Пример #1
0
class PypeIt(object):
    """
    This class runs the primary calibration and extraction in PypeIt

    Args:
        pypeit_file (:obj:`str`):  PypeIt filename
        verbosity (:obj:`int`, optional):
            Verbosity level of system output.  Can be::
                - 0: No output
                - 1: Minimal output (default)
                - 2: All output
        overwrite (:obj:`bool`, optional):
            Flag to overwrite any existing files/directories.
        reuse_masters (bool, optional): Reuse any pre-existing calibration files
        logname (:obj:`str`, optional):
            The name of an ascii log file with the details of the
            reduction.
        redux_path (:obj:`str`, optional):
            Over-ride reduction path in PypeIt file (e.g. Notebook usage)
        show: (:obj:`bool`, optional):
            Show reduction steps via plots (which will block further
            execution until clicked on) and outputs to ginga. Requires
            remote control ginga session via "ginga --modules=RC &"

    Attributes:
        pypeit_file (:obj:`str`):
            Name of the pypeit file to read.  PypeIt files have a specific
            set of valid formats. A description can be found `here`_
            (include doc link).
        fitstbl (:obj:`pypit.metadata.PypeItMetaData`): holds the meta info
    """
#    __metaclass__ = ABCMeta

    def __init__(self, pypeit_file, verbosity=2, overwrite=True, reuse_masters=False, logname=None,
                 show=False, redux_path=None):

        # Load
        cfg_lines, data_files, frametype, usrdata, setups = parse_pypeit_file(pypeit_file, runtime=True)
        self.pypeit_file = pypeit_file

        # Spectrograph
        cfg = ConfigObj(cfg_lines)
        spectrograph_name = cfg['rdx']['spectrograph']
        self.spectrograph = load_spectrograph(spectrograph_name)

        # Par
        # Defaults
        spectrograph_def_par = self.spectrograph.default_pypeit_par()
        # Grab a science file for configuration specific parameters
        sci_file = None
        for idx, row in enumerate(usrdata):
            if 'science' in row['frametype']:
                sci_file = data_files[idx]
                break

        # Set
        spectrograph_cfg_lines = self.spectrograph.config_specific_par(spectrograph_def_par, sci_file).to_config()
        self.par = PypeItPar.from_cfg_lines(cfg_lines=spectrograph_cfg_lines, merge_with=cfg_lines)

        # Fitstbl
        self.fitstbl = PypeItMetaData(self.spectrograph, self.par, file_list=data_files,
                                      usrdata=usrdata, strict=True)

        # The following could be put in a prepare_to_run() method in PypeItMetaData
        if 'setup' not in self.fitstbl.keys():
            self.fitstbl['setup'] = setups[0]
        self.fitstbl.get_frame_types(user=frametype)  # This sets them using the user inputs
        self.fitstbl.set_defaults()  # Only does something if values not set in PypeIt file
        self.fitstbl._set_calib_group_bits()
        self.fitstbl._check_calib_groups()
        # Write .calib file (For QA naming amongst other things)
        calib_file = pypeit_file.replace('.pypeit', '.calib')
        self.fitstbl.write_calib(calib_file)

        # Other Internals
        self.logname = logname
        self.overwrite = overwrite
        # Currently the runtime argument determines the behavior for reuse_masters. There is also a reuse_masters
        # parameter in the parset but it is currently ignored.
        self.reuse_masters=reuse_masters
        self.show = show

        # Make the output directories
        self.par['rdx']['redux_path'] = os.getcwd() if redux_path is None else redux_path
        msgs.info("Setting reduction path to {:s}".format(self.par['rdx']['redux_path']))
        paths.make_dirs(self.spectrograph.spectrograph, self.par['calibrations']['caldir'],
                        self.par['rdx']['scidir'], self.par['rdx']['qadir'],
                        overwrite=self.overwrite, redux_path=self.par['rdx']['redux_path'])

        # Instantiate Calibrations class
        self.caliBrate \
            = calibrations.MultiSlitCalibrations(self.fitstbl, self.par['calibrations'], self.spectrograph,
                                                 redux_path=self.par['rdx']['redux_path'],
                                                 reuse_masters=self.reuse_masters,
                                                 save_masters=True, write_qa=True,
                                                 show=self.show)
        # Init
        self.verbosity = verbosity
        # TODO: I don't think this ever used

        self.frame = None
        self.det = None

        self.tstart = None
        self.basename = None
        self.sciI = None
        self.obstime = None

    def build_qa(self):
        """
        Generate QA wrappers
        """
        qa.gen_mf_html(self.pypeit_file)
        qa.gen_exp_html()

    def outfile_exists(self, frame):
        """
        Check whether the 2D outfile of a given frame already exists

        Args:
            frame (int): Frame index from fitstbl

        Returns:
            bool: True if the 2d file exists
                 False if it does not exist
        """
        # Check if the 2d output file exists
        scidir = os.path.join(self.par['rdx']['redux_path'], self.par['rdx']['scidir'])
        basename = self.fitstbl.construct_basename(frame)
        outfile = scidir + '/spec2d_{:s}.fits'.format(basename)
        return os.path.isfile(outfile)

    def get_std_outfile(self, standard_frames):
        """
        Grab the output filename from an input list of standard_frame indices

        If more than one index is provided, the first is taken

        Args:
            standard_frames (list): List of indices corresponding to standard stars

        Returns:
            str: Full path to the standard spec1d output file

        """
        # TODO: Need to decide how to associate standards with
        # science frames in the case where there is more than one
        # standard associated with a given science frame.  Below, I
        # just use the first standard

        std_outfile = None
        std_frame = None if len(standard_frames) == 0 else standard_frames[0]
        # Prepare to load up standard?
        if std_frame is not None:
            std_outfile = os.path.join(self.par['rdx']['redux_path'], self.par['rdx']['scidir'],
            'spec1d_{:s}.fits'.format(self.fitstbl.construct_basename(std_frame))) \
            if isinstance(std_frame, (int,np.integer)) else None

        if std_outfile is not None and not os.path.isfile(std_outfile):
            msgs.error('Could not find standard file: {0}'.format(std_outfile))

        return std_outfile

    def reduce_all(self):
        """
        Main driver of the entire reduction

        Calibration and extraction via a series of calls to reduce_exposure()

