Пример #1
0
def makeB(baseMVA, bus, branch, alg):
    """Builds the FDPF matrices, B prime and B double prime.

    Returns the two matrices B prime and B double prime used in the fast
    decoupled power flow. Does appropriate conversions to p.u. C{alg} is the
    value of the C{PF_ALG} option specifying the power flow algorithm.

    @see: L{fdpf}

    @author: Ray Zimmerman (PSERC Cornell)
    """
    ## constants
    nb = bus.shape[0]          ## number of buses
    nl = branch.shape[0]       ## number of lines

    ##-----  form Bp (B prime)  -----
    temp_branch = copy(branch)                 ## modify a copy of branch
    temp_bus = copy(bus)                       ## modify a copy of bus
    temp_bus[:, BS] = zeros(nb)                ## zero out shunts at buses
    temp_branch[:, BR_B] = zeros(nl)           ## zero out line charging shunts
    temp_branch[:, TAP] = ones(nl)             ## cancel out taps
    if alg == 2:                               ## if XB method
        temp_branch[:, BR_R] = zeros(nl)       ## zero out line resistance
    Bp = -1 * makeYbus(baseMVA, temp_bus, temp_branch)[0].imag

    ##-----  form Bpp (B double prime)  -----
    temp_branch = copy(branch)                 ## modify a copy of branch
    temp_branch[:, SHIFT] = zeros(nl)          ## zero out phase shifters
    if alg == 3:                               ## if BX method
        temp_branch[:, BR_R] = zeros(nl)    ## zero out line resistance
    Bpp = -1 * makeYbus(baseMVA, bus, temp_branch)[0].imag

    return Bp, Bpp
Пример #2
0
def makeB(baseMVA, bus, branch, alg):
    """Builds the FDPF matrices, B prime and B double prime.

    Returns the two matrices B prime and B double prime used in the fast
    decoupled power flow. Does appropriate conversions to p.u. C{alg} is the
    value of the C{PF_ALG} option specifying the power flow algorithm.

    @see: L{fdpf}

    @author: Ray Zimmerman (PSERC Cornell)
    @author: Richard Lincoln
    """
    ## constants
    nb = bus.shape[0]  ## number of buses
    nl = branch.shape[0]  ## number of lines

    ##-----  form Bp (B prime)  -----
    temp_branch = copy(branch)  ## modify a copy of branch
    temp_bus = copy(bus)  ## modify a copy of bus
    temp_bus[:, BS] = zeros(nb)  ## zero out shunts at buses
    temp_branch[:, BR_B] = zeros(nl)  ## zero out line charging shunts
    temp_branch[:, TAP] = ones(nl)  ## cancel out taps
    if alg == 2:  ## if XB method
        temp_branch[:, BR_R] = zeros(nl)  ## zero out line resistance
    Bp = -1 * makeYbus(baseMVA, temp_bus, temp_branch)[0].imag

    ##-----  form Bpp (B double prime)  -----
    temp_branch = copy(branch)  ## modify a copy of branch
    temp_branch[:, SHIFT] = zeros(nl)  ## zero out phase shifters
    if alg == 3:  ## if BX method
        temp_branch[:, BR_R] = zeros(nl)  ## zero out line resistance
    Bpp = -1 * makeYbus(baseMVA, bus, temp_branch)[0].imag

    return Bp, Bpp
Пример #3
0
def makeYbus(baseMVA,bus,branch,do_separate_Yslack=False):
	from pypower.makeYbus import makeYbus
	if do_separate_Yslack:
		Y = makeYbus(baseMVA,bus,branch)[0].toarray()
		slack_ind = (bus[:,BUS_TYPE]==3).nonzero()[0][0]
		return separate_Yslack(Y,slack_ind)
	else:
		return makeYbus(baseMVA,bus,branch)[0]
Пример #4
0
def AugYbus(baseMVA, bus, branch, xd_tr, gbus, P, Q, U0):
    """ Constructs augmented bus admittance matrix Ybus.

    @param baseMVA: power base
    @param bus: bus data
    @param branch: branch data
    @param xd_tr: d component of transient reactance
    @param gbus: generator buses
    @param P: load active power
    @param Q: load reactive power
    @param U0: steady-state bus voltages
    @return: factorised augmented bus admittance matrix

    @see: U{http://www.esat.kuleuven.be/electa/teaching/matdyn/}
    """
    # Calculate bus admittance matrix
    Ybus, _, _ = makeYbus(baseMVA, bus, branch)

    # Calculate equivalent load admittance
    yload = (P - 1j * Q) / (abs(U0)**2)

    # Calculate equivalent generator admittance
    ygen = zeros(Ybus.shape[0])
    ygen[gbus] = 1 / (1j * xd_tr)

    # Add equivalent load and generator admittance to Ybus matrix
    for i in range(Ybus.shape[0]):
        Ybus[i, i] = Ybus[i, i] + ygen[i] + yload[i]

    # Factorise
    return splu(Ybus)
Пример #5
0
def AugYbus(baseMVA, bus, branch, xd_tr, gbus, P, Q, U0):
    """ Constructs augmented bus admittance matrix Ybus.

    @param baseMVA: power base
    @param bus: bus data
    @param branch: branch data
    @param xd_tr: d component of transient reactance
    @param gbus: generator buses
    @param P: load active power
    @param Q: load reactive power
    @param U0: steady-state bus voltages
    @return: factorised augmented bus admittance matrix

    @see: U{http://www.esat.kuleuven.be/electa/teaching/matdyn/}
    """
    # Calculate bus admittance matrix
    Ybus, _, _ = makeYbus(baseMVA, bus, branch)

    # Calculate equivalent load admittance
    yload = (P - 1j * Q) / (abs(U0)**2)

    # Calculate equivalent generator admittance
    ygen = zeros(Ybus.shape[0])
    ygen[gbus] = 1 / (1j * xd_tr)

    # Add equivalent load and generator admittance to Ybus matrix
    for i in range(Ybus.shape[0]):
        Ybus[i, i] = Ybus[i, i] + ygen[i] + yload[i]

    # Factorise
    return splu(Ybus)
Пример #6
0
def network_observability(topology, meas_idx, V):
	from pypower.api import makeYbus
	from pypower.bustypes import bustypes
	from pypower.dSbus_dV import dSbus_dV
	from pypower.dSbr_dV import dSbr_dV

	# build admittances
	Ybus,Yfrom,Yto = makeYbus(topology["baseMVA"],topology["bus"],topology["branch"])
	Ybus, Yfrom, Yto = Ybus.toarray(), Yfrom.toarray(), Yto.toarray()
	Nk = Ybus.shape[0]

