Пример #1
0
def test_sia_bipartitions():
    with config.override(CUT_ONE_APPROXIMATION=False):
        answer = [models.Cut((1,), (2, 3, 4)),
                  models.Cut((2,), (1, 3, 4)),
                  models.Cut((1, 2), (3, 4)),
                  models.Cut((3,), (1, 2, 4)),
                  models.Cut((1, 3), (2, 4)),
                  models.Cut((2, 3), (1, 4)),
                  models.Cut((1, 2, 3), (4,)),
                  models.Cut((4,), (1, 2, 3)),
                  models.Cut((1, 4), (2, 3)),
                  models.Cut((2, 4), (1, 3)),
                  models.Cut((1, 2, 4), (3,)),
                  models.Cut((3, 4), (1, 2)),
                  models.Cut((1, 3, 4), (2,)),
                  models.Cut((2, 3, 4), (1,))]
        assert sia_bipartitions((1, 2, 3, 4)) == answer

    with config.override(CUT_ONE_APPROXIMATION=True):
        answer = [models.Cut((1,), (2, 3, 4)),
                  models.Cut((2,), (1, 3, 4)),
                  models.Cut((3,), (1, 2, 4)),
                  models.Cut((4,), (1, 2, 3)),
                  models.Cut((2, 3, 4), (1,)),
                  models.Cut((1, 3, 4), (2,)),
                  models.Cut((1, 2, 4), (3,)),
                  models.Cut((1, 2, 3), (4,))]
        assert sia_bipartitions((1, 2, 3, 4)) == answer
Пример #2
0
def test_sia_cache_key_includes_config_dependencies(s):
    with config.override(MEASURE='EMD'):
        emd_big_phi = compute.phi(s)

    with config.override(MEASURE='L1'):
        l1_big_phi = compute.phi(s)

    assert l1_big_phi != emd_big_phi
Пример #3
0
def test_all_complexes_parallelization(s):
    with config.override(PARALLEL_COMPLEX_EVALUATION=False):
        serial = compute.all_complexes(s.network, s.state)

    with config.override(PARALLEL_COMPLEX_EVALUATION=True):
        parallel = compute.all_complexes(s.network, s.state)

    assert sorted(serial) == sorted(parallel)
Пример #4
0
def test_materialize_list_only_when_needed():
    with config.override(PROGRESS_BARS=False):
        engine = MapSquare(iter([1, 2, 3]))
        assert not isinstance(engine.iterable, list)

    with config.override(PROGRESS_BARS=True):
        engine = MapSquare(iter([1, 2, 3]))
        assert isinstance(engine.iterable, list)
Пример #5
0
def test_materialize_list_only_when_needed():
    with config.override(PROGRESS_BARS=False):
        engine = MapSquare(iter([1, 2, 3]))
        assert not isinstance(engine.iterable, list)

    with config.override(PROGRESS_BARS=True):
        engine = MapSquare(iter([1, 2, 3]))
        assert isinstance(engine.iterable, list)
Пример #6
0
def test_reconfigure_precision_on_change():
    with config.override(PRECISION=100):
        assert constants.EPSILON == 1e-100

    with config.override(PRECISION=3):
        assert constants.EPSILON == 1e-3

    with config.override(PRECISION=123):
        assert constants.EPSILON == 1e-123
Пример #7
0
def test_ces_distance_switches_to_small_phi_difference(s):
    sia = compute.sia(s)
    ce_structures = (sia.ces, sia.partitioned_ces)

    with config.override(USE_SMALL_PHI_DIFFERENCE_FOR_CES_DISTANCE=False):
        assert compute.ces_distance(*ce_structures) == 2.3125

    with config.override(USE_SMALL_PHI_DIFFERENCE_FOR_CES_DISTANCE=True):
        assert compute.ces_distance(*ce_structures) == 1.083333
Пример #8
0
def test_parallel_and_sequential_ces_are_equal(s, micro_s, macro_s):
    with config.override(PARALLEL_CONCEPT_EVALUATION=False):
        c = compute.ces(s)
        c_micro = compute.ces(micro_s)
        c_macro = compute.ces(macro_s)

