Пример #1
0
    def emit_unpack_instruction(self, *, loop_indices=None):
        pack = self.pack(loop_indices)
        if self.access is READ:
            return ()
        else:
            if self.interior_horizontal:
                _shape = (2,)
            else:
                _shape = (1,)
            offset = 0
            for p in self.packs:
                shape = _shape + p.map_.shape[1:] + p.outer.shape[1:]
                mi = MultiIndex(*(Index(e) for e in shape))
                rvalue, mask = p._rvalue(mi, loop_indices)
                extents = [numpy.prod(shape[i+1:], dtype=numpy.int32) for i in range(len(shape))]
                index = reduce(Sum, [Product(i, Literal(IntType.type(e), casting=False)) for i, e in zip(mi, extents)], Literal(IntType.type(0), casting=False))
                indices = MultiIndex(Sum(index, Literal(IntType.type(offset), casting=False)),)
                rhs = Indexed(pack, indices)
                offset += numpy.prod(shape, dtype=numpy.int32)

                if self.access in {INC, MIN, MAX}:
                    op = {INC: Sum,
                          MIN: Min,
                          MAX: Max}[self.access]
                    rhs = op(rvalue, rhs)

                acc = Accumulate(UnpackInst(), rvalue, rhs)
                if mask is None:
                    yield acc
                else:
                    yield When(mask, acc)
Пример #2
0
 def loop_index(self):
     n = self._loop_index
     if self.subset:
         n = Materialise(PackInst(),
                         Indexed(self._subset_indices, MultiIndex(n)),
                         MultiIndex())
     return n
Пример #3
0
    def emit_unpack_instruction(self, *,
                                loop_indices=None):
        pack = self.pack(loop_indices=loop_indices)
        mixed_to_local = []
        local_to_global = []
        roffset = 0
        for row in self.packs:
            coffset = 0
            for p in row:
                rshape, cshape = p.shapes
                pack_ = p.pack(loop_indices=loop_indices, only_declare=True)
                rindices = tuple(Index(e) for e in rshape)
                cindices = tuple(Index(e) for e in cshape)
                indices = MultiIndex(*rindices, *cindices)
                lvalue = Indexed(pack_, indices)
                rextents = [numpy.prod(rshape[i+1:], dtype=numpy.int32) for i in range(len(rshape))]
                cextents = [numpy.prod(cshape[i+1:], dtype=numpy.int32) for i in range(len(cshape))]
                flat_row_index = reduce(Sum, [Product(i, Literal(IntType.type(e), casting=False))
                                              for i, e in zip(rindices, rextents)],
                                        Literal(IntType.type(0), casting=False))
                flat_col_index = reduce(Sum, [Product(i, Literal(IntType.type(e), casting=False))
                                              for i, e in zip(cindices, cextents)],
                                        Literal(IntType.type(0), casting=False))

                flat_index = MultiIndex(Sum(flat_row_index, Literal(IntType.type(roffset), casting=False)),
                                        Sum(flat_col_index, Literal(IntType.type(coffset), casting=False)))
                rvalue = Indexed(pack, flat_index)
                # Copy from local mixed element tensor into non-mixed
                mixed_to_local.append(Accumulate(PreUnpackInst(), lvalue, rvalue))
                # And into global matrix.
                local_to_global.extend(p.emit_unpack_instruction(loop_indices=loop_indices))
                coffset += numpy.prod(cshape, dtype=numpy.int32)
            roffset += numpy.prod(rshape, dtype=numpy.int32)
        yield from iter(mixed_to_local)
        yield from iter(local_to_global)
Пример #4
0
 def layer_extents(self):
     if self.iteration_region == ON_BOTTOM:
         start = Indexed(self._layers_array,
                         (self._layer_index, FixedIndex(0)))
         end = Sum(
             Indexed(self._layers_array,
                     (self._layer_index, FixedIndex(0))),
             Literal(IntType.type(1)))
     elif self.iteration_region == ON_TOP:
         start = Sum(
             Indexed(self._layers_array,
                     (self._layer_index, FixedIndex(1))),
             Literal(IntType.type(-2)))
         end = Sum(
             Indexed(self._layers_array,
                     (self._layer_index, FixedIndex(1))),
             Literal(IntType.type(-1)))
     elif self.iteration_region == ON_INTERIOR_FACETS:
         start = Indexed(self._layers_array,
                         (self._layer_index, FixedIndex(0)))
         end = Sum(
             Indexed(self._layers_array,
                     (self._layer_index, FixedIndex(1))),
             Literal(IntType.type(-2)))
     elif self.iteration_region == ALL:
         start = Indexed(self._layers_array,
                         (self._layer_index, FixedIndex(0)))
         end = Sum(
             Indexed(self._layers_array,
                     (self._layer_index, FixedIndex(1))),
             Literal(IntType.type(-1)))
     else:
         raise ValueError("Unknown iteration region")
     return (Materialise(PackInst(), start, MultiIndex()),
             Materialise(PackInst(), end, MultiIndex()))
Пример #5
0
    def pack(self, loop_indices=None):
        if self.map_ is None:
            return None