	# get non-reference buses
	ref,pv,pq = bustypes(topology["bus"],topology["gen"])
	nonref = np.r_[pv,pq]
	gbus = topology["gen"][:,GEN_BUS].astype(int)

	# calculate partial derivative
	dSbus_dVm, dSbus_dVa = dSbus_dV(Ybus,V)
	dSf_dVa, dSf_dVm, dSt_dVa, dSt_dVm, Sf, St = dSbr_dV(topology["branch"],Yfrom,Yto,V)
	# create Jacobian matrix
	## submatrices related to line flow
	dPf_Va = np.real(dSf_dVa)[meas_idx["Pf"],:][:,nonref]
	dPf_Vm = np.real(dSf_dVm)[meas_idx["Pf"],:][:,nonref]
	dPt_Va = np.real(dSt_dVa)[meas_idx["Pt"],:][:,nonref]
	dPt_Vm = np.real(dSt_dVm)[meas_idx["Pt"],:][:,nonref]
	dQf_Va = np.imag(dSf_dVa)[meas_idx["Qf"],:][:,nonref]
	dQf_Vm = np.imag(dSf_dVm)[meas_idx["Qf"],:][:,nonref]
	dQt_Va = np.imag(dSt_dVa)[meas_idx["Qt"],:][:,nonref]
	dQt_Vm = np.imag(dSt_dVm)[meas_idx["Qt"],:][:,nonref]
	## submatrix related to generator output
	dPg_Va = np.real(dSbus_dVa)[gbus,:][meas_idx["Pg"],:][:,nonref]
	dPg_Vm = np.real(dSbus_dVm)[gbus,:][meas_idx["Pg"],:][:,nonref]
	dQg_Va = np.imag(dSbus_dVa)[gbus,:][meas_idx["Qg"],:][:,nonref]
	dQg_Vm = np.imag(dSbus_dVm)[gbus,:][meas_idx["Qg"],:][:,nonref]
	## submatrix related to bus injection
	dPk_Va = np.real(dSbus_dVa)[meas_idx["Pk"],:][:,nonref]
	dPk_Vm = np.real(dSbus_dVm)[meas_idx["Pk"],:][:,nonref]
	dQk_Va = np.imag(dSbus_dVa)[meas_idx["Qk"],:][:,nonref]
	dQk_Vm = np.imag(dSbus_dVm)[meas_idx["Qk"],:][:,nonref]
	## submatrix related to voltage angle
	dVa_Va = np.eye(Nk)[meas_idx["Va"],:][:,nonref]
	dVa_Vm = np.zeros((Nk,Nk))[meas_idx["Va"],:][:,nonref]
	## submatrix related to voltage magnitude
	dVm_Va = np.zeros((Nk,Nk))[meas_idx["Vm"],:][:,nonref]
	dVm_Vm = np.eye(Nk)[meas_idx["Vm"],:][:,nonref]

	H = np.r_[np.c_[dPf_Va, dPf_Vm],\
			  np.c_[dPt_Va, dPt_Vm],\
			  np.c_[dPg_Va, dPg_Vm],\
			  np.c_[dQf_Va, dQf_Vm],\
			  np.c_[dQt_Va, dQt_Vm],\
			  np.c_[dQg_Va, dQg_Vm],\
			  np.c_[dPk_Va, dPk_Vm],\
			  np.c_[dQk_Va, dQk_Vm],\
			  np.c_[dVa_Va, dVa_Vm],\
			  np.c_[dVm_Va, dVm_Vm]]

	return isobservable(H,pv,pq)
Пример #7
0
def voltage2power(V,topology):
	"""Calculation of nodal and line power from complex nodal voltages
	Returns dictionary of corresponding powers and a dictionary with the partial derivatives

	:param V: numpy array of complex nodal voltages
	:param topology: dict in pypower casefile format
	:returns: dict of calculated power values, dict of jacobians if V is one-dimensional

	"""
	from pypower.idx_brch import F_BUS,T_BUS
	from pypower.idx_gen import GEN_BUS
	from pypower.makeYbus import makeYbus
	from pypower.idx_bus import PD,QD
	from pypower.dSbus_dV import dSbus_dV
	from pypower.dSbr_dV import dSbr_dV

	assert(str(V.dtype)[:7]=="complex")

	list_f = topology["branch"][:,F_BUS].tolist()
	list_t = topology["branch"][:,T_BUS].tolist()

	Ybus,Yfrom,Yto = makeYbus(topology["baseMVA"],topology["bus"],topology["branch"])
	Ybus, Yfrom, Yto = Ybus.toarray(), Yfrom.toarray(), Yto.toarray()

	powers = {}
	if len(V.shape)==1:
		powers["Sf"] = V[list_f]*np.conj(np.dot(Yfrom,V))
		powers["St"] = V[list_t]*np.conj(np.dot(Yto,V))
		gbus = topology["gen"][:,GEN_BUS].astype(int)
		Sgbus= V[gbus]*np.conj(np.dot(Ybus[gbus,:],V))
		powers["Sg"] = ( Sgbus*topology["baseMVA"] + topology["bus"][gbus,PD] + 1j*topology["bus"][gbus,QD] ) / topology["baseMVA"]
		powers["Sk"] = V*np.conj(np.dot(Ybus,V))
	else:
		powers = dict([(name,[]) for name in ["Sf","St","Sg","Sk"]])
		for k in range(V.shape[0]):
			powers["Sf"].append(V[k,list_f]*np.conj(np.dot(Yfrom,V[k,:])))
			powers["St"].append(V[k,list_t]*np.conj(np.dot(Yto,V[k,:])))
			gbus = topology["gen"][:,GEN_BUS].astype(int)
			Sgbus= V[k,gbus]*np.conj(np.dot(Ybus[gbus,:],V[k,:]))
			powers["Sg"].append(( Sgbus*topology["baseMVA"] + topology["bus"][gbus,PD] + 1j*topology["bus"][gbus,QD] ) / topology["baseMVA"])
			powers["Sk"].append(V[k,:]*np.conj(np.dot(Ybus,V[k,:])))
		for key in powers.keys():
			powers[key] = np.asarray(powers[key])
		# calculate partial derivative
	jacobians = dict([])
	if len(V.shape)==1:
		jacobians["dSbus_dVm"], jacobians["dSbus_dVa"] = dSbus_dV(Ybus,V)
		jacobians["dSf_dVa"], jacobians["dSf_dVm"], jacobians["dSt_dVa"], \
			jacobians["dSt_dVm"], jacobians["Sf"], jacobians["St"] = dSbr_dV(topology["branch"],Yfrom,Yto,V)

	return powers, jacobians
Пример #8
0
    def create_y(self):
        from_to = np.concatenate((self.ppc["branch"][:, 0].real, self.ppc["branch"][:, 1].real))\
            .astype(int)
        to_from = from_to[::-1]

        with warnings.catch_warnings():
            warnings.simplefilter("ignore")
            Ybus, _, _ = makeYbus(self.s_ref, self.ppc["bus"],
                                  self.ppc["branch"])