    with config.override(PARALLEL_CONCEPT_EVALUATION=True):
        assert set(c) == set(compute.ces(s))
        assert set(c_micro) == set(compute.ces(micro_s))
        assert set(c_macro) == set(compute.ces(macro_s))
Пример #9
0
def test_parallel_and_sequential_constellations_are_equal(s, micro_s, macro_s):
    with config.override(PARALLEL_CONCEPT_EVALUATION=False):
        c = compute.constellation(s)
        c_micro = compute.constellation(micro_s)
        c_macro = compute.constellation(macro_s)

    with config.override(PARALLEL_CONCEPT_EVALUATION=True):
        assert set(c) == set(compute.constellation(s))
        assert set(c_micro) == set(compute.constellation(micro_s))
        assert set(c_macro) == set(compute.constellation(macro_s))
Пример #10
0
def test_reconfigure_logging_on_change(capsys):
    log = logging.getLogger('pyphi.config')

    with config.override(LOG_STDOUT_LEVEL='WARNING'):
        log.warning('Just a warning, folks.')
    out, err = capsys.readouterr()
    assert 'Just a warning, folks.' in err

    with config.override(LOG_STDOUT_LEVEL='ERROR'):
        log.warning('Another warning.')
    out, err = capsys.readouterr()
    assert err == ''
Пример #11
0
def test_reconfigure_logging_on_change(capsys):
    log = logging.getLogger("pyphi.config")

    with config.override(LOG_STDOUT_LEVEL="WARNING"):
        log.warning("Just a warning, folks.")
    out, err = capsys.readouterr()
    assert "Just a warning, folks." in err

    with config.override(LOG_STDOUT_LEVEL="ERROR"):
        log.warning("Another warning.")
    out, err = capsys.readouterr()
    assert err == ""
Пример #12
0
def test_reconfigure_logging_on_change(capsys):
    log = logging.getLogger('pyphi.config')

    with config.override(LOG_STDOUT_LEVEL='WARNING'):
        log.warning('Just a warning, folks.')
    out, err = capsys.readouterr()
    assert 'Just a warning, folks.' in err

    with config.override(LOG_STDOUT_LEVEL='ERROR'):
        log.warning('Another warning.')
    out, err = capsys.readouterr()
    assert err == ''
Пример #13
0
def test_clear_subsystem_caches_after_computing_sia_config_option(s):
    with config.override(CLEAR_SUBSYSTEM_CACHES_AFTER_COMPUTING_SIA=False,
                         PARALLEL_CONCEPT_EVALUATION=False,
                         PARALLEL_CUT_EVALUATION=False,
                         CACHE_REPERTOIRES=True):
        sia = compute.sia(s)
        assert s._repertoire_cache.cache

    with config.override(CLEAR_SUBSYSTEM_CACHES_AFTER_COMPUTING_SIA=True,
                         PARALLEL_CONCEPT_EVALUATION=False,
                         PARALLEL_CUT_EVALUATION=False,
                         CACHE_REPERTOIRES=True):
        sia = compute.sia(s)
        assert not s._repertoire_cache.cache
Пример #14
0
def test_tripartitions_choses_smallest_purview(s):
    mechanism = (1, 2)

    with config.override(PICK_SMALLEST_PURVIEW=False):
        mie = s.mie(mechanism)
        assert mie.phi == 0.5
        assert mie.purview == (0, 1)

    s.clear_caches()

    # In phi-tie, chose the smaller purview (0,)
    with config.override(PICK_SMALLEST_PURVIEW=True):
        mie = s.mie(mechanism)
        assert mie.phi == 0.5
        assert mie.purview == (0, )
Пример #15
0
def test_tripartitions_choses_smallest_purview(s):
    mechanism = (1, 2)

    with config.override(PICK_SMALLEST_PURVIEW=False):
        mie = s.mie(mechanism)
        assert mie.phi == 0.5
        assert mie.purview == (0, 1)

    s.clear_caches()

    # In phi-tie, chose the smaller purview (0,)
    with config.override(PICK_SMALLEST_PURVIEW=True):
        mie = s.mie(mechanism)
        assert mie.phi == 0.5
        assert mie.purview == (0,)
Пример #16
0
def test_override_config_is_a_context_manager():
    config.TEST_CONFIG = 1

    with config.override(TEST_CONFIG=1000):
        # Overriden
        assert config.TEST_CONFIG == 1000

