def test_simple_take(self): """take 10 events in batch.""" timeseries = TimeSeries(SEPT_2014_DATA) kcol = ( Pipeline().from_source(timeseries).take(10).to_keyed_collections()) new_ts = TimeSeries(dict(name='result', collection=kcol.get('all'))) self.assertEqual(new_ts.size(), 10)
def test_simple_take(self): """take 10 events in batch.""" timeseries = TimeSeries(SEPT_2014_DATA) kcol = ( Pipeline() .from_source(timeseries) .take(10) .to_keyed_collections() ) new_ts = TimeSeries(dict(name='result', collection=kcol.get('all'))) self.assertEqual(new_ts.size(), 10)
def test_series_creation(self): """test timeseries creation. Calls to to_json() are to trigger coverage for different variants. """ # from a wire format event list ts1 = TimeSeries(DATA) self.assertEqual(ts1.size(), len(DATA.get('points'))) # from a wire format index ts2 = TimeSeries(AVAILABILITY_DATA) self.assertEqual(ts2.size(), len(AVAILABILITY_DATA.get('points'))) self.assertEqual(ts2.to_json().get('name'), 'availability') # from a list of events ts3 = TimeSeries(dict(name='events', events=EVENT_LIST)) self.assertEqual(ts3.size(), len(EVENT_LIST)) # from a collection ts4 = TimeSeries( dict(name='collection', collection=self._canned_collection)) self.assertEqual(ts4.size(), self._canned_collection.size()) # copy constructor ts5 = TimeSeries(ts4) self.assertEqual(ts4.size(), ts5.size()) # from a wire format time range ts6 = TimeSeries(TICKET_RANGE) self.assertEqual(ts6.size(), len(TICKET_RANGE.get('points'))) self.assertEqual(ts6.to_json().get('name'), 'outages') # non-utc indexed data variant mostly for coverage idxd = copy.deepcopy(INDEXED_DATA) idxd['utc'] = False ts7 = TimeSeries(idxd) self.assertFalse(ts7.is_utc()) self.assertFalse(ts7.to_json().get('utc')) # indexed data variant using Index object - for coverage as well idxd2 = copy.deepcopy(INDEXED_DATA) idxd2['index'] = Index(idxd2.get('index')) ts8 = TimeSeries(idxd2) self.assertEqual(ts8.to_json().get('index'), '1d-625') # make sure complex/deep/nested wire format is being handled correctly. ts7 = TimeSeries(DATA_FLOW) self.assertEqual(ts7.at(0).value('direction').get('in'), 1) self.assertEqual(ts7.at(0).value('direction').get('out'), 2) self.assertEqual(ts7.at(1).value('direction').get('in'), 3) self.assertEqual(ts7.at(1).value('direction').get('out'), 4)
def test_series_creation(self): """test timeseries creation. Calls to to_json() are to trigger coverage for different variants. """ # from a wire format event list ts1 = TimeSeries(DATA) self.assertEqual(ts1.size(), len(DATA.get('points'))) # from a wire format index ts2 = TimeSeries(AVAILABILITY_DATA) self.assertEqual(ts2.size(), len(AVAILABILITY_DATA.get('points'))) self.assertEqual(ts2.to_json().get('name'), 'availability') # from a list of events ts3 = TimeSeries(dict(name='events', events=EVENT_LIST)) self.assertEqual(ts3.size(), len(EVENT_LIST)) # from a collection ts4 = TimeSeries(dict(name='collection', collection=self._canned_collection)) self.assertEqual(ts4.size(), self._canned_collection.size()) # copy constructor ts5 = TimeSeries(ts4) self.assertEqual(ts4.size(), ts5.size()) # from a wire format time range ts6 = TimeSeries(TICKET_RANGE) self.assertEqual(ts6.size(), len(TICKET_RANGE.get('points'))) self.assertEqual(ts6.to_json().get('name'), 'outages') # non-utc indexed data variant mostly for coverage idxd = copy.deepcopy(INDEXED_DATA) idxd['utc'] = False ts7 = TimeSeries(idxd) self.assertFalse(ts7.is_utc()) self.assertFalse(ts7.to_json().get('utc')) # indexed data variant using Index object - for coverage as well idxd2 = copy.deepcopy(INDEXED_DATA) idxd2['index'] = Index(idxd2.get('index')) ts8 = TimeSeries(idxd2) self.assertEqual(ts8.to_json().get('index'), '1d-625') # make sure complex/deep/nested wire format is being handled correctly. ts7 = TimeSeries(DATA_FLOW) self.assertEqual(ts7.at(0).value('direction').get('in'), 1) self.assertEqual(ts7.at(0).value('direction').get('out'), 2) self.assertEqual(ts7.at(1).value('direction').get('in'), 3) self.assertEqual(ts7.at(1).value('direction').get('out'), 4)