        # create relevant matrices
        self.Y_bus = Ybus.toarray()
        self.G = self.Y_bus.real
        self.B = self.Y_bus.imag
        n = len(self.ppc["bus"])
        self.G_series = -self.G
        np.fill_diagonal(self.G_series, 0.)
        self.B_series = -self.B
        np.fill_diagonal(self.B_series, 0.)
        # In case that's becoming relevant later, G_shunt will not be removed
        self.G_shunt = np.zeros_like(self.G)
        self.B_shunt = np.zeros((n, n))
        self.B_shunt[from_to,
                     to_from] = np.tile(0.5 * self.ppc["branch"][:, 4].real, 2)
def ipoptopf_solver(om, ppopt):
    """Solves AC optimal power flow using IPOPT.

    Inputs are an OPF model object and a PYPOWER options vector.

    Outputs are a C{results} dict, C{success} flag and C{raw} output dict.

    C{results} is a PYPOWER case dict (ppc) with the usual C{baseMVA}, C{bus}
    C{branch}, C{gen}, C{gencost} fields, along with the following additional
    fields:
        - C{order}      see 'help ext2int' for details of this field
        - C{x}          final value of optimization variables (internal order)
        - C{f}          final objective function value
        - C{mu}         shadow prices on ...
            - C{var}
                - C{l}  lower bounds on variables
                - C{u}  upper bounds on variables
            - C{nln}
                - C{l}  lower bounds on nonlinear constraints
                - C{u}  upper bounds on nonlinear constraints
            - C{lin}
                - C{l}  lower bounds on linear constraints
                - C{u}  upper bounds on linear constraints

    C{success} is C{True} if solver converged successfully, C{False} otherwise

    C{raw} is a raw output dict in form returned by MINOS
        - C{xr}     final value of optimization variables
        - C{pimul}  constraint multipliers
        - C{info}   solver specific termination code
        - C{output} solver specific output information

    @see: L{opf}, L{pips}

    @author: Ray Zimmerman (PSERC Cornell)
    @author: Carlos E. Murillo-Sanchez (PSERC Cornell & Universidad
    Autonoma de Manizales)
    @author: Richard Lincoln
    """
    import pyipopt

    ## unpack data
    ppc = om.get_ppc()
    baseMVA, bus, gen, branch, gencost = \
        ppc['baseMVA'], ppc['bus'], ppc['gen'], ppc['branch'], ppc['gencost']
    vv, _, nn, _ = om.get_idx()

    ## problem dimensions
    nb = shape(bus)[0]          ## number of buses
    ng = shape(gen)[0]          ## number of gens
    nl = shape(branch)[0]       ## number of branches
    ny = om.getN('var', 'y')    ## number of piece-wise linear costs

    ## linear constraints
    A, l, u = om.linear_constraints()

    ## bounds on optimization vars
    _, xmin, xmax = om.getv()

    ## build admittance matrices
    Ybus, Yf, Yt = makeYbus(baseMVA, bus, branch)

    ## try to select an interior initial point
    ll = xmin.copy(); uu = xmax.copy()
    ll[xmin == -Inf] = -2e19   ## replace Inf with numerical proxies
    uu[xmax ==  Inf] =  2e19
    x0 = (ll + uu) / 2
    Varefs = bus[bus[:, BUS_TYPE] == REF, VA] * (pi / 180)
    x0[vv['i1']['Va']:vv['iN']['Va']] = Varefs[0]  ## angles set to first reference angle
    if ny > 0:
        ipwl = find(gencost[:, MODEL] == PW_LINEAR)
#        PQ = r_[gen[:, PMAX], gen[:, QMAX]]
#        c = totcost(gencost[ipwl, :], PQ[ipwl])
        ## largest y-value in CCV data
        c = gencost.flatten('F')[sub2ind(shape(gencost), ipwl, NCOST + 2 * gencost[ipwl, NCOST])]
        x0[vv['i1']['y']:vv['iN']['y']] = max(c) + 0.1 * abs(max(c))
#        x0[vv['i1']['y']:vv['iN']['y']) = c + 0.1 * abs(c)

    ## find branches with flow limits
    il = find((branch[:, RATE_A] != 0) & (branch[:, RATE_A] < 1e10))
    nl2 = len(il)           ## number of constrained lines

    ##-----  run opf  -----
    ## build Jacobian and Hessian structure
    if A is not None and issparse(A):
        nA = A.shape[0]                ## number of original linear constraints
    else:
        nA = 0
    nx = len(x0)
    f = branch[:, F_BUS]                           ## list of "from" buses
    t = branch[:, T_BUS]                           ## list of "to" buses
    Cf = sparse((ones(nl), (arange(nl), f)), (nl, nb))      ## connection matrix for line & from buses
    Ct = sparse((ones(nl), (arange(nl), t)), (nl, nb))      ## connection matrix for line & to buses
    Cl = Cf + Ct
    Cb = Cl.T * Cl + speye(nb, nb)
    Cl2 = Cl[il, :]
    Cg = sparse((ones(ng), (gen[:, GEN_BUS], arange(ng))), (nb, ng))
    nz = nx - 2 * (nb + ng)
    nxtra = nx - 2 * nb
    if nz > 0:
        Js = vstack([
            hstack([Cb,      Cb,      Cg,              sparse((nb, ng)),   sparse((nb,  nz))]),
            hstack([Cb,      Cb,      sparse((nb, ng)),   Cg,              sparse((nb,  nz))]),
            hstack([Cl2,     Cl2,     sparse((nl2, 2 * ng)),               sparse((nl2, nz))]),
            hstack([Cl2,     Cl2,     sparse((nl2, 2 * ng)),               sparse((nl2, nz))])
        ], 'coo')
    else:
        Js = vstack([
            hstack([Cb,      Cb,      Cg,              sparse((nb, ng))]),
            hstack([Cb,      Cb,      sparse((nb, ng)),   Cg,          ]),
            hstack([Cl2,     Cl2,     sparse((nl2, 2 * ng)),           ]),
            hstack([Cl2,     Cl2,     sparse((nl2, 2 * ng)),           ])
        ], 'coo')

    if A is not None and issparse(A):
        Js = vstack([Js, A], 'coo')

    f, _, d2f = opf_costfcn(x0, om, True)
    Hs = tril(d2f + vstack([
        hstack([Cb,  Cb,  sparse((nb, nxtra))]),
        hstack([Cb,  Cb,  sparse((nb, nxtra))]),
        sparse((nxtra, nx))
    ]), format='coo')