        """
        # Validate the parameter set
        required = ['rdx', 'calibrations', 'scienceframe', 'scienceimage', 'flexure', 'fluxcalib']
        can_be_None = ['flexure', 'fluxcalib']
        self.par.validate_keys(required=required, can_be_None=can_be_None)

        self.tstart = time.time()

        # Find the standard frames
        is_standard = self.fitstbl.find_frames('standard')

        # Find the science frames
        is_science = self.fitstbl.find_frames('science')

        # Frame indices
        frame_indx = np.arange(len(self.fitstbl))

        # Iterate over each calibration group and reduce the standards
        for i in range(self.fitstbl.n_calib_groups):

            # Find all the frames in this calibration group
            in_grp = self.fitstbl.find_calib_group(i)

            # Find the indices of the standard frames in this calibration group:
            grp_standards = frame_indx[is_standard & in_grp]

            # Reduce all the standard frames, loop on unique comb_id
            u_combid_std= np.unique(self.fitstbl['comb_id'][grp_standards])
            for j, comb_id in enumerate(u_combid_std):
                frames = np.where(self.fitstbl['comb_id'] == comb_id)[0]
                bg_frames = np.where(self.fitstbl['bkg_id'] == comb_id)[0]
                if not self.outfile_exists(frames[0]) or self.overwrite:
                    std_dict = self.reduce_exposure(frames, bg_frames=bg_frames)
                    # TODO come up with sensible naming convention for save_exposure for combined files
                    self.save_exposure(frames[0], std_dict, self.basename)
                else:
                    msgs.info('Output file: {:s} already exists'.format(self.fitstbl.construct_basename(frames[0])) +
                              '. Set overwrite=True to recreate and overwrite.')

        # Iterate over each calibration group again and reduce the science frames
        for i in range(self.fitstbl.n_calib_groups):
            # Find all the frames in this calibration group
            in_grp = self.fitstbl.find_calib_group(i)

            # Find the indices of the science frames in this calibration group:
            grp_science = frame_indx[is_science & in_grp]
            # Associate standards (previously reduced above) for this setup
            std_outfile = self.get_std_outfile(frame_indx[is_standard])
            # Reduce all the science frames; keep the basenames of the science frames for use in flux calibration
            science_basename = [None]*len(grp_science)
            # Loop on unique comb_id
            u_combid = np.unique(self.fitstbl['comb_id'][grp_science])
            for j, comb_id in enumerate(u_combid):
                frames = np.where(self.fitstbl['comb_id'] == comb_id)[0]
                bg_frames = np.where(self.fitstbl['bkg_id'] == comb_id)[0]
                if not self.outfile_exists(frames[0]) or self.overwrite:
                    sci_dict = self.reduce_exposure(frames, bg_frames=bg_frames, std_outfile=std_outfile)
                    science_basename[j] = self.basename
                    # TODO come up with sensible naming convention for save_exposure for combined files
                    self.save_exposure(frames[0], sci_dict, self.basename)
                else:
                    msgs.warn('Output file: {:s} already exists'.format(self.fitstbl.construct_basename(frames[0])) +
                              '. Set overwrite=True to recreate and overwrite.')

            msgs.info('Finished calibration group {0}'.format(i))

        # Finish
        self.print_end_time()


    def select_detectors(self):
        """
        Return the 1-indexed list of detectors to reduce.

        Returns:
            list:  List of detectors to be reduced

        """
        if self.par['rdx']['detnum'] is None:
            return np.arange(self.spectrograph.ndet)+1
        return [self.par['rdx']['detnum']] if isinstance(self.par['rdx']['detnum'], int) \
                    else self.par['rdx']['detnum']

    def reduce_exposure(self, frames, bg_frames=[], std_outfile=None):
        """
        Reduce a single exposure

        Args:
            frame (:obj:`int`):
                0-indexed row in :attr:`fitstbl` with the frame to
                reduce
            bgframes (:obj:`list`, optional):
                List of frame indices for the background
            std_outfile (:obj:`str`, optional):
                the name of a file with a previously PypeIt-reduced standard spectrum.

        Returns:
            dict: The dictionary containing the primary outputs of extraction
        """
        # if show is set, clear the ginga channels at the start of each new sci_ID
        if self.show:
            ginga.clear_all()

        # Save the frame
        self.frames = frames
        self.bg_frames = bg_frames
        # Is this an IR reduction?
        self.ir_redux = True if len(bg_frames) > 0 else False

        # JFH Why does this need to be ordered?
        sci_dict = OrderedDict()  # This needs to be ordered
        sci_dict['meta'] = {}
        sci_dict['meta']['vel_corr'] = 0.
        sci_dict['meta']['ir_redux'] = self.ir_redux

        # Print status message
        msgs_string = 'Reducing target {:s}'.format(self.fitstbl['target'][self.frames[0]]) + msgs.newline()
        msgs_string += 'Combining frames:' + msgs.newline()
        for iframe in self.frames:
            msgs_string += '{0:s}'.format(self.fitstbl['filename'][iframe]) + msgs.newline()
        msgs.info(msgs_string)
        if len(bg_frames) > 0:
            bg_msgs_string = ''
            for iframe in self.bg_frames:
                bg_msgs_string += '{0:s}'.format(self.fitstbl['filename'][iframe]) + msgs.newline()
            bg_msgs_string = msgs.newline() + 'Using background from frames:' + msgs.newline() + bg_msgs_string
            msgs.info(bg_msgs_string)

        # Find the detectors to reduce
        detectors = self.select_detectors()
        if len(detectors) != self.spectrograph.ndet:
            msgs.warn('Not reducing detectors: {0}'.format(' '.join([ str(d) for d in 
                                set(np.arange(self.spectrograph.ndet))-set(detectors)])))

        # Loop on Detectors
        for self.det in detectors:
            msgs.info("Working on detector {0}".format(self.det))
            sci_dict[self.det] = {}
            # Calibrate
            #TODO Is the right behavior to just use the first frame?
            self.caliBrate.set_config(self.frames[0], self.det, self.par['calibrations'])
            self.caliBrate.run_the_steps()
            # Extract
            # TODO: pass back the background frame, pass in background
            # files as an argument. extract one takes a file list as an
            # argument and instantiates science within
            sci_dict[self.det]['sciimg'], sci_dict[self.det]['sciivar'], sci_dict[self.det]['skymodel'], \
                sci_dict[self.det]['objmodel'], sci_dict[self.det]['ivarmodel'], sci_dict[self.det]['outmask'], \
                sci_dict[self.det]['specobjs'], vel_corr \
                    = self.extract_one(self.frames, self.det, bg_frames = self.bg_frames, std_outfile = std_outfile)
            if vel_corr is not None:
                sci_dict['meta']['vel_corr'] = vel_corr