    # Reverts original value
    assert config.TEST_CONFIG == 1
Пример #17
0
def test_cache_repertoires_config_option():

    with config.override(CACHE_REPERTOIRES=True):
        SomeObject = factory()
        o = SomeObject()
        assert o.cause_repertoire(1) == 'expensive computation'
        assert o.effect_repertoire(1) == 'expensive computation'
        expected_key = ('cause', 1)
        assert expected_key in o.repertoire_cache.cache
        expected_key = ('effect', 1)
        assert expected_key in o.repertoire_cache.cache

    with config.override(CACHE_REPERTOIRES=False):
        SomeObject = factory()
        o = SomeObject()
        assert o.cause_repertoire(1) == 'expensive computation'
        assert o.effect_repertoire(1) == 'expensive computation'
        # Repertoire cache should be empty
        assert not o.repertoire_cache.cache
Пример #18
0
def test_cache_repertoires_config_option():

    with config.override(CACHE_REPERTOIRES=True):
        SomeObject = factory()
        o = SomeObject()
        assert o.cause_repertoire(1) == 'expensive computation'
        assert o.effect_repertoire(1) == 'expensive computation'
        expected_key = ('cause', 1)
        assert expected_key in o.repertoire_cache.cache
        expected_key = ('effect', 1)
        assert expected_key in o.repertoire_cache.cache

    with config.override(CACHE_REPERTOIRES=False):
        SomeObject = factory()
        o = SomeObject()
        assert o.cause_repertoire(1) == 'expensive computation'
        assert o.effect_repertoire(1) == 'expensive computation'
        # Repertoire cache should be empty
        assert not o.repertoire_cache.cache
Пример #19
0
def test_deserialization_memoizes_duplicate_objects(s):
    with config.override(PARALLEL_CUT_EVALUATION=True):
        sia = compute.sia(s)

    loaded = jsonify.loads(jsonify.dumps(sia))

    l1 = loaded.subsystem
    l2 = loaded.ces.subsystem
    assert l1 == l2
    assert hash(l1) == hash(l2)
    assert l1 is l2
Пример #20
0
def test_reconfigure_joblib_on_change(capsys):
    cachedir = "./__testing123__"
    try:
        with config.override(FS_CACHE_DIRECTORY=cachedir):
            assert constants.joblib_memory.location == cachedir
            assert Path(cachedir).exists()
    finally:
        shutil.rmtree(cachedir)

    def f(x):
        return x + 1

    with config.override(FS_CACHE_VERBOSITY=0):
        constants.joblib_memory.cache(f)(42)
    out, err = capsys.readouterr()
    assert len(out) == 0

    with config.override(FS_CACHE_VERBOSITY=100):
        constants.joblib_memory.cache(f)(42)
    out, err = capsys.readouterr()
    assert len(out) > 0
Пример #21
0
def test_network_init_validation(network):
    with pytest.raises(ValueError):
        # Totally wrong shape
        tpm = np.arange(3).astype(float)
        Network(tpm)
    with pytest.raises(ValueError):
        # Non-binary nodes (4 states)
        tpm = np.ones((4, 4, 4, 3)).astype(float)
        Network(tpm)

    # Conditionally dependent
    tpm = np.array([
            [1, 0.0, 0.0, 0],
            [0, 0.5, 0.5, 0],
            [0, 0.5, 0.5, 0],
            [0, 0.0, 0.0, 1],
    ])
    with config.override(VALIDATE_CONDITIONAL_INDEPENDENCE=False):
        Network(tpm)
    with config.override(VALIDATE_CONDITIONAL_INDEPENDENCE=True):
        with pytest.raises(exceptions.ConditionallyDependentError):
            Network(tpm)
Пример #22
0
def test_validate_tpm_conditional_independence():
    tpm = np.array([
        [1, 0.0, 0.0, 0],
        [0, 0.5, 0.5, 0],
        [0, 0.5, 0.5, 0],
        [0, 0.0, 0.0, 1],
    ])
    with pytest.raises(ValueError):
        validate.conditionally_independent(tpm)
    with config.override(VALIDATE_CONDITIONAL_INDEPENDENCE=False):
        validate.conditionally_independent(tpm)
    with pytest.raises(ValueError):
        validate.tpm(tpm)
    validate.tpm(tpm, check_independence=False)
Пример #23
0
def test_validate_tpm_conditional_independence():
    tpm = np.array([
        [1, 0.0, 0.0, 0],
        [0, 0.5, 0.5, 0],
        [0, 0.5, 0.5, 0],
        [0, 0.0, 0.0, 1],
    ])
    with pytest.raises(ValueError):
        validate.conditionally_independent(tpm)
    with config.override(VALIDATE_CONDITIONAL_INDEPENDENCE=False):
        validate.conditionally_independent(tpm)
    with pytest.raises(ValueError):
        validate.tpm(tpm)
    validate.tpm(tpm, check_independence=False)
Пример #24
0
def test_num_processes():