    ## set options struct for IPOPT
#    options = {}
#    options['ipopt'] = ipopt_options([], ppopt)

    ## extra data to pass to functions
    userdata = {
        'om':       om,
        'Ybus':     Ybus,
        'Yf':       Yf[il, :],
        'Yt':       Yt[il, :],
        'ppopt':    ppopt,
        'il':       il,
        'A':        A,
        'nA':       nA,
        'neqnln':   2 * nb,
        'niqnln':   2 * nl2,
        'Js':       Js,
        'Hs':       Hs
    }

    ## check Jacobian and Hessian structure
    #xr                  = rand(x0.shape)
    #lmbda               = rand( 2 * nb + 2 * nl2)
    #Js1 = eval_jac_g(x, flag, userdata) #(xr, options.auxdata)
    #Hs1  = eval_h(xr, 1, lmbda, userdata)
    #i1, j1, s = find(Js)
    #i2, j2, s = find(Js1)
    #if (len(i1) != len(i2)) | (norm(i1 - i2) != 0) | (norm(j1 - j2) != 0):
    #    raise ValueError, 'something''s wrong with the Jacobian structure'
    #
    #i1, j1, s = find(Hs)
    #i2, j2, s = find(Hs1)
    #if (len(i1) != len(i2)) | (norm(i1 - i2) != 0) | (norm(j1 - j2) != 0):
    #    raise ValueError, 'something''s wrong with the Hessian structure'

    ## define variable and constraint bounds
    # n is the number of variables
    n = x0.shape[0]
    # xl is the lower bound of x as bounded constraints
    xl = xmin
    # xu is the upper bound of x as bounded constraints
    xu = xmax

    neqnln = 2 * nb
    niqnln = 2 * nl2

    # number of constraints
    m = neqnln + niqnln + nA
    # lower bound of constraint
    gl = r_[zeros(neqnln), -Inf * ones(niqnln), l]
    # upper bound of constraints
    gu = r_[zeros(neqnln),       zeros(niqnln), u]

    # number of nonzeros in Jacobi matrix
    nnzj = Js.nnz
    # number of non-zeros in Hessian matrix, you can set it to 0
    nnzh = Hs.nnz

    eval_hessian = True
    if eval_hessian:
        hessian = lambda x, lagrange, obj_factor, flag, user_data=None: \
                eval_h(x, lagrange, obj_factor, flag, userdata)

        nlp = pyipopt.create(n, xl, xu, m, gl, gu, nnzj, nnzh,
                             eval_f, eval_grad_f, eval_g, eval_jac_g, hessian)
    else:
        nnzh = 0
        nlp = pyipopt.create(n, xl, xu, m, gl, gu, nnzj, nnzh,
                             eval_f, eval_grad_f, eval_g, eval_jac_g)

    nlp.int_option('print_level', 5)
    nlp.num_option('tol', 1.0000e-12)
    nlp.int_option('max_iter', 250)
    nlp.num_option('dual_inf_tol', 0.10000)
    nlp.num_option('constr_viol_tol', 1.0000e-06)
    nlp.num_option('compl_inf_tol', 1.0000e-05)
    nlp.num_option('acceptable_tol', 1.0000e-08)
    nlp.num_option('acceptable_constr_viol_tol', 1.0000e-04)
    nlp.num_option('acceptable_compl_inf_tol', 0.0010000)
    nlp.str_option('mu_strategy', 'adaptive')

    iter = 0
    def intermediate_callback(algmod, iter_count, obj_value, inf_pr, inf_du,
            mu, d_norm, regularization_size, alpha_du, alpha_pr, ls_trials,
            user_data=None):
        iter = iter_count
        return True

    nlp.set_intermediate_callback(intermediate_callback)

    ## run the optimization
    # returns final solution x, upper and lower bound for multiplier, final
    # objective function obj and the return status of ipopt
    x, zl, zu, obj, status, zg = nlp.solve(x0, m, userdata)

    info = {'x': x, 'zl': zl, 'zu': zu, 'obj': obj, 'status': status, 'lmbda': zg}

    nlp.close()

    success = (status == 0) | (status == 1)

    output = {'iterations': iter}

    f, _ = opf_costfcn(x, om)

    ## update solution data
    Va = x[vv['i1']['Va']:vv['iN']['Va']]
    Vm = x[vv['i1']['Vm']:vv['iN']['Vm']]
    Pg = x[vv['i1']['Pg']:vv['iN']['Pg']]
    Qg = x[vv['i1']['Qg']:vv['iN']['Qg']]
    V = Vm * exp(1j * Va)

    ##-----  calculate return values  -----
    ## update voltages & generator outputs
    bus[:, VA] = Va * 180 / pi
    bus[:, VM] = Vm
    gen[:, PG] = Pg * baseMVA
    gen[:, QG] = Qg * baseMVA
    gen[:, VG] = Vm[gen[:, GEN_BUS].astype(int)]

    ## compute branch flows
    f_br = branch[:, F_BUS].astype(int)
    t_br = branch[:, T_BUS].astype(int)
    Sf = V[f_br] * conj(Yf * V)  ## cplx pwr at "from" bus, p.u.
    St = V[t_br] * conj(Yt * V)  ## cplx pwr at "to" bus, p.u.
    branch[:, PF] = Sf.real * baseMVA
    branch[:, QF] = Sf.imag * baseMVA
    branch[:, PT] = St.real * baseMVA
    branch[:, QT] = St.imag * baseMVA

    ## line constraint is actually on square of limit
    ## so we must fix multipliers
    muSf = zeros(nl)
    muSt = zeros(nl)
    if len(il) > 0:
        muSf[il] = 2 * info['lmbda'][2 * nb +       arange(nl2)] * branch[il, RATE_A] / baseMVA
        muSt[il] = 2 * info['lmbda'][2 * nb + nl2 + arange(nl2)] * branch[il, RATE_A] / baseMVA