        if hasattr(self, "_pack"):
            return self._pack

        if self.interior_horizontal:
            shape = (2, )
        else:
            shape = (1, )

        shape = shape + self.map_.shape[1:]
        if self.view_index is None:
            shape = shape + self.outer.shape[1:]

        if self.access in {INC, WRITE}:
            val = Zero((), self.outer.dtype)
            multiindex = MultiIndex(*(Index(e) for e in shape))
            self._pack = Materialise(PackInst(), val, multiindex)
        elif self.access in {READ, RW, MIN, MAX}:
            multiindex = MultiIndex(*(Index(e) for e in shape))
            expr, mask = self._rvalue(multiindex, loop_indices=loop_indices)
            if mask is not None:
                expr = When(mask, expr)
            self._pack = Materialise(PackInst(), expr, multiindex)
        else:
            raise ValueError(
                "Don't know how to initialise pack for '%s' access" %
                self.access)
        return self._pack
Пример #6
0
    def pack(self, loop_indices=None):
        if hasattr(self, "_pack"):
            return self._pack

        shape = self.outer.shape
        if self.access is READ:
            # No packing required
            return self.outer
        # We don't need to pack for memory layout, however packing
        # globals that are written is required such that subsequent
        # vectorisation loop transformations privatise these reduction
        # variables. The extra memory movement cost is minimal.
        loop_indices = self.pick_loop_indices(*loop_indices)
        if self.init_with_zero:
            also_zero = {MIN, MAX}
        else:
            also_zero = set()
        if self.access in {INC, WRITE} | also_zero:
            val = Zero((), self.outer.dtype)
            multiindex = MultiIndex(*(Index(e) for e in shape))
            self._pack = Materialise(PackInst(loop_indices), val, multiindex)
        elif self.access in {READ, RW, MIN, MAX} - also_zero:
            multiindex = MultiIndex(*(Index(e) for e in shape))
            expr = Indexed(self.outer, multiindex)
            self._pack = Materialise(PackInst(loop_indices), expr, multiindex)
        else:
            raise ValueError("Don't know how to initialise pack for '%s' access" % self.access)
        return self._pack
Пример #7
0
    def emit_unpack_instruction(self, *, loop_indices=None):
        from pyop2.codegen.rep2loopy import register_petsc_function
        ((rdim, cdim), ), = self.dims
        rmap, cmap = self.maps
        n, layer = self.pick_loop_indices(*loop_indices)
        unroll = any(m.unroll for m in self.maps)
        if unroll:
            maps = [map_.indexed_vector(n, (dim, ), layer=layer)
                    for map_, dim in zip(self.maps, (rdim, cdim))]
        else:
            maps = []
            for map_ in self.maps:
                i = Index()
                if self.interior_horizontal:
                    f = Index(2)
                else:
                    f = Index(1)
                maps.append(map_.indexed((n, i, f), layer=layer))
        (rmap, cmap), (rindices, cindices) = zip(*maps)

        pack = self.pack(loop_indices=loop_indices)
        name = self.insertion_names[unroll]
        if unroll:
            # The shape of MatPack is
            # (row, cols) if it has vector BC
            # (block_rows, row_cmpt, block_cols, col_cmpt) otherwise
            free_indices = rindices + cindices
            pack = Indexed(pack, free_indices)
        else:
            free_indices = rindices + (Index(), ) + cindices + (Index(), )
            pack = Indexed(pack, free_indices)

        access = Symbol({WRITE: "INSERT_VALUES",
                         INC: "ADD_VALUES"}[self.access])

        rextent = Extent(MultiIndex(*rindices))
        cextent = Extent(MultiIndex(*cindices))

        register_petsc_function(name)

        call = FunctionCall(name,
                            UnpackInst(),
                            (self.access, READ, READ, READ, READ, READ, READ),
                            free_indices,
                            self.outer,
                            rextent,
                            rmap,
                            cextent,
                            cmap,
                            pack,
                            access)