            # JFH TODO write out the background frame?

        # Return
        return sci_dict

    def flexure_correct(self, sobjs, maskslits):
        """
        Correct for flexure

        Spectra are modified in place (wavelengths are shifted)

        Args:
            sobjs (SpecObjs):
            maskslits (ndarray): Mask of SpecObjs

        """

        if self.par['flexure']['method'] != 'skip':
            flex_list = wave.flexure_obj(sobjs, maskslits, self.par['flexure']['method'],
                                         self.par['flexure']['spectrum'],
                                         mxshft=self.par['flexure']['maxshift'])
            # QA
            wave.flexure_qa(sobjs, maskslits, self.basename, self.det, flex_list,
                            out_dir=self.par['rdx']['redux_path'])
        else:
            msgs.info('Skipping flexure correction.')

    def helio_correct(self, sobjs, maskslits, frame, obstime):
        """
        Perform a heliocentric correction on a set of spectra

        Args:
            sobjs (pypeit.specobjs.SpecObjs): Spectra
            maskslits (ndarray): Slits that are masked
            frame (int): Frame to use for meta info
            obstime (astropy.time.Time):

        Returns:
            astropy.units.Quantity: Velocity correction in km/s

        """
        # Helio, correct Earth's motion
        if (self.caliBrate.par['wavelengths']['frame'] in ['heliocentric', 'barycentric']) \
                and (self.caliBrate.par['wavelengths']['reference'] != 'pixel'):
            # TODO change this keyword to refframe instead of frame
            msgs.info("Performing a {0} correction".format(self.caliBrate.par['wavelengths']['frame']))
            vel, vel_corr = wave.geomotion_correct(sobjs, maskslits, self.fitstbl, frame, obstime,
                                                   self.spectrograph.telescope['longitude'],
                                                   self.spectrograph.telescope['latitude'],
                                                   self.spectrograph.telescope['elevation'],
                                                   self.caliBrate.par['wavelengths']['frame'])
        else:
            msgs.info('A wavelength reference-frame correction will not be performed.')
            vel_corr = None

        return vel_corr

    def get_sci_metadata(self, frame, det):
        """
        Grab the meta data for a given science frame and specific detector

        Args:
            frame (int): Frame index
            det (int): Detector index

        Returns:
            5 objects are returned::
                - str: Object type;  science or standard
                - str: Setup string from master_key()
                - astropy.time.Time: Time of observation
                - str: Basename of the frame
                - str: Binning of the detector

        """

        # Set binning, obstime, basename, and objtype
        binning = self.fitstbl['binning'][frame]
        obstime  = self.fitstbl.construct_obstime(frame)
        basename = self.fitstbl.construct_basename(frame, obstime=obstime)
        objtype  = self.fitstbl['frametype'][frame]
        if 'science' in objtype:
            objtype_out = 'science'
        elif 'standard' in objtype:
            objtype_out = 'standard'
        else:
            msgs.error('Unrecognized objtype')
        setup = self.fitstbl.master_key(frame, det=det)
        return objtype_out, setup, obstime, basename, binning

    def get_std_trace(self, std_redux, det, std_outfile):
        """
        Returns the trace of the standard if it is applicable to the current reduction

        Args:
            std_redux (bool): If False, proceed
            det (int): Detector index
            std_outfile (str): Filename for the standard star spec1d file

        Returns:
            ndarray: Trace of the standard star on input detector

        """
        if std_redux is False and std_outfile is not None:
            sobjs, hdr_std = load.load_specobjs(std_outfile)
            # Does the detector match?
            # TODO Instrument specific logic here could be implemented with the parset. For example LRIS-B or LRIS-R we
            # we would use the standard from another detector
            this_det = sobjs.det == det
            if np.any(this_det):
                sobjs_det = sobjs[this_det]
                sobjs_std = sobjs_det.get_std()
                std_trace = sobjs_std.trace_spat
                # flatten the array if this multislit
                if 'MultiSlit' in self.spectrograph.pypeline:
                    std_trace = std_trace.flatten()
                elif 'Echelle' in self.spectrograph.pypeline:
                    std_trace = std_trace.T
                else:
                    msgs.error('Unrecognized pypeline')
            else:
                std_trace = None
        else:
            std_trace = None

        return std_trace

    def extract_one(self, frames, det, bg_frames=[], std_outfile=None):
        """
        Extract a single exposure/detector pair

        sci_ID and det need to have been set internally prior to calling this method

        Args:
            frames (list):  List of frames to extract;  stacked if more than one is provided
            det (int):
            bg_frames (list, optional): List of frames to use as the background
            std_outfile (str, optional):

        Returns:
            eight objects are returned::
                - ndarray: Science image
                - ndarray: Science inverse variance image
                - ndarray: Model of the sky
                - ndarray: Model of the object
                - ndarray: Model of inverse variance
                - ndarray: Mask
                - :obj:`pypeit.specobjs.SpecObjs`: spectra
                - astropy.units.Quantity: velocity correction

        """
        # Grab some meta-data needed for the reduction from the fitstbl
        self.objtype, self.setup, self.obstime, self.basename, self.binning = self.get_sci_metadata(frames[0], det)
        # Is this a standard star?
        self.std_redux = 'standard' in self.objtype
        # Get the standard trace if need be
        std_trace = self.get_std_trace(self.std_redux, det, std_outfile)
        # Instantiate ScienceImage for the files we will reduce
        sci_files = self.fitstbl.frame_paths(frames)
        self.sciI = scienceimage.ScienceImage(self.spectrograph, sci_files,
                                              bg_file_list=self.fitstbl.frame_paths(bg_frames),
                                              ir_redux = self.ir_redux,
                                              par=self.par['scienceframe'],
                                              det=det,
                                              binning=self.binning)
        # For QA on crash.
        msgs.sciexp = self.sciI