    ## update Lagrange multipliers
    bus[:, MU_VMAX]  = info['zu'][vv['i1']['Vm']:vv['iN']['Vm']]
    bus[:, MU_VMIN]  = info['zl'][vv['i1']['Vm']:vv['iN']['Vm']]
    gen[:, MU_PMAX]  = info['zu'][vv['i1']['Pg']:vv['iN']['Pg']] / baseMVA
    gen[:, MU_PMIN]  = info['zl'][vv['i1']['Pg']:vv['iN']['Pg']] / baseMVA
    gen[:, MU_QMAX]  = info['zu'][vv['i1']['Qg']:vv['iN']['Qg']] / baseMVA
    gen[:, MU_QMIN]  = info['zl'][vv['i1']['Qg']:vv['iN']['Qg']] / baseMVA
    bus[:, LAM_P]    = info['lmbda'][nn['i1']['Pmis']:nn['iN']['Pmis']] / baseMVA
    bus[:, LAM_Q]    = info['lmbda'][nn['i1']['Qmis']:nn['iN']['Qmis']] / baseMVA
    branch[:, MU_SF] = muSf / baseMVA
    branch[:, MU_ST] = muSt / baseMVA

    ## package up results
    nlnN = om.getN('nln')

    ## extract multipliers for nonlinear constraints
    kl = find(info['lmbda'][:2 * nb] < 0)
    ku = find(info['lmbda'][:2 * nb] > 0)
    nl_mu_l = zeros(nlnN)
    nl_mu_u = r_[zeros(2 * nb), muSf, muSt]
    nl_mu_l[kl] = -info['lmbda'][kl]
    nl_mu_u[ku] =  info['lmbda'][ku]

    ## extract multipliers for linear constraints
    lam_lin = info['lmbda'][2 * nb + 2 * nl2 + arange(nA)]   ## lmbda for linear constraints
    kl = find(lam_lin < 0)                     ## lower bound binding
    ku = find(lam_lin > 0)                     ## upper bound binding
    mu_l = zeros(nA)
    mu_l[kl] = -lam_lin[kl]
    mu_u = zeros(nA)
    mu_u[ku] = lam_lin[ku]

    mu = {
      'var': {'l': info['zl'], 'u': info['zu']},
      'nln': {'l': nl_mu_l, 'u': nl_mu_u}, \
      'lin': {'l': mu_l, 'u': mu_u}
    }

    results = ppc
    results['bus'], results['branch'], results['gen'], \
        results['om'], results['x'], results['mu'], results['f'] = \
            bus, branch, gen, om, x, mu, f

    pimul = r_[
        results['mu']['nln']['l'] - results['mu']['nln']['u'],
        results['mu']['lin']['l'] - results['mu']['lin']['u'],
        -ones(ny > 0),
        results['mu']['var']['l'] - results['mu']['var']['u']
    ]
    raw = {'xr': x, 'pimul': pimul, 'info': info['status'], 'output': output}

    return results, success, raw
Пример #10
0
def runpf(casedata=None, ppopt=None, fname='', solvedcase=''):
    """Runs a power flow.

    Runs a power flow [full AC Newton's method by default] and optionally
    returns the solved values in the data matrices, a flag which is C{True} if
    the algorithm was successful in finding a solution, and the elapsed
    time in seconds. All input arguments are optional. If C{casename} is
    provided it specifies the name of the input data file or dict
    containing the power flow data. The default value is 'case9'.

    If the ppopt is provided it overrides the default PYPOWER options
    vector and can be used to specify the solution algorithm and output
    options among other things. If the 3rd argument is given the pretty
    printed output will be appended to the file whose name is given in
    C{fname}. If C{solvedcase} is specified the solved case will be written
    to a case file in PYPOWER format with the specified name. If C{solvedcase}
    ends with '.mat' it saves the case as a MAT-file otherwise it saves it
    as a Python-file.

    If the C{ENFORCE_Q_LIMS} options is set to C{True} [default is false] then
    if any generator reactive power limit is violated after running the AC
    power flow, the corresponding bus is converted to a PQ bus, with Qg at
    the limit, and the case is re-run. The voltage magnitude at the bus
    will deviate from the specified value in order to satisfy the reactive
    power limit. If the reference bus is converted to PQ, the first
    remaining PV bus will be used as the slack bus for the next iteration.
    This may result in the real power output at this generator being
    slightly off from the specified values.

    Enforcing of generator Q limits inspired by contributions from Mu Lin,
    Lincoln University, New Zealand (1/14/05).

    @author: Ray Zimmerman (PSERC Cornell)
    """
    ## default arguments
    if casedata is None:
        casedata = join(dirname(__file__), 'case9')
    ppopt = ppoption(ppopt)

    ## options
    verbose = ppopt["VERBOSE"]
    qlim = ppopt["ENFORCE_Q_LIMS"]  ## enforce Q limits on gens?
    dc = ppopt["PF_DC"]             ## use DC formulation?

    ## read data
    ppc = loadcase(casedata)

    ## add zero columns to branch for flows if needed
    if ppc["branch"].shape[1] < QT:
        ppc["branch"] = c_[ppc["branch"],
                           zeros((ppc["branch"].shape[0],
                                  QT - ppc["branch"].shape[1] + 1))]

    ## convert to internal indexing
    ppc = ext2int(ppc)
    baseMVA, bus, gen, branch = \
        ppc["baseMVA"], ppc["bus"], ppc["gen"], ppc["branch"]

    ## get bus index lists of each type of bus
    ref, pv, pq = bustypes(bus, gen)

    ## generator info
    on = find(gen[:, GEN_STATUS] > 0)      ## which generators are on?
    gbus = gen[on, GEN_BUS].astype(int)    ## what buses are they at?