        yield call
Пример #8
0
    def pack(self, loop_indices=None):
        if hasattr(self, "_pack"):
            return self._pack

        flat_shape = numpy.sum(
            tuple(
                numpy.prod(p.map_.shape[1:] + p.outer.shape[1:])
                for p in self.packs))

        if self.interior_horizontal:
            _shape = (2, )
            flat_shape *= 2
        else:
            _shape = (1, )

        if self.access in {INC, WRITE}:
            val = Zero((), self.dtype)
            multiindex = MultiIndex(Index(flat_shape))
            self._pack = Materialise(PackInst(), val, multiindex)
        elif self.access in {READ, RW, MIN, MAX}:
            multiindex = MultiIndex(Index(flat_shape))
            val = Zero((), self.dtype)
            expressions = []
            offset = 0
            for p in self.packs:
                shape = _shape + p.map_.shape[1:] + p.outer.shape[1:]
                mi = MultiIndex(*(Index(e) for e in shape))
                expr, mask = p._rvalue(mi, loop_indices)
                extents = [
                    numpy.prod(shape[i + 1:], dtype=numpy.int32)
                    for i in range(len(shape))
                ]
                index = reduce(Sum, [
                    Product(i, Literal(IntType.type(e), casting=False))
                    for i, e in zip(mi, extents)
                ], Literal(IntType.type(0), casting=False))
                indices = MultiIndex(
                    Sum(index, Literal(IntType.type(offset), casting=False)), )
                offset += numpy.prod(shape, dtype=numpy.int32)
                if mask is not None:
                    expr = When(mask, expr)
                expressions.append(expr)
                expressions.append(indices)

            self._pack = Materialise(PackInst(), val, multiindex, *expressions)
        else:
            raise ValueError(
                "Don't know how to initialise pack for '%s' access" %
                self.access)

        return self._pack
Пример #9
0
    def indexed(self, multiindex, layer=None):
        n, i, f = multiindex
        if layer is not None and self.offset is not None:
            # For extruded mesh, prefetch the indirections for each map, so that they don't
            # need to be recomputed. Different f values need to be treated separately.
            key = f.extent
            if key is None:
                key = 1
            if key not in self.prefetch:
                bottom_layer, _ = self.layer_bounds
                offset_extent, = self.offset.shape
                j = Index(offset_extent)
                base = Indexed(self.values, (n, j))
                if f.extent:
                    k = Index(f.extent)
                else:
                    k = Index(1)
                offset = Sum(
                    Sum(layer, Product(Literal(numpy.int32(-1)),
                                       bottom_layer)), k)
                offset = Product(offset, Indexed(self.offset, (j, )))
                self.prefetch[key] = Materialise(PackInst(), Sum(base, offset),
                                                 MultiIndex(k, j))

            return Indexed(self.prefetch[key], (f, i)), (f, i)
        else:
            assert f.extent == 1 or f.extent is None
            base = Indexed(self.values, (n, i))
            return base, (f, i)
Пример #10
0
 def bottom_layer(self):
     if self.iteration_region == ON_TOP:
         return Materialise(PackInst(),
                            Indexed(self._layers_array, (self._layer_index, FixedIndex(0))),
                            MultiIndex())
     else:
         start, _ = self.layer_extents
         return start
Пример #11
0
 def emit_pack_instruction(self, *, loop_indices=None):
     shape = self.outer.shape
     if self.access is WRITE:
         zero = Zero((), self.outer.dtype)
         multiindex = MultiIndex(*(Index(e) for e in shape))
         yield Accumulate(PackInst(), Indexed(self.outer, multiindex), zero)
     else:
         return ()
Пример #12
0
 def top_layer(self):
     if self.iteration_region == ON_BOTTOM:
         return Materialise(PackInst(),
                            Sum(Indexed(self._layers_array, (self._layer_index, FixedIndex(1))),
                                Literal(IntType.type(-1))),
                            MultiIndex())
     else:
         _, end = self.layer_extents
         return end
Пример #13
0
 def indexed_vector(self, n, shape, layer=None):
     shape = self.shape[1:] + shape
     if self.interior_horizontal:
         shape = (2, ) + shape
     else:
         shape = (1, ) + shape
     f, i, j = (Index(e) for e in shape)
     base, (f, i) = self.indexed((n, i, f), layer=layer)
     init = Sum(Product(base, Literal(numpy.int32(j.extent))), j)
     pack = Materialise(PackInst(), init, MultiIndex(f, i, j))
     multiindex = tuple(Index(e) for e in pack.shape)
     return Indexed(pack, multiindex), multiindex
Пример #14
0
    def _rvalue(self, multiindex, loop_indices=None):
        """Returns indexed Dat and masking condition to apply to reads/writes.