        # Process images (includes inverse variance image, rn2 image, and CR mask)
        self.sciimg, self.sciivar, self.rn2img, self.mask, self.crmask = \
            self.sciI.proc(self.caliBrate.msbias, self.caliBrate.mspixflatnrm.copy(),
                           self.caliBrate.msbpm, illum_flat=self.caliBrate.msillumflat,
                           show=self.show)
        # Object finding, first pass on frame without sky subtraction
        self.maskslits = self.caliBrate.maskslits.copy()

        self.redux = reduce.instantiate_me(self.spectrograph, self.caliBrate.tslits_dict,
                                           self.mask, self.par,
                                           ir_redux = self.ir_redux,
                                           objtype=self.objtype, setup=self.setup,
                                           det=det, binning=self.binning)

        # Prep for manual extraction (if requested)
        manual_extract_dict = self.fitstbl.get_manual_extract(frames, det)

        # Do one iteration of object finding, and sky subtract to get initial sky model
        self.sobjs_obj, self.nobj, skymask_init = \
            self.redux.find_objects(self.sciimg, self.sciivar, std=self.std_redux, ir_redux=self.ir_redux,
                                    std_trace=std_trace,maskslits=self.maskslits,
                                    show=self.show & (not self.std_redux),
                                    manual_extract_dict=manual_extract_dict)

        # Global sky subtraction, first pass. Uses skymask from object finding step above
        self.initial_sky = \
            self.redux.global_skysub(self.sciimg, self.sciivar, self.caliBrate.tilts_dict['tilts'], skymask=skymask_init,
                                    std=self.std_redux, maskslits=self.maskslits, show=self.show)

        if not self.std_redux:
            # Object finding, second pass on frame *with* sky subtraction. Show here if requested
            self.sobjs_obj, self.nobj, self.skymask = \
                self.redux.find_objects(self.sciimg - self.initial_sky, self.sciivar, std=self.std_redux, ir_redux=self.ir_redux,
                                  std_trace=std_trace,maskslits=self.maskslits,show=self.show,
                                        manual_extract_dict=manual_extract_dict)

        # If there are objects, do 2nd round of global_skysub, local_skysub_extract, flexure, geo_motion
        if self.nobj > 0:
            # Global sky subtraction second pass. Uses skymask from object finding
            self.global_sky = self.initial_sky if self.std_redux else \
                self.redux.global_skysub(self.sciimg, self.sciivar, self.caliBrate.tilts_dict['tilts'],
                skymask=self.skymask, maskslits=self.maskslits, show=self.show)

            self.skymodel, self.objmodel, self.ivarmodel, self.outmask, self.sobjs = \
            self.redux.local_skysub_extract(self.sciimg, self.sciivar, self.caliBrate.tilts_dict['tilts'], self.caliBrate.mswave,
                                            self.global_sky, self.rn2img, self.sobjs_obj,
                                            model_noise=(not self.ir_redux),std = self.std_redux,
                                            maskslits=self.maskslits, show_profile=self.show,show=self.show)

            # Purge out the negative objects if this was a near-IR reduction.
            # TODO should we move this purge call to local_skysub_extract??
            if self.ir_redux:
                self.sobjs.purge_neg()

            # Flexure correction if this is not a standard star
            if not self.std_redux:
                self.redux.flexure_correct(self.sobjs, self.basename)

            # Grab coord
            radec = ltu.radec_to_coord((self.fitstbl["ra"][frames[0]], self.fitstbl["dec"][frames[0]]))
            self.vel_corr = self.redux.helio_correct(self.sobjs, radec, self.obstime)

        else:
            # Print status message
            msgs_string = 'No objects to extract for target {:s}'.format(self.fitstbl['target'][frames[0]]) + msgs.newline()
            msgs_string += 'On frames:' + msgs.newline()
            for iframe in frames:
                msgs_string += '{0:s}'.format(self.fitstbl['filename'][iframe]) + msgs.newline()
            msgs.warn(msgs_string)
            # set to first pass global sky
            self.skymodel = self.initial_sky
            self.objmodel = np.zeros_like(self.sciimg)
            # Set to sciivar. Could create a model but what is the point?
            self.ivarmodel = np.copy(self.sciivar)
            # Set to the initial mask in case no objects were found
            self.outmask = self.redux.mask
            # empty specobjs object from object finding
            if self.ir_redux:
                self.sobjs_obj.purge_neg()
            self.sobjs = self.sobjs_obj
            self.vel_corr = None

        return self.sciimg, self.sciivar, self.skymodel, self.objmodel, self.ivarmodel, self.outmask, self.sobjs, self.vel_corr

    # TODO: Why not use self.frame?
    def save_exposure(self, frame, sci_dict, basename):
        """
        Save the outputs from extraction for a given exposure

        Args:
            frame (:obj:`int`):
              0-indexed row in the metadata table with the frame that
              has been reduced.
            sci_dict (:obj:`dict`):
              Dictionary containing the primary outputs of extraction
            basename (:obj:`str`):
                The root name for the output file.

        Returns:
            None or SpecObjs:  All of the objects saved to disk

        """
        # TODO: Need some checks here that the exposure has been reduced

        # Determine the headers
        head1d = self.fitstbl[frame]
        # Need raw file header information
        rawfile = self.fitstbl.frame_paths(frame)
        head2d = fits.getheader(rawfile, ext=self.spectrograph.primary_hdrext,)
        refframe = 'pixel' if self.caliBrate.par['wavelengths']['reference'] == 'pixel' else \
            self.caliBrate.par['wavelengths']['frame']

        # Determine the paths/filenames
        scipath = os.path.join(self.par['rdx']['redux_path'], self.par['rdx']['scidir'])

        save.save_all(sci_dict, self.caliBrate.master_key_dict, self.caliBrate.master_dir, self.spectrograph,
                      head1d, head2d, scipath, basename, refframe=refframe,
                      update_det=self.par['rdx']['detnum'], binning=self.fitstbl['binning'][frame])

        return



    def msgs_reset(self):
        """
        Reset the msgs object
        """