    ##-----  run the power flow  -----
    t0 = time()
    if verbose > 0:
        v = ppver('all')
        stdout.write('PYPOWER Version %s, %s' % (v["Version"], v["Date"]))

    if dc:                               # DC formulation
        if verbose:
            stdout.write(' -- DC Power Flow\n')

        ## initial state
        Va0 = bus[:, VA] * (pi / 180)

        ## build B matrices and phase shift injections
        B, Bf, Pbusinj, Pfinj = makeBdc(baseMVA, bus, branch)

        ## compute complex bus power injections [generation - load]
        ## adjusted for phase shifters and real shunts
        Pbus = makeSbus(baseMVA, bus, gen).real - Pbusinj - bus[:, GS] / baseMVA

        ## "run" the power flow
        Va = dcpf(B, Pbus, Va0, ref, pv, pq)

        ## update data matrices with solution
        branch[:, [QF, QT]] = zeros((branch.shape[0], 2))
        branch[:, PF] = (Bf * Va + Pfinj) * baseMVA
        branch[:, PT] = -branch[:, PF]
        bus[:, VM] = ones(bus.shape[0])
        bus[:, VA] = Va * (180 / pi)
        ## update Pg for slack generator (1st gen at ref bus)
        ## (note: other gens at ref bus are accounted for in Pbus)
        ##      Pg = Pinj + Pload + Gs
        ##      newPg = oldPg + newPinj - oldPinj
        refgen = zeros(len(ref), dtype=int)
        for k in range(len(ref)):
            temp = find(gbus == ref[k])
            refgen[k] = on[temp[0]]
        gen[refgen, PG] = gen[refgen, PG] + (B[ref, :] * Va - Pbus[ref]) * baseMVA

        success = 1
    else:                                ## AC formulation
        alg = ppopt['PF_ALG']
        if verbose > 0:
            if alg == 1:
                solver = 'Newton'
            elif alg == 2:
                solver = 'fast-decoupled, XB'
            elif alg == 3:
                solver = 'fast-decoupled, BX'
            elif alg == 4:
                solver = 'Gauss-Seidel'
            else:
                solver = 'unknown'
            print(' -- AC Power Flow (%s)\n' % solver)

        ## initial state
        # V0    = ones(bus.shape[0])            ## flat start
        V0  = bus[:, VM] * exp(1j * pi/180 * bus[:, VA])
        V0[gbus] = gen[on, VG] / abs(V0[gbus]) * V0[gbus]

        if qlim:
            ref0 = ref                         ## save index and angle of
            Varef0 = bus[ref0, VA]             ##   original reference bus(es)
            limited = []                       ## list of indices of gens @ Q lims
            fixedQg = zeros(gen.shape[0])      ## Qg of gens at Q limits

        repeat = True
        while repeat:
            ## build admittance matrices
            Ybus, Yf, Yt = makeYbus(baseMVA, bus, branch)

            ## compute complex bus power injections [generation - load]
            Sbus = makeSbus(baseMVA, bus, gen)

            ## run the power flow
            alg = ppopt["PF_ALG"]
            if alg == 1:
                V, success, _ = newtonpf(Ybus, Sbus, V0, ref, pv, pq, ppopt)
            elif alg == 2 or alg == 3:
                Bp, Bpp = makeB(baseMVA, bus, branch, alg)
                V, success, _ = fdpf(Ybus, Sbus, V0, Bp, Bpp, ref, pv, pq, ppopt)
            elif alg == 4:
                V, success, _ = gausspf(Ybus, Sbus, V0, ref, pv, pq, ppopt)
            else:
                stderr.write('Only Newton''s method, fast-decoupled, and '
                             'Gauss-Seidel power flow algorithms currently '
                             'implemented.\n')

            ## update data matrices with solution
            bus, gen, branch = pfsoln(baseMVA, bus, gen, branch, Ybus, Yf, Yt, V, ref, pv, pq)

            if qlim:             ## enforce generator Q limits
                ## find gens with violated Q constraints
                gen_status = gen[:, GEN_STATUS] > 0
                qg_max_lim = gen[:, QG] > gen[:, QMAX]
                qg_min_lim = gen[:, QG] < gen[:, QMIN]
                
                mx = find( gen_status & qg_max_lim )
                mn = find( gen_status & qg_min_lim )
                
                if len(mx) > 0 or len(mn) > 0:  ## we have some Q limit violations
                    # No PV generators
                    if len(pv) == 0:
                        if verbose:
                            if len(mx) > 0:
                                print('Gen %d [only one left] exceeds upper Q limit : INFEASIBLE PROBLEM\n' % mx + 1)
                            else:
                                print('Gen %d [only one left] exceeds lower Q limit : INFEASIBLE PROBLEM\n' % mn + 1)

                        success = 0
                        break

                    ## one at a time?
                    if qlim == 2:    ## fix largest violation, ignore the rest
                        k = argmax(r_[gen[mx, QG] - gen[mx, QMAX],
                                      gen[mn, QMIN] - gen[mn, QG]])
                        if k > len(mx):
                            mn = mn[k - len(mx)]
                            mx = []
                        else:
                            mx = mx[k]
                            mn = []

                    if verbose and len(mx) > 0:
                        for i in range(len(mx)):
                            print('Gen ' + str(mx[i] + 1) + ' at upper Q limit, converting to PQ bus\n')

                    if verbose and len(mn) > 0:
                        for i in range(len(mn)):
                            print('Gen ' + str(mn[i] + 1) + ' at lower Q limit, converting to PQ bus\n')

                    ## save corresponding limit values
                    fixedQg[mx] = gen[mx, QMAX]
                    fixedQg[mn] = gen[mn, QMIN]
                    mx = r_[mx, mn].astype(int)

                    ## convert to PQ bus
                    gen[mx, QG] = fixedQg[mx]      ## set Qg to binding 
                    for i in range(len(mx)):            ## [one at a time, since they may be at same bus]
                        gen[mx[i], GEN_STATUS] = 0        ## temporarily turn off gen,
                        bi = gen[mx[i], GEN_BUS]   ## adjust load accordingly,
                        bus[bi, [PD, QD]] = (bus[bi, [PD, QD]] - gen[mx[i], [PG, QG]])
                    
                    if len(ref) > 1 and any(bus[gen[mx, GEN_BUS], BUS_TYPE] == REF):
                        raise ValueError('Sorry, PYPOWER cannot enforce Q '
                                         'limits for slack buses in systems '
                                         'with multiple slacks.')
                    
