Пример #1
0
def test_Cluster():
    items = [(1, 1), (3, 1), (1, 3), (3, 3), (3, 4)]
    cluster = cl.ClusterPdV([cl.PdV(i[0], i[1], i[1]+1) for i in items])
    errors = []
    if not cluster.total_time == sum([i[1]+1 for i in items]):
        errors.append("error")
    for i, j in zip(cluster.elements(), sorted(items)):
        if i.X != j[0] or i.Y != j[1]:
            errors.append("error")
    if not cluster.area() == 5:
        errors.append("error")
    cluster.push_back(cl.PdV(3, 5, 2))
    if not cluster.total_time == sum([i[1]+1 for i in items]) + 2:
        errors.append("error")
    if not cluster.size() == 6:
        errors.append("error")
    if not cluster.area() == 6:
        #errors.append("error")
        pass
    cluster.remove(cl.PdV(3, 5, 2))
    if not cluster.area() == 5:
        errors.append("error")
    if not cluster.size() == 5:
        errors.append("error")
    if not cluster.centroid == [None, None]:
        errors.append("error")
    cluster.setCenter([2, 4])
    if not cluster.centroid == [2, 4]:
        errors.append("error")
    assert not errors
Пример #2
0
def test_PdV():
    point_int = cl.PdV(3, 4, 85.9)
    point_float = cl.PdV(3.5, 2.1, 62.5)
    point_float2 = cl.PdV(3.5, 2.1, 61.5)
    errors = []
    if not (point_int.X == 3 and point_int.Y == 4):
        errors.append('error')
    if not (point_float.X == 3.5 and point_float.Y == 2.1):
        errors.append('error')
    if not (point_float.__repr__() == '[(3.50, 2.10), 62.50]' and point_int.__repr__() == '[(3.00, 4.00), 85.90]'):
        errors.append('error')
    if not (point_float.samePlace(point_float2)):
        errors.append('error')
    if not (point_float.time_store == 62.5 and point_int.time_store == 85.9):
        errors.append('error')
    assert not errors
Пример #3
0
def test_areaConvexPolygon():
    errors = []
    items = [(1, 1), (3, 1), (1, 3), (3, 3)]
    a = [classes.PdV(i[0], i[1], 0) for i in items]
    a = utils.getConvexHull(a)
    if not utils.getConvexPolygonArea(a) == 4:
        errors.append("error")
    items.append((3, 4))
    a = [classes.PdV(i[0], i[1], 0) for i in items]
    a = utils.getConvexHull(a)
    if not utils.getConvexPolygonArea(a) == 5:
        errors.append("error")
    items = [(-2, -2), (2, -2), (0, 2)]
    a = [classes.PdV(i[0], i[1], 0) for i in items]
    a = utils.getConvexHull(a)
    if not utils.getConvexPolygonArea(a) == 8:
        errors.append("error")
    assert not errors
Пример #4
0
def test_Cluster_exception():
    items = [(1, 1), (3, 1), (1, 3), (3, 3), (3, 4)]
    cluster = cl.ClusterPdV([cl.PdV(i[0], i[1], i[1]+1) for i in items], [None, None])
    try:
        cluster.setCenter(2)
        cluster.setCenter([1,2,3])
        assert False
    except ValueError:
        assert True
Пример #5
0
def test_euclidean():
    errors = []
    items = [(1, 1), (3, 1), (1, 3)]
    a = [classes.PdV(i[0], i[1], 0) for i in items]
    for i in a:
        for j in a:
            print i, j
            print utils.euclidean(i, j)
            print(i.X - j.X)**2 + (i.Y - j.Y)**2
            if utils.euclidean(i, j) != (i.X - j.X)**2 + (i.Y - j.Y)**2:
                errors.append('error')
    assert not errors
Пример #6
0
    def generate_population(self, n_clusters=13):
        population = []

        for _ in tqdm(xrange(self.n_particles),
                      desc='Generando Poblacion inicial',
                      unit=' Particle'):
            individuo = []
            cluster = KMeans(n_clusters=n_clusters, random_state=self.seed)
            cluster_labels = cluster.fit_predict(self.data[:, 0:2])
            individuo_df = pd.DataFrame({
                'x': self.data[:, 0],
                'y': self.data[:, 1],
                'time_store': self.data[:, 2],
                'cluster': cluster_labels
            })
            for i in xrange(n_clusters):
                individuo.append(
                    classes.ClusterPdV([
                        classes.PdV(*point[:-1]) for point in individuo_df[
                            individuo_df.cluster == i].values
                    ], classes.Point2D(*cluster.cluster_centers_[i])))

            population.append(Particle(individuo, self.use_var))
        return population