    # Can't have no processes
    with config.override(NUMBER_OF_CORES=0):
        with pytest.raises(ValueError):
            parallel.get_num_processes()

    # Negative numbers
    with config.override(NUMBER_OF_CORES=-1):
        assert parallel.get_num_processes() == 2

    # Too negative
    with config.override(NUMBER_OF_CORES=-3):
        with pytest.raises(ValueError):
            parallel.get_num_processes()

    # Requesting more cores than available
    with config.override(NUMBER_OF_CORES=3):
        assert parallel.get_num_processes() == 2

    # Ok
    with config.override(NUMBER_OF_CORES=1):
        assert parallel.get_num_processes() == 1
Пример #25
0
def test_num_processes():

    # Can't have no processes
    with config.override(NUMBER_OF_CORES=0):
        with pytest.raises(ValueError):
            parallel.get_num_processes()

    # Negative numbers
    with config.override(NUMBER_OF_CORES=-1):
        assert parallel.get_num_processes() == 2

    # Too negative
    with config.override(NUMBER_OF_CORES=-3):
        with pytest.raises(ValueError):
            parallel.get_num_processes()

    # Requesting more cores than available
    with config.override(NUMBER_OF_CORES=3):
        assert parallel.get_num_processes() == 2

    # Ok
    with config.override(NUMBER_OF_CORES=1):
        assert parallel.get_num_processes() == 1
Пример #26
0
def test_acria_ordering():
    assert acria() == acria()
    assert acria(alpha=0.0) < acria(alpha=1.0)
    assert acria(alpha=0.0, mechanism=(1, 2)) <= acria(alpha=1.0, mechanism=(1,))
    assert acria(alpha=0.0, mechanism=(1, 2)) > acria(alpha=0.0, mechanism=(1,))

    assert bool(acria(alpha=1.0)) is True
    assert bool(acria(alpha=0.0)) is False
    assert bool(acria(alpha=-1)) is False

    with pytest.raises(TypeError):
        acria(direction=Direction.CAUSE) < acria(direction=Direction.EFFECT)

    with config.override(PICK_SMALLEST_PURVIEW=True):
        assert acria(purview=(1,)) > acria(purview=(0, 2))
Пример #27
0
def test_acria_ordering():
    assert acria() == acria()
    assert acria(alpha=0.0) < acria(alpha=1.0)
    assert (acria(alpha=0.0, mechanism=(1, 2)) <=
            acria(alpha=1.0, mechanism=(1,)))
    assert (acria(alpha=0.0, mechanism=(1, 2)) >
            acria(alpha=0.0, mechanism=(1,)))

    assert bool(acria(alpha=1.0)) is True
    assert bool(acria(alpha=0.0)) is False
    assert bool(acria(alpha=-1)) is False

    with pytest.raises(TypeError):
        acria(direction=Direction.CAUSE) < acria(direction=Direction.EFFECT)

    with config.override(PICK_SMALLEST_PURVIEW=True):
        assert acria(purview=(1,)) > acria(purview=(0, 2))
Пример #28
0
def test_deserialization_memoizes_duplicate_objects(s):
    with config.override(PARALLEL_CUT_EVALUATION=True):
        sia = compute.sia(s)

    s1 = sia.subsystem
    # Computed in a parallel process, so has a different id
    s2 = sia.ces[0].subsystem
    assert s1 is not s2
    assert s1 == s2
    assert hash(s1) == hash(s2)

    loaded = jsonify.loads(jsonify.dumps(sia))

    l1 = loaded.subsystem
    l2 = loaded.ces[0].subsystem
    assert l1 == l2
    assert hash(l1) == hash(l2)
    assert l1 is l2
Пример #29
0
def test_PQR_relations():
    with config.override(
            PARTITION_TYPE="TRI",
            MEASURE="BLD",
    ):
        PQR = examples.PQR()
        ces = compute.ces(PQR)
        separated_ces = list(relations.separate_ces(ces))
        results = list(relations.relations(PQR, ces))

