sep = net.separate() # lists of all receptors/druggable proteins/kinases/tfs/disease related proteins console(':: Loading lists of all receptors/druggable proteins/kinases/'\ 'tfs/disease related proteins') net.lists['rec'] = uniqList(flatList([net.mapper.map_name(rec, 'genesymbol', 'uniprot') \ for rec in dataio.get_hpmr()])) net.lists['dgb'] = uniqList(flatList([net.mapper.map_name(dgb, 'genesymbol', 'uniprot') \ for dgb in dataio.get_dgidb()])) net.lists['kin'] = uniqList(flatList([net.mapper.map_name(kin, 'genesymbol', 'uniprot') \ for kin in dataio.get_kinases()])) net.lists['tfs'] = uniqList(flatList([net.mapper.map_name(tf, 'ensg', 'uniprot') \ for tf in dataio.get_tfcensus()['ensg']])) net.lists['dis'] = uniqList(flatList([\ net.mapper.map_name(dis['genesymbol'], 'genesymbol', 'uniprot') \ for dis in dataio.get_disgenet()])) # defining the proteome as the set of all human swissprot ids console(':: Loading the human proteome') proteome = dataio.all_uniprots(swissprot='yes') fi = open(fisherFile, 'w') # Fisher's exact test for enrichment of disease related proteins # in OmniPath compared to their ratio in the whole proteome console(':: Fisher\'s exact test for enrichment of disease related proteins in the network'\ 'compared to their abundance in the proteome') contDisg = np.array([[len(proteome), net.graph.vcount()],
def test_get_tfcensus(self): t = dataio.get_tfcensus() assert 'FOXD4L6' in t['hgnc']