                    bus[gen[mx, GEN_BUS].astype(int), BUS_TYPE] = PQ   ## & set bus type to PQ

                    ## update bus index lists of each type of bus
                    ref_temp = ref
                    ref, pv, pq = bustypes(bus, gen)
                    if verbose and ref != ref_temp:
                        print('Bus %d is new slack bus\n' % ref)

                    limited = r_[limited, mx].astype(int)
                else:
                    repeat = 0 ## no more generator Q limits violated
            else:
                repeat = 0     ## don't enforce generator Q limits, once is enough

        if qlim and len(limited) > 0:
            ## restore injections from limited gens [those at Q limits]
            gen[limited, QG] = fixedQg[limited]    ## restore Qg value,
            for i in range(len(limited)):               ## [one at a time, since they may be at same bus]
                bi = gen[limited[i], GEN_BUS]           ## re-adjust load,
                bus[bi, [PD, QD]] = bus[bi, [PD, QD]] + gen[limited[i], [PG, QG]]
                gen[limited[i], GEN_STATUS] = 1           ## and turn gen back on
            
            if ref != ref0:
                ## adjust voltage angles to make original ref bus correct
                bus[:, VA] = bus[:, VA] - bus[ref0, VA] + Varef0

    ppc["et"] = time() - t0
    ppc["success"] = success

    ##-----  output results  -----
    ## convert back to original bus numbering & print results
    ppc["bus"], ppc["gen"], ppc["branch"] = bus, gen, branch
    results = int2ext(ppc)

    ## zero out result fields of out-of-service gens & branches
    if len(results["order"]["gen"]["status"]["off"]) > 0:
        results["gen"][ix_(results["order"]["gen"]["status"]["off"], [PG, QG])] = 0

    if len(results["order"]["branch"]["status"]["off"]) > 0:
        results["branch"][ix_(results["order"]["branch"]["status"]["off"], [PF, QF, PT, QT])] = 0

    if fname:
        fd = None
        try:
            fd = open(fname, "a")
        except Exception as detail:
            stderr.write("Error opening %s: %s.\n" % (fname, detail))
        finally:
            if fd is not None:
                printpf(results, fd, ppopt)
                fd.close()
    else:
        printpf(results, stdout, ppopt)

    ## save solved case
    if solvedcase:
        savecase(solvedcase, results)

    return results, success
Пример #11
0
def make_sdp_mat(ppc, base_mva):
    """equivalent of the Matpower function 'makesdpmat' for use in python with pypower case format
    
    input: pypower case file ppc (in this file the r and x are in pu already)
    input: base_mva
    
    return: functions y_k, y_k_, m_k, yline_ft, yline_tf, y_line_ft, y_line_tf, y_l, y_l_ .
            each function returns a matrix needed for the SDP relaxation of AC-OPF
    
     @author: Daniel Molzahn (PSERC U of Wisc, Madison)
    """
    n_bus = len(ppc['bus'][:, BUS_I])

    y, yf, yt = makeYbus.makeYbus(baseMVA=base_mva, bus=ppc['bus'], branch=ppc['branch'])
    e_mat = identity(n_bus)  # identity matrix

    # k^th basis vector
    def e(k): return e_mat.A[:, [k]]

    # y_k_small for each k
    def y_k_small(k): return e(k)*e(k).T*y

    # Set tau == 0 to 1 (tau == 0 indicates nominal voltage ratio)
    ppc['branch'][ppc['branch'][:, TAP] == 0, TAP] = 1

    # Matrices used in SDP relaxation of OPF problem
    def y_k(k):
        m11 = np.real(y_k_small(k) + y_k_small(k).T)
        m12 = np.imag(y_k_small(k).T - y_k_small(k))
        m21 = np.imag(y_k_small(k) - y_k_small(k).T)
        m22 = np.real(y_k_small(k) + y_k_small(k).T)
        mat = np.vstack((np.hstack((m11, m12)),
                         np.hstack((m21, m22))))
        return (1/2) * mat

    def y_k_(k):
        m11 = np.imag(y_k_small(k) + y_k_small(k).T)
        m12 = np.real(y_k_small(k) - y_k_small(k).T)
        m21 = np.real(y_k_small(k).T - y_k_small(k))
        m22 = np.imag(y_k_small(k) + y_k_small(k).T)
        mat = np.vstack((np.hstack((m11, m12)),
                         np.hstack((m21, m22))))
        return -1 * (1 / 2) * mat

    def m_k(k): return block_diag(e(k)*e(k).T, e(k)*e(k).T)

    # For the line limit matrices, specify a line index corresponding to the entries in mpc.branch
    def gl(line_index):
        # Real part of line admittance
        return np.real(1 / (ppc['branch'][line_index, BR_R] + 1j * ppc['branch'][line_index, BR_X]))

    def bl(line_index):
        # Imaginary part of line admittance
        return np.imag(1 / (ppc['branch'][line_index, BR_R] + 1j * ppc['branch'][line_index, BR_X]))

    def bsl(line_index):
        # Line shunt susceptance
        return ppc['branch'][line_index, BR_B]

    def rl(line_index):
        return ppc['branch'][line_index, BR_R]

    def xl(line_index):
        return ppc['branch'][line_index, BR_X]

    def tau(line_index):
        return ppc['branch'][line_index, TAP]

    def theta(line_index):
        return ppc['branch'][line_index, SHIFT]*np.pi / 180

    def gb_cos_ft(line_index):
        return gl(line_index)*np.cos(theta(line_index)) + bl(line_index)*np.cos(theta(line_index) + np.pi / 2)

    def gb_sin_ft(line_index):
        return gl(line_index)*np.sin(theta(line_index)) + bl(line_index)*np.sin(theta(line_index) + np.pi / 2)

    def gb_cos_tf(line_index):
        return gl(line_index)*np.cos(-theta(line_index)) + bl(line_index)*np.cos(-theta(line_index) + np.pi / 2)

    def gb_sin_tf(line_index):
        return gl(line_index)*np.sin(-theta(line_index)) + bl(line_index)*np.sin(-theta(line_index) + np.pi / 2)

    def yline_ft(l_index):
        i_loc = [ppc['branch'][l_index, F_BUS], ppc['branch'][l_index, F_BUS],
                 ppc['branch'][l_index, F_BUS], ppc['branch'][l_index, F_BUS] + n_bus,
                 ppc['branch'][l_index, F_BUS] + n_bus, ppc['branch'][l_index, F_BUS] + n_bus]
        j_loc = [ppc['branch'][l_index, F_BUS], ppc['branch'][l_index, T_BUS],
                 ppc['branch'][l_index, T_BUS] + n_bus, ppc['branch'][l_index, F_BUS] + n_bus,
                 ppc['branch'][l_index, T_BUS], ppc['branch'][l_index, T_BUS] + n_bus]
        data = ([gl(l_index) / (tau(l_index)**2), -gb_cos_ft(l_index) / tau(l_index),
                 gb_sin_ft(l_index) / tau(l_index), gl(l_index) / (tau(l_index)**2),
                 -gb_sin_ft(l_index) / tau(l_index), -gb_cos_ft(l_index) / tau(l_index)])
        matrix = coo_matrix((data, (i_loc, j_loc)), shape=(2*n_bus, 2*n_bus))
        return 0.5*(matrix + matrix.T)