        # NOTE: these phi values are in nats, not bits!
        answers = [
            [(0, 4), 0.6931471805599452, [(2, )]],
            [(0, 6), 0.6931471805599452, [(2, )]],
            [(1, 2), 0.3465735902799726, [(0, )]],
            [(1, 3), 0.3465735902799726, [(0, )]],
            [(1, 7), 0.3465735902799726, [(0, )]],
            [(2, 3), 0.3465735902799726, [(0, ), (1, ), (0, 1)]],
            [(2, 4), 0.3465735902799726, [(1, )]],
            [(2, 6), 0.3465735902799726, [(0, ), (1, ), (0, 1)]],
            [(2, 7), 0.3465735902799726, [(0, ), (1, ), (0, 1)]],
            [(3, 7), 0.693147180559945, [(0, 1)]],
            [(4, 6), 1.3862943611198901, [(1, 2)]],
            [(5, 7), 0.6931471805599452, [(2, )]],
            [(0, 4, 6), 0.6931471805599452, [(2, )]],
            [(1, 2, 3), 0.3465735902799726, [(0, )]],
            [(1, 2, 7), 0.3465735902799726, [(0, )]],
            [(1, 3, 7), 0.3465735902799726, [(0, )]],
            [(2, 3, 7), 0.3465735902799726, [(0, ), (1, ), (0, 1)]],
            [(2, 4, 6), 0.3465735902799726, [(1, )]],
            [(1, 2, 3, 7), 0.3465735902799726, [(0, )]],
        ]

        def base2(x):
            return x / np.log(2.0)

        for result, answer in zip(results, answers):
            subset, phi, purviews = answer
            subset = tuple(separated_ces[i] for i in subset)
            relata = relations.Relata(PQR, subset)
            assert set(purviews) == set(result.ties)
            assert utils.eq(base2(phi), result.phi)
            assert relata == result.relata
Пример #30
0
def test_ria_ordering_and_equality():
    assert ria(phi=1.0) < ria(phi=2.0)
    assert ria(phi=2.0) > ria(phi=1.0)
    assert ria(mechanism=(1, )) < ria(mechanism=(1, 2))
    assert ria(mechanism=(1, 2)) >= ria(mechanism=(1, ))
    assert ria(purview=(1, )) < ria(purview=(1, 2))
    assert ria(purview=(1, 2)) >= ria(purview=(1, ))

    assert ria(phi=1.0) == ria(phi=1.0)
    assert ria(phi=1.0) == ria(phi=(1.0 - constants.EPSILON / 2))
    assert ria(phi=1.0) != ria(phi=(1.0 - constants.EPSILON * 2))
    assert ria(direction=Direction.CAUSE) != ria(direction=Direction.EFFECT)
    assert ria(mechanism=(1, )) != ria(mechanism=(1, 2))

    with config.override(PICK_SMALLEST_PURVIEW=True):
        assert ria(purview=(1, 2)) < ria(purview=(1, ))

    with pytest.raises(TypeError):
        ria(direction=Direction.CAUSE) < ria(direction=Direction.EFFECT)