        # Reset the global logger
        msgs.reset(log=self.logname, verbosity=self.verbosity)
        msgs.pypeit_file = self.pypeit_file

    def print_end_time(self):
        """
        Print the elapsed time
        """
        # Capture the end time and print it to user
        tend = time.time()
        codetime = tend-self.tstart
        if codetime < 60.0:
            msgs.info('Execution time: {0:.2f}s'.format(codetime))
        elif codetime/60.0 < 60.0:
            mns = int(codetime/60.0)
            scs = codetime - 60.0*mns
            msgs.info('Execution time: {0:d}m {1:.2f}s'.format(mns, scs))
        else:
            hrs = int(codetime/3600.0)
            mns = int(60.0*(codetime/3600.0 - hrs))
            scs = codetime - 60.0*mns - 3600.0*hrs
            msgs.info('Execution time: {0:d}h {1:d}m {2:.2f}s'.format(hrs, mns, scs))

    # TODO: Move this to fitstbl?
    def show_science(self):
        """
        Simple print of science frames
        """
        indx = self.fitstbl.find_frames('science')
        print(self.fitstbl[['target','ra','dec','exptime','dispname']][indx])

    def __repr__(self):
        # Generate sets string
        return '<{:s}: pypeit_file={}>'.format(self.__class__.__name__, self.pypeit_file)
Пример #2
0
class PypeIt(object):
    """
    This class runs the primary calibration and extraction in PypeIt

    .. todo::
        Fill in list of attributes!

    Args:
        pypeit_file (:obj:`str`):
            PypeIt filename.
        verbosity (:obj:`int`, optional):
            Verbosity level of system output.  Can be:

                - 0: No output
                - 1: Minimal output (default)
                - 2: All output

        overwrite (:obj:`bool`, optional):
            Flag to overwrite any existing files/directories.
        reuse_masters (:obj:`bool`, optional):
            Reuse any pre-existing calibration files
        logname (:obj:`str`, optional):
            The name of an ascii log file with the details of the
            reduction.
        show: (:obj:`bool`, optional):
            Show reduction steps via plots (which will block further
            execution until clicked on) and outputs to ginga. Requires
            remote control ginga session via ``ginga --modules=RC &``
        redux_path (:obj:`str`, optional):
            Over-ride reduction path in PypeIt file (e.g. Notebook usage)

    Attributes:
        pypeit_file (:obj:`str`):
            Name of the pypeit file to read.  PypeIt files have a
            specific set of valid formats. A description can be found
            :ref:`pypeit_file`.
        fitstbl (:obj:`pypit.metadata.PypeItMetaData`): holds the meta info

    """

    #    __metaclass__ = ABCMeta

    def __init__(self,
                 pypeit_file,
                 verbosity=2,
                 overwrite=True,
                 reuse_masters=False,
                 logname=None,
                 show=False,
                 redux_path=None):

        # Load
        cfg_lines, data_files, frametype, usrdata, setups \
                = parse_pypeit_file(pypeit_file, runtime=True)
        self.pypeit_file = pypeit_file

        # Spectrograph
        cfg = ConfigObj(cfg_lines)
        spectrograph_name = cfg['rdx']['spectrograph']
        self.spectrograph = load_spectrograph(spectrograph_name,
                                              ifile=data_files[0])
        msgs.info('Loaded spectrograph {0}'.format(
            self.spectrograph.spectrograph))

        # --------------------------------------------------------------
        # Get the full set of PypeIt parameters
        #   - Grab a science or standard file for configuration specific parameters
        scistd_file = None
        for idx, row in enumerate(usrdata):
            if ('science' in row['frametype']) or ('standard'
                                                   in row['frametype']):
                scistd_file = data_files[idx]
                break
        #   - Configuration specific parameters for the spectrograph
        if scistd_file is not None:
            msgs.info(
                'Setting configuration-specific parameters using {0}'.format(
                    os.path.split(scistd_file)[1]))
        spectrograph_cfg_lines = self.spectrograph.config_specific_par(
            scistd_file).to_config()
        #   - Build the full set, merging with any user-provided
        #     parameters
        self.par = PypeItPar.from_cfg_lines(cfg_lines=spectrograph_cfg_lines,
                                            merge_with=cfg_lines)
        msgs.info('Built full PypeIt parameter set.')

        # Check the output paths are ready
        if redux_path is not None:
            self.par['rdx']['redux_path'] = redux_path

        # TODO: Write the full parameter set here?
        # --------------------------------------------------------------

        # --------------------------------------------------------------
        # Build the meta data
        #   - Re-initilize based on the file data
        msgs.info('Compiling metadata')
        self.fitstbl = PypeItMetaData(self.spectrograph,
                                      self.par,
                                      files=data_files,
                                      usrdata=usrdata,
                                      strict=True)
        #   - Interpret automated or user-provided data from the PypeIt
        #   file
        self.fitstbl.finalize_usr_build(frametype, setups[0])
        # --------------------------------------------------------------
        #   - Write .calib file (For QA naming amongst other things)
        calib_file = pypeit_file.replace('.pypeit', '.calib')
        self.fitstbl.write_calib(calib_file)

        # Other Internals
        self.logname = logname
        self.overwrite = overwrite

        # Currently the runtime argument determines the behavior for
        # reuse_masters.
        self.reuse_masters = reuse_masters
        self.show = show

        # Set paths
        if self.par['calibrations']['caldir'] == 'default':
            self.calibrations_path = os.path.join(
                self.par['rdx']['redux_path'], 'Masters')
        else:
            self.calibrations_path = self.par['calibrations']['caldir']

        # Report paths
        msgs.info('Setting reduction path to {0}'.format(
            self.par['rdx']['redux_path']))
        msgs.info('Master calibration data output to: {0}'.format(
            self.calibrations_path))
        msgs.info('Science data output to: {0}'.format(self.science_path))
        msgs.info('Quality assessment plots output to: {0}'.format(
            self.qa_path))
        # TODO: Is anything written to the qa dir or only to qa/PNGs?
        # Should we have separate calibration and science QA
        # directories?