        If the masking condition is None, no mask is applied,
        otherwise the pack/unpack will be wrapped in When(mask, expr).
        This is used for the case where maps might have negative entries.
        """
        f, i, *j = multiindex
        n, layer = self.pick_loop_indices(*loop_indices)
        if self.view_index is not None:
            j = tuple(j) + tuple(FixedIndex(i) for i in self.view_index)
        map_, (f, i) = self.map_.indexed((n, i, f), layer=layer)
        return Indexed(self.outer, MultiIndex(map_, *j)), self._mask(map_)
Пример #15
0
    def indexed(self, multiindex, layer=None):
        n, i, f = multiindex
        if layer is not None and self.offset is not None:
            # For extruded mesh, prefetch the indirections for each map, so that they don't
            # need to be recomputed.
            # First prefetch the base map (not dependent on layers)
            base_key = None
            if base_key not in self.prefetch:
                j = Index()
                base = Indexed(self.values, (n, j))
                self.prefetch[base_key] = Materialise(PackInst(), base, MultiIndex(j))

            base = self.prefetch[base_key]

            # Now prefetch the extruded part of the map (inside the layer loop).
            # This is necessary so loopy DTRT for MatSetValues
            # Different f values need to be treated separately.
            key = f.extent
            if key is None:
                key = 1
            if key not in self.prefetch:
                bottom_layer, _ = self.layer_bounds
                k = Index(f.extent if f.extent is not None else 1)
                offset = Sum(Sum(layer, Product(Literal(numpy.int32(-1)), bottom_layer)), k)
                j = Index()
                # Inline map offsets where all entries are identical.
                if self.offset.shape == ():
                    offset = Product(offset, self.offset)
                else:
                    offset = Product(offset, Indexed(self.offset, (j,)))
                base = Indexed(base, (j, ))
                self.prefetch[key] = Materialise(PackInst(), Sum(base, offset), MultiIndex(k, j))

            return Indexed(self.prefetch[key], (f, i)), (f, i)
        else:
            assert f.extent == 1 or f.extent is None
            base = Indexed(self.values, (n, i))
            return base, (f, i)
Пример #16
0
 def pack(self, loop_indices=None, only_declare=False):
     if hasattr(self, "_pack"):
         return self._pack
     shape = tuple(itertools.chain(*self.shapes))
     if only_declare:
         pack = Variable(f"matpack{next(self.count)}", shape, self.dtype)
         self._pack = pack
     if self.access in {WRITE, INC}:
         val = Zero((), self.dtype)
         multiindex = MultiIndex(*(Index(e) for e in shape))
         pack = Materialise(PackInst(), val, multiindex)
         self._pack = pack
     else:
         raise ValueError("Unexpected access type")
     return self._pack
Пример #17
0
 def pack(self, loop_indices=None):
     if hasattr(self, "_pack"):
         return self._pack
     ((rdim, cdim), ), = self.dims
     rmap, cmap = self.maps
     if self.interior_horizontal:
         shape = (2, )
     else:
         shape = (1, )
     rshape = shape + rmap.shape[1:] + (rdim, )
     cshape = shape + cmap.shape[1:] + (cdim, )
     if self.access in {WRITE, INC}:
         val = Zero((), self.dtype)
         multiindex = MultiIndex(*(Index(e) for e in (rshape + cshape)))
         pack = Materialise(PackInst(), val, multiindex)
         self._pack = pack
         return pack
     else:
         raise ValueError("Unexpected access type")
Пример #18
0
 def pack(self, loop_indices=None):
     if hasattr(self, "_pack"):
         return self._pack
     rshape = 0
     cshape = 0
     # Need to compute row and col shape based on individual pack shapes
     for p in self.packs[:, 0]:
         shape, _ = p.shapes
         rshape += numpy.prod(shape, dtype=int)
     for p in self.packs[0, :]:
         _, shape = p.shapes
         cshape += numpy.prod(shape, dtype=int)
     shape = (rshape, cshape)
     if self.access in {WRITE, INC}:
         val = Zero((), self.dtype)
         multiindex = MultiIndex(*(Index(e) for e in shape))
         pack = Materialise(PackInst(), val, multiindex)
         self._pack = pack
         return pack
     else:
         raise ValueError("Unexpected access type")