    with pytest.raises(TypeError):
        ria(direction=Direction.CAUSE) >= ria(direction=Direction.EFFECT)
Пример #31
0
def test_maximal_states():
    with config.override(
            PARTITION_TYPE="TRI",
            MEASURE="BLD",
    ):
        subsystem = examples.PQR()
        ces = relations.separate_ces(compute.ces(subsystem))
        results = [relations.maximal_state(mice) for mice in ces]
        answers = [
            np.array([[0, 0, 0]]),
            np.array([[0, 0, 0]]),
            np.array([[0, 0, 0], [1, 1, 0]]),
            np.array([[0, 0, 0]]),
            np.array([[0, 1, 0]]),
            np.array([[0, 0, 1]]),
            np.array([[1, 1, 0]]),
            np.array([[0, 0, 1]]),
        ]
        for result, answer in zip(results, answers):
            print(result)
            print(answer)
            assert np.array_equal(result, answer)
Пример #32
0
def test_system_repertoire_distance_must_be_symmetric():
    a = np.ones((2, 2, 2)) / 8
    b = np.ones((2, 2, 2)) / 8
    with config.override(MEASURE='KLD'):
        with pytest.raises(ValueError):
            distance.system_repertoire_distance(a, b)
Пример #33
0
# ========================
"""Note: all subsystems are loaded from `examples` internally instead of by
pytest fixture because they must be constructed with the correct cache config.
"""

try:
    redis_available = cache.RedisConn().ping()
except redis.exceptions.ConnectionError:
    redis_available = False

# Decorator to skip a test if Redis is not available
require_redis = pytest.mark.skipif(not redis_available,
                                   reason="requires a running Redis server")

# Decorator to force a test to use the local cache
local_cache = config.override(REDIS_CACHE=False)

# Decorator to force a test to use Redis cache; skip test if Redis is not available
redis_cache = lambda f: config.override(REDIS_CACHE=True)(require_redis(f))


def all_caches(test_func):
    """Decorator to run a test twice: once with the local cache and once with Redis.

    Any decorated test must add a `redis_cache` argument.
    """
    @pytest.mark.parametrize("redis_cache,", [
        require_redis((True, )),
        (False, ),
    ])
    def wrapper(redis_cache, *args, **kwargs):
Пример #34
0
def test_ces_concepts_share_the_same_subsystem(parallel, s):
    with config.override(PARALLEL_CONCEPT_EVALUATION=parallel):
        ces = compute.ces(s)
        for concept in ces:
            assert concept.subsystem is ces.subsystem
Пример #35
0
 def wrapper(redis_cache, *args, **kwargs):
     with config.override(REDIS_CACHE=redis_cache[0]):
         return test_func(redis_cache, *args, **kwargs)
Пример #36
0
def test_system_cut_styles(s):
    with config.override(SYSTEM_CUTS='3.0_STYLE'):
        assert compute.phi(s) == 2.3125

    with config.override(SYSTEM_CUTS='CONCEPT_STYLE'):
        assert compute.phi(s) == 0.6875
Пример #37
0
def test_system_repertoire_distance_must_be_symmetric():
    a = np.ones((2, 2, 2)) / 8
    b = np.ones((2, 2, 2)) / 8
    with config.override(MEASURE='KLD'):
        with pytest.raises(ValueError):
            distance.system_repertoire_distance(a, b)
Пример #38
0
def test_basic_nor_or():
    # A system composed of NOR and OR (copy) gates, which mimics the basic
    # pyphi network

    nodes = 12
    tpm = np.zeros((2 ** nodes, nodes))

    for psi, ps in enumerate(utils.all_states(nodes)):
        cs = [0 for i in range(nodes)]
        if ps[5] == 0 and ps[11] == 0:
            cs[0] = 1
        if ps[0] == 0:
            cs[1] = 1
        if ps[1] == 1:
            cs[2] = 1
        if ps[11] == 0:
            cs[3] = 1
        if ps[3] == 0:
            cs[4] = 1
        if ps[4] == 1:
            cs[5] = 1
        if ps[2] == 0:
            cs[6] = 1
        if ps[5] == 0:
            cs[7] = 1
        if ps[6] == 0 and ps[7] == 0:
            cs[8] = 1
        if ps[2] == 0 and ps[5] == 0:
            cs[9] = 1
        if ps[9] == 1:
            cs[10] = 1
        if ps[8] == 0 and ps[10] == 0:
            cs[11] = 1
        tpm[psi, :] = cs

    cm = np.array([
        [0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
        [0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0],
        [0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0],
        [0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0],
        [0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0],
        [1, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0],
        [0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0],
        [0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0],
        [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1],
        [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0],
        [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1],
        [1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0],
    ])

    state = (0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0)

    network = Network(tpm, cm=cm)