        # Instantiate Calibrations class
        self.caliBrate \
            = calibrations.MultiSlitCalibrations(self.fitstbl, self.par['calibrations'],
                                                 self.spectrograph,
                                                 caldir=self.calibrations_path,
                                                 qadir=self.qa_path,
                                                 reuse_masters=self.reuse_masters,
                                                 show=self.show)
        # Init
        self.verbosity = verbosity
        # TODO: I don't think this ever used

        self.frame = None
        self.det = None

        self.tstart = None
        self.basename = None
        self.sciI = None
        self.obstime = None

    @property
    def science_path(self):
        """Return the path to the science directory."""
        return os.path.join(self.par['rdx']['redux_path'],
                            self.par['rdx']['scidir'])

    @property
    def qa_path(self):
        """Return the path to the top-level QA directory."""
        return os.path.join(self.par['rdx']['redux_path'],
                            self.par['rdx']['qadir'])

    def build_qa(self):
        """
        Generate QA wrappers
        """
        qa.gen_mf_html(self.pypeit_file, self.qa_path)
        qa.gen_exp_html()

    # TODO: This should go in a more relevant place
    def spec_output_file(self, frame, twod=False):
        """
        Return the path to the spectral output data file.
        
        Args:
            frame (:obj:`int`):
                Frame index from :attr:`fitstbl`.
            twod (:obj:`bool`):
                Name for the 2D output file; 1D file otherwise.
        
        Returns:
            :obj:`str`: The path for the output file
        """
        return os.path.join(
            self.science_path,
            'spec{0}d_{1}.fits'.format('2' if twod else '1',
                                       self.fitstbl.construct_basename(frame)))

    def outfile_exists(self, frame):
        """
        Check whether the 2D outfile of a given frame already exists

        Args:
            frame (int): Frame index from fitstbl

        Returns:
            bool: True if the 2d file exists, False if it does not exist
        """
        return os.path.isfile(self.spec_output_file(frame, twod=True))

    def get_std_outfile(self, standard_frames):
        """
        Grab the output filename from an input list of standard_frame indices

        If more than one index is provided, the first is taken

        Args:
            standard_frames (list): List of indices corresponding to standard stars

        Returns:
            str: Full path to the standard spec1d output file
        """
        # TODO: Need to decide how to associate standards with
        # science frames in the case where there is more than one
        # standard associated with a given science frame.  Below, I
        # just use the first standard

        std_outfile = None
        std_frame = None if len(standard_frames) == 0 else standard_frames[0]
        # Prepare to load up standard?
        if std_frame is not None:
            std_outfile = self.spec_output_file(std_frame) \
                            if isinstance(std_frame, (int,np.integer)) else None
        if std_outfile is not None and not os.path.isfile(std_outfile):
            msgs.error('Could not find standard file: {0}'.format(std_outfile))
        return std_outfile

    def reduce_all(self):
        """
        Main driver of the entire reduction

        Calibration and extraction via a series of calls to reduce_exposure()

        """
        # Validate the parameter set
        required = [
            'rdx', 'calibrations', 'scienceframe', 'reduce', 'flexure',
            'fluxcalib'
        ]
        can_be_None = ['flexure', 'fluxcalib']
        self.par.validate_keys(required=required, can_be_None=can_be_None)

        self.tstart = time.time()

        # Find the standard frames
        is_standard = self.fitstbl.find_frames('standard')

        # Find the science frames
        is_science = self.fitstbl.find_frames('science')

        # Frame indices
        frame_indx = np.arange(len(self.fitstbl))

        # Iterate over each calibration group and reduce the standards
        for i in range(self.fitstbl.n_calib_groups):

            # Find all the frames in this calibration group
            in_grp = self.fitstbl.find_calib_group(i)

            # Find the indices of the standard frames in this calibration group:
            grp_standards = frame_indx[is_standard & in_grp]

            # Reduce all the standard frames, loop on unique comb_id
            u_combid_std = np.unique(self.fitstbl['comb_id'][grp_standards])
            for j, comb_id in enumerate(u_combid_std):
                frames = np.where(self.fitstbl['comb_id'] == comb_id)[0]
                bg_frames = np.where(self.fitstbl['bkg_id'] == comb_id)[0]
                if not self.outfile_exists(frames[0]) or self.overwrite:
                    std_dict = self.reduce_exposure(frames,
                                                    bg_frames=bg_frames)
                    # TODO come up with sensible naming convention for save_exposure for combined files
                    self.save_exposure(frames[0], std_dict, self.basename)
                else:
                    msgs.info(
                        'Output file: {:s} already exists'.format(
                            self.fitstbl.construct_basename(frames[0])) +
                        '. Set overwrite=True to recreate and overwrite.')

        # Iterate over each calibration group again and reduce the science frames
        for i in range(self.fitstbl.n_calib_groups):
            # Find all the frames in this calibration group
            in_grp = self.fitstbl.find_calib_group(i)

            # Find the indices of the science frames in this calibration group:
            grp_science = frame_indx[is_science & in_grp]
            # Associate standards (previously reduced above) for this setup
            std_outfile = self.get_std_outfile(frame_indx[is_standard])
            # Reduce all the science frames; keep the basenames of the science frames for use in flux calibration
            science_basename = [None] * len(grp_science)
            # Loop on unique comb_id
            u_combid = np.unique(self.fitstbl['comb_id'][grp_science])
            for j, comb_id in enumerate(u_combid):
                frames = np.where(self.fitstbl['comb_id'] == comb_id)[0]
                # Find all frames whose comb_id matches the current frames bkg_id.
                bg_frames = np.where((self.fitstbl['comb_id'] ==
                                      self.fitstbl['bkg_id'][frames][0])
                                     & (self.fitstbl['comb_id'] >= 0))[0]
                # JFH changed the syntax below to that above, which allows frames to be used more than once
                # as a background image. The syntax below would require that we could somehow list multiple
                # numbers for the bkg_id which is impossible without a comma separated list
                #                bg_frames = np.where(self.fitstbl['bkg_id'] == comb_id)[0]
                if not self.outfile_exists(frames[0]) or self.overwrite:
                    sci_dict = self.reduce_exposure(frames,
                                                    bg_frames=bg_frames,
                                                    std_outfile=std_outfile)
                    science_basename[j] = self.basename
                    # TODO come up with sensible naming convention for save_exposure for combined files
                    self.save_exposure(frames[0], sci_dict, self.basename)
                else:
                    msgs.warn(
                        'Output file: {:s} already exists'.format(
                            self.fitstbl.construct_basename(frames[0])) +
                        '. Set overwrite=True to recreate and overwrite.')

            msgs.info('Finished calibration group {0}'.format(i))

        # Finish
        self.print_end_time()

    # This is a static method to allow for use in coadding script
    @staticmethod
    def select_detectors(detnum=None, ndet=1):
        """
        Return the 1-indexed list of detectors to reduce.

