Пример #1
0
 def test_z0_vs_dmax(self):
     self.ambient = pyplume.Ambient(self.z_max,
                                    self.salinity,
                                    self.temperature,
                                    pressure=self.pressure)
     self.assertEqual(self.ambient.get_sal_z(0),
                      self.ambient.get_sal_d(self.z_max))
Пример #2
0
 def test_density_from_depth(self):
     self.ambient = pyplume.Ambient(self.z_max,
                                    self.salinity,
                                    self.temperature,
                                    depth=self.depth)
     self.assertEqual(
         self.ambient.rho.tolist(),
         gsw.rho(self.salinity, self.temperature, self.pressure).tolist())
Пример #3
0
    def test_profile_interpolation(self):
        self.ambient = pyplume.Ambient(self.z_max,
                                       self.salinity,
                                       self.temperature,
                                       pressure=self.pressure)

        mid_rho = (self.ambient.rho[0] + self.ambient.rho[1]) / 2.
        mid_sal = (self.salinity[0] + self.salinity[1]) / 2.
        mid_temp = (self.temperature[0] + self.temperature[1]) / 2.
        mid_pressure = (self.pressure[0] + self.pressure[1]) / 2.

        mid_depth = mid_pressure / (1027. * 9.81 * 1.e-4)

        self.assertEqual(mid_sal, self.ambient.get_sal_d(mid_depth))
Пример #4
0
# Ambient T/S profile

# load a csv containing columns for
# z (depth - metres)
# SA (Absolute Salinity - Kg/m3)
# CT (Conservative temperature - C)

# This one was generated using the script in the ctdtools repo here:
# https://github.com/alistaireverett/ctdtools/blob/master/examples/proc_cnv_short.py

amb_df = pd.read_csv('ambient.csv', ';')

# create an ambient profile object from the temp/sal data
ambient = pyplume.Ambient(h_w,
                          amb_df['SA'],
                          amb_df['CT'],
                          depth=amb_df['depth'])

# Load discharges

# These are from a surface mass balance model, see Halbach et al. (submitted).
# Contains the following columns:
# Year, Month, Day, Hour, Discharge (m3/s)

disch_data = pd.read_csv('kronebreen_runoff.csv', ';')


def to_dt(x):
    """
    Function to convert Y/M/D/H columns to python datetime object