    # (0, 1, 2) compose the OR element,
    # (3, 4, 5) the COPY,
    # (6, 7, 8, 9, 10, 11) the XOR
    partition = ((0, 1, 2), (3, 4, 5), (6, 7, 8, 9, 10, 11))
    output = (2, 5, 11)
    blackbox = macro.Blackbox(partition, output)
    assert blackbox.hidden_indices == (0, 1, 3, 4, 6, 7, 8, 9, 10)
    time = 3

    sub = macro.MacroSubsystem(network, state, network.node_indices,
                               blackbox=blackbox, time_scale=time)

    with config.override(CUT_ONE_APPROXIMATION=True):
        sia = compute.sia(sub)

    assert sia.phi == 1.958332
    assert sia.cut == models.Cut((6,), (0, 1, 2, 3, 4, 5, 7, 8, 9, 10, 11))
Пример #39
0
 def wrapper(redis_cache, *args, **kwargs):
     with config.override(REDIS_CACHE=redis_cache[0]):
         return test_func(redis_cache, *args, **kwargs)
Пример #40
0
def test_basic_nor_or():
    # A system composed of NOR and OR (copy) gates, which mimics the basic
    # pyphi network

    nodes = 12
    tpm = np.zeros((2**nodes, nodes))

    for psi, ps in enumerate(utils.all_states(nodes)):
        cs = [0 for i in range(nodes)]
        if ps[5] == 0 and ps[11] == 0:
            cs[0] = 1
        if ps[0] == 0:
            cs[1] = 1
        if ps[1] == 1:
            cs[2] = 1
        if ps[11] == 0:
            cs[3] = 1
        if ps[3] == 0:
            cs[4] = 1
        if ps[4] == 1:
            cs[5] = 1
        if ps[2] == 0:
            cs[6] = 1
        if ps[5] == 0:
            cs[7] = 1
        if ps[6] == 0 and ps[7] == 0:
            cs[8] = 1
        if ps[2] == 0 and ps[5] == 0:
            cs[9] = 1
        if ps[9] == 1:
            cs[10] = 1
        if ps[8] == 0 and ps[10] == 0:
            cs[11] = 1
        tpm[psi, :] = cs

    cm = np.array([
        [0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
        [0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0],
        [0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0],
        [0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0],
        [0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0],
        [1, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0],
        [0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0],
        [0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0],
        [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1],
        [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0],
        [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1],
        [1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0],
    ])

    state = (0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0)

    network = Network(tpm, cm=cm)

    # (0, 1, 2) compose the OR element,
    # (3, 4, 5) the COPY,
    # (6, 7, 8, 9, 10, 11) the XOR
    partition = ((0, 1, 2), (3, 4, 5), (6, 7, 8, 9, 10, 11))
    output = (2, 5, 11)
    blackbox = macro.Blackbox(partition, output)
    assert blackbox.hidden_indices == (0, 1, 3, 4, 6, 7, 8, 9, 10)
    time = 3

    sub = macro.MacroSubsystem(network,
                               state,
                               network.node_indices,
                               blackbox=blackbox,
                               time_scale=time)

    with config.override(CUT_ONE_APPROXIMATION=True):
        sia = compute.sia(sub)

    assert sia.phi == 1.958332
    assert sia.cut == models.Cut((6, ), (0, 1, 2, 3, 4, 5, 7, 8, 9, 10, 11))
Пример #41
0
# Test MICE caching
# ========================

# NOTE: All subsystems are loaded from `examples` internally instead of by
# pytest fixture because they must be constructed with the correct cache
# config.

redis_available = cache.redis_available()

# Decorator to skip a test if Redis is not available
require_redis = pytest.mark.skipif(not redis_available,
                                   reason="requires a running Redis server")

# Decorator to force a test to use the local cache
local_cache = config.override(REDIS_CACHE=False)

# Decorator to force a test to use Redis cache; skip test if Redis is not
# available
redis_cache = lambda f: config.override(REDIS_CACHE=True)(require_redis(f))


def all_caches(test_func):
    """Decorator to run a test twice: once with the local cache and once with
    Redis.

    Any decorated test must add a `redis_cache` argument.
    """
    @pytest.mark.parametrize("redis_cache,", [
        require_redis((True,)),
        (False,),