        Args:
            detnum (:obj:`int`, :obj:`list`, optional):
                One or more detectors to reduce.  If None, return the
                full list for the provided number of detectors (`ndet`).
            ndet (:obj:`int`, optional):
                The number of detectors for this instrument.  Only used
                if `detnum is None`.

        Returns:
            list:  List of detectors to be reduced

        """
        if detnum is None:
            return np.arange(1, ndet + 1).tolist()
        return [detnum] if isinstance(detnum, int) else detnum

    def reduce_exposure(self, frames, bg_frames=None, std_outfile=None):
        """
        Reduce a single exposure

        Args:
            frame (:obj:`int`):
                0-indexed row in :attr:`fitstbl` with the frame to
                reduce.
            bg_frames (:obj:`list`, optional):
                List of frame indices for the background.
            std_outfile (:obj:`str`, optional):
                File with a previously reduced standard spectrum from
                PypeIt.

        Returns:
            dict: The dictionary containing the primary outputs of
            extraction.

        """

        # TODO:
        # - bg_frames should be None by default
        # - change doc string to reflect that more than one frame can be
        #   provided

        # if show is set, clear the ginga channels at the start of each new sci_ID
        if self.show:
            # TODO: Put this in a try/except block?
            ginga.clear_all()

        has_bg = True if bg_frames is not None and len(
            bg_frames) > 0 else False

        # Is this an IR reduction?
        # TODO: Why specific to IR?
        self.ir_redux = True if has_bg else False

        # TODO: JFH Why does this need to be ordered?
        sci_dict = OrderedDict()  # This needs to be ordered
        sci_dict['meta'] = {}
        sci_dict['meta']['ir_redux'] = self.ir_redux

        # Print status message
        msgs_string = 'Reducing target {:s}'.format(
            self.fitstbl['target'][frames[0]]) + msgs.newline()
        # TODO: Print these when the frames are actually combined,
        # backgrounds are used, etc?
        msgs_string += 'Combining frames:' + msgs.newline()
        for iframe in frames:
            msgs_string += '{0:s}'.format(
                self.fitstbl['filename'][iframe]) + msgs.newline()
        msgs.info(msgs_string)
        if has_bg:
            bg_msgs_string = ''
            for iframe in bg_frames:
                bg_msgs_string += '{0:s}'.format(
                    self.fitstbl['filename'][iframe]) + msgs.newline()
            bg_msgs_string = msgs.newline(
            ) + 'Using background from frames:' + msgs.newline(
            ) + bg_msgs_string
            msgs.info(bg_msgs_string)

        # Find the detectors to reduce
        detectors = PypeIt.select_detectors(detnum=self.par['rdx']['detnum'],
                                            ndet=self.spectrograph.ndet)
        if len(detectors) != self.spectrograph.ndet:
            msgs.warn('Not reducing detectors: {0}'.format(' '.join([
                str(d) for d in set(np.arange(self.spectrograph.ndet)) -
                set(detectors)
            ])))

        # Loop on Detectors
        for self.det in detectors:
            msgs.info("Working on detector {0}".format(self.det))
            sci_dict[self.det] = {}
            # Calibrate
            #TODO Is the right behavior to just use the first frame?
            self.caliBrate.set_config(frames[0], self.det,
                                      self.par['calibrations'])
            self.caliBrate.run_the_steps()
            # Extract
            # TODO: pass back the background frame, pass in background
            # files as an argument. extract one takes a file list as an
            # argument and instantiates science within
            sci_dict[self.det]['sciimg'], sci_dict[self.det]['sciivar'], \
                sci_dict[self.det]['skymodel'], sci_dict[self.det]['objmodel'], \
                sci_dict[self.det]['ivarmodel'], sci_dict[self.det]['outmask'], \
                sci_dict[self.det]['specobjs'], \
                        = self.extract_one(frames, self.det, bg_frames,
                                           std_outfile=std_outfile)
            # JFH TODO write out the background frame?

        # Return
        return sci_dict

    def get_sci_metadata(self, frame, det):
        """
        Grab the meta data for a given science frame and specific detector

        Args:
            frame (int): Frame index
            det (int): Detector index

        Returns:
            5 objects are returned::
                - str: Object type;  science or standard
                - str: Setup string from master_key()
                - astropy.time.Time: Time of observation
                - str: Basename of the frame
                - str: Binning of the detector

        """

        # Set binning, obstime, basename, and objtype
        binning = self.fitstbl['binning'][frame]
        obstime = self.fitstbl.construct_obstime(frame)
        basename = self.fitstbl.construct_basename(frame, obstime=obstime)
        objtype = self.fitstbl['frametype'][frame]
        if 'science' in objtype:
            objtype_out = 'science'
        elif 'standard' in objtype:
            objtype_out = 'standard'
        else:
            msgs.error('Unrecognized objtype')
        setup = self.fitstbl.master_key(frame, det=det)
        return objtype_out, setup, obstime, basename, binning

    def get_std_trace(self, std_redux, det, std_outfile):
        """
        Returns the trace of the standard if it is applicable to the current reduction

        Args:
            std_redux (bool): If False, proceed
            det (int): Detector index
            std_outfile (str): Filename for the standard star spec1d file

        Returns:
            ndarray or None: Trace of the standard star on input detector

        """
        if std_redux is False and std_outfile is not None:
            sobjs = specobjs.SpecObjs.from_fitsfile(std_outfile)
            # Does the detector match?
            # TODO Instrument specific logic here could be implemented with the parset. For example LRIS-B or LRIS-R we
            # we would use the standard from another detector
            this_det = sobjs.DET == det
            if np.any(this_det):
                sobjs_det = sobjs[this_det]
                sobjs_std = sobjs_det.get_std()
                # No standard extracted on this detector??
                if sobjs_std is None:
                    return None
                std_trace = sobjs_std.TRACE_SPAT
                # flatten the array if this multislit
                if 'MultiSlit' in self.spectrograph.pypeline:
                    std_trace = std_trace.flatten()
                elif 'Echelle' in self.spectrograph.pypeline:
                    std_trace = std_trace.T
                else:
                    msgs.error('Unrecognized pypeline')
            else:
                std_trace = None
        else:
            std_trace = None

        return std_trace

    def extract_one(self, frames, det, bg_frames, std_outfile=None):
        """
        Extract a single exposure/detector pair

        sci_ID and det need to have been set internally prior to calling this method

        Args:
            frames (list):
                List of frames to extract;  stacked if more than one is provided
            det (int):
            bg_frames (list):
                List of frames to use as the background
                Can be empty
            std_outfile (str, optional):

