.ic.add(var[0] == intial_condition[str(var)])

    m.fc = pyo.ConstraintList()
    final_condition = {'x': 0, 'y': 20, 't': 0, 'u': 0, 'p': 0, 'a': 0, 'v': 0}
    for i, var in enumerate(m.component_objects(pyo.Var, active=True)):
        m.fc.add(var[tf] == final_condition[str(var)])

    # Objective function
    m.integral = pyod.Integral(
        m.time,
        wrt=m.time,
        rule=lambda m, time: 0.2 * m.p[time]**2 + m.a[time]**2 + m.v[time]**2)
    m.obj = pyo.Objective(expr=m.integral)

    return m