        Returns:
            seven objects are returned::
                - ndarray: Science image
                - ndarray: Science inverse variance image
                - ndarray: Model of the sky
                - ndarray: Model of the object
                - ndarray: Model of inverse variance
                - ndarray: Mask
                - :obj:`pypeit.specobjs.SpecObjs`: spectra

        """
        # Grab some meta-data needed for the reduction from the fitstbl
        self.objtype, self.setup, self.obstime, self.basename, self.binning = self.get_sci_metadata(
            frames[0], det)
        # Is this a standard star?
        self.std_redux = 'standard' in self.objtype
        # Get the standard trace if need be
        std_trace = self.get_std_trace(self.std_redux, det, std_outfile)

        # Build Science image
        sci_files = self.fitstbl.frame_paths(frames)
        self.sciImg = scienceimage.build_from_file_list(
            self.spectrograph,
            det,
            self.par['scienceframe']['process'],
            self.caliBrate.msbpm,
            sci_files,
            self.caliBrate.msbias,
            self.caliBrate.mspixelflat,
            illum_flat=self.caliBrate.msillumflat)

        # Background Image?
        if len(bg_frames) > 0:
            bg_file_list = self.fitstbl.frame_paths(bg_frames)
            self.sciImg = self.sciImg - scienceimage.build_from_file_list(
                self.spectrograph,
                det,
                self.par['scienceframe']['process'],
                self.caliBrate.msbpm,
                bg_file_list,
                self.caliBrate.msbias,
                self.caliBrate.mspixelflat,
                illum_flat=self.caliBrate.msillumflat)

        # Update mask for slitmask
        slitmask = pixels.tslits2mask(self.caliBrate.tslits_dict)
        self.sciImg.update_mask_slitmask(slitmask)

        # For QA on crash
        msgs.sciexp = self.sciImg

        # Instantiate Reduce object
        self.maskslits = self.caliBrate.tslits_dict['maskslits'].copy()
        # Required for pypeline specific object
        # TODO -- caliBrate should be replaced by the ~3 primary Objects needed
        #   once we have the data models in place.
        self.redux = reduce.instantiate_me(self.sciImg,
                                           self.spectrograph,
                                           self.par,
                                           self.caliBrate,
                                           maskslits=self.maskslits,
                                           ir_redux=self.ir_redux,
                                           std_redux=self.std_redux,
                                           objtype=self.objtype,
                                           setup=self.setup,
                                           show=self.show,
                                           det=det,
                                           binning=self.binning)
        # Show?
        if self.show:
            self.redux.show('image',
                            image=self.sciImg.image,
                            chname='processed',
                            slits=True,
                            clear=True)

        # Prep for manual extraction (if requested)
        manual_extract_dict = self.fitstbl.get_manual_extract(frames, det)

        self.skymodel, self.objmodel, self.ivarmodel, self.outmask, self.sobjs = self.redux.run(
            std_trace=std_trace,
            manual_extract_dict=manual_extract_dict,
            show_peaks=self.show,
            basename=self.basename,
            ra=self.fitstbl["ra"][frames[0]],
            dec=self.fitstbl["dec"][frames[0]],
            obstime=self.obstime)

        # Return
        return self.sciImg.image, self.sciImg.ivar, self.skymodel, self.objmodel, self.ivarmodel, self.outmask, self.sobjs

    # TODO: Why not use self.frame?
    def save_exposure(self, frame, sci_dict, basename):
        """
        Save the outputs from extraction for a given exposure

        Args:
            frame (:obj:`int`):
              0-indexed row in the metadata table with the frame that
              has been reduced.
            sci_dict (:obj:`dict`):
              Dictionary containing the primary outputs of extraction
            basename (:obj:`str`):
                The root name for the output file.

        Returns:
            None or SpecObjs:  All of the objects saved to disk

        """
        # TODO: Need some checks here that the exposure has been reduced

        # Determine the headers
        head1d = self.fitstbl[frame]
        # Need raw file header information
        rawfile = self.fitstbl.frame_paths(frame)
        head2d = fits.getheader(rawfile, ext=self.spectrograph.primary_hdrext)
        refframe = 'pixel' if self.caliBrate.par['wavelengths']['reference'] == 'pixel' else \
            self.caliBrate.par['wavelengths']['frame']

        # Determine the paths/filenames
        save.save_all(sci_dict,
                      self.caliBrate.master_key_dict,
                      self.caliBrate.master_dir,
                      self.spectrograph,
                      head1d,
                      head2d,
                      self.science_path,
                      basename,
                      update_det=self.par['rdx']['detnum'],
                      binning=self.fitstbl['binning'][frame])

    def msgs_reset(self):
        """
        Reset the msgs object
        """

        # Reset the global logger
        msgs.reset(log=self.logname, verbosity=self.verbosity)
        msgs.pypeit_file = self.pypeit_file

    def print_end_time(self):
        """
        Print the elapsed time
        """
        # Capture the end time and print it to user
        tend = time.time()
        codetime = tend - self.tstart
        if codetime < 60.0:
            msgs.info('Execution time: {0:.2f}s'.format(codetime))
        elif codetime / 60.0 < 60.0:
            mns = int(codetime / 60.0)
            scs = codetime - 60.0 * mns
            msgs.info('Execution time: {0:d}m {1:.2f}s'.format(mns, scs))
        else:
            hrs = int(codetime / 3600.0)
            mns = int(60.0 * (codetime / 3600.0 - hrs))
            scs = codetime - 60.0 * mns - 3600.0 * hrs
            msgs.info('Execution time: {0:d}h {1:d}m {2:.2f}s'.format(
                hrs, mns, scs))

    # TODO: Move this to fitstbl?
    def show_science(self):
        """
        Simple print of science frames
        """
        indx = self.fitstbl.find_frames('science')
        print(self.fitstbl[['target', 'ra', 'dec', 'exptime',
                            'dispname']][indx])

    def __repr__(self):
        # Generate sets string
        return '<{:s}: pypeit_file={}>'.format(self.__class__.__name__,
                                               self.pypeit_file)