    def y_line_ft(l_index):
        i_loc = [ppc['branch'][l_index, F_BUS], ppc['branch'][l_index, F_BUS],
                 ppc['branch'][l_index, F_BUS], ppc['branch'][l_index, F_BUS] + n_bus,
                 ppc['branch'][l_index, F_BUS] + n_bus, ppc['branch'][l_index, F_BUS] + n_bus]
        j_loc = [ppc['branch'][l_index, F_BUS], ppc['branch'][l_index, T_BUS],
                 ppc['branch'][l_index, T_BUS] + n_bus, ppc['branch'][l_index, F_BUS] + n_bus,
                 ppc['branch'][l_index, T_BUS], ppc['branch'][l_index, T_BUS] + n_bus]
        data = ([-(bl(l_index)+bsl(l_index)/2)/(tau(l_index)**2), gb_sin_ft(l_index)/tau(l_index),
                 gb_cos_ft(l_index)/tau(l_index), -(bl(l_index)+bsl(l_index)/2)/(tau(l_index)**2),
                 -gb_cos_ft(l_index)/tau(l_index), gb_sin_ft(l_index)/tau(l_index)])
        matrix = coo_matrix((data, (i_loc, j_loc)), shape=(2*n_bus, 2*n_bus))
        return 0.5*(matrix + matrix.T)

    def yline_tf(l_index):
        i_loc = [ppc['branch'][l_index, F_BUS], ppc['branch'][l_index, F_BUS],
                 ppc['branch'][l_index, F_BUS] + n_bus, ppc['branch'][l_index, F_BUS] + n_bus,
                 ppc['branch'][l_index, T_BUS], ppc['branch'][l_index, T_BUS] + n_bus]
        j_loc = [ppc['branch'][l_index, T_BUS], ppc['branch'][l_index, T_BUS] + n_bus,
                 ppc['branch'][l_index, T_BUS], ppc['branch'][l_index, T_BUS] + n_bus,
                 ppc['branch'][l_index, T_BUS], ppc['branch'][l_index, T_BUS] + n_bus]
        data = ([-gb_cos_tf(l_index)/tau(l_index), -gb_sin_tf(l_index)/tau(l_index),
                 gb_sin_tf(l_index)/tau(l_index), -gb_cos_tf(l_index)/tau(l_index),
                 gl(l_index), gl(l_index)])
        matrix = coo_matrix((data, (i_loc, j_loc)), shape=(2*n_bus, 2*n_bus))
        return 0.5*(matrix + matrix.T)

    def y_line_tf(l_index):
        i_loc = [ppc['branch'][l_index, F_BUS], ppc['branch'][l_index, F_BUS],
                 ppc['branch'][l_index, F_BUS] + n_bus, ppc['branch'][l_index, F_BUS] + n_bus,
                 ppc['branch'][l_index, T_BUS], ppc['branch'][l_index, T_BUS] + n_bus]
        j_loc = [ppc['branch'][l_index, T_BUS], ppc['branch'][l_index, T_BUS] + n_bus,
                 ppc['branch'][l_index, T_BUS], ppc['branch'][l_index, T_BUS] + n_bus,
                 ppc['branch'][l_index, T_BUS], ppc['branch'][l_index, T_BUS] + n_bus]
        data = ([gb_sin_tf(l_index)/tau(l_index), -gb_cos_tf(l_index)/tau(l_index),
                 gb_cos_tf(l_index)/tau(l_index), gb_sin_tf(l_index)/tau(l_index),
                 -(bl(l_index)+bsl(l_index)/2), -(bl(l_index)+bsl(l_index)/2)])
        matrix = coo_matrix((data, (i_loc, j_loc)), shape=(2*n_bus, 2*n_bus))
        return 0.5*(matrix + matrix.T)

    def y_l(l_index):
        i_loc = [ppc['branch'][l_index, F_BUS], ppc['branch'][l_index, F_BUS],
                 ppc['branch'][l_index, F_BUS] + n_bus, ppc['branch'][l_index, F_BUS] + n_bus,
                 ppc['branch'][l_index, T_BUS], ppc['branch'][l_index, T_BUS],
                 ppc['branch'][l_index, T_BUS] + n_bus, ppc['branch'][l_index, T_BUS] + n_bus]
        j_loc = [ppc['branch'][l_index, F_BUS], ppc['branch'][l_index, T_BUS],
                 ppc['branch'][l_index, F_BUS] + n_bus, ppc['branch'][l_index, T_BUS] + n_bus,
                 ppc['branch'][l_index, F_BUS], ppc['branch'][l_index, T_BUS],
                 ppc['branch'][l_index, F_BUS] + n_bus, ppc['branch'][l_index, T_BUS] + n_bus]
        data = rl(l_index) * (gl(l_index)**2 + bl(l_index)**2) * np.array([1, -1, 1, -1, -1, 1, -1, 1])
        return coo_matrix((data, (i_loc, j_loc)), shape=(2*n_bus, 2*n_bus))

    def y_l_(l_index):
        i_loc = [ppc['branch'][l_index, F_BUS], ppc['branch'][l_index, F_BUS],
                 ppc['branch'][l_index, F_BUS] + n_bus, ppc['branch'][l_index, F_BUS] + n_bus,
                 ppc['branch'][l_index, T_BUS], ppc['branch'][l_index, T_BUS],
                 ppc['branch'][l_index, T_BUS] + n_bus, ppc['branch'][l_index, T_BUS] + n_bus]
        j_loc = [ppc['branch'][l_index, F_BUS], ppc['branch'][l_index, T_BUS],
                 ppc['branch'][l_index, F_BUS] + n_bus, ppc['branch'][l_index, T_BUS] + n_bus,
                 ppc['branch'][l_index, F_BUS], ppc['branch'][l_index, T_BUS],
                 ppc['branch'][l_index, F_BUS] + n_bus, ppc['branch'][l_index, T_BUS] + n_bus]
        data = (xl(l_index) * (gl(l_index)**2 + bl(l_index)**2)) * np.array([1, -1, 1, -1, -1, 1, -1, 1])
        matrix = coo_matrix((data, (i_loc, j_loc)), shape=(2*n_bus, 2*n_bus))

        #
        i_loc = [ppc['branch'][l_index, F_BUS], ppc['branch'][l_index, F_BUS] + n_bus,
                 ppc['branch'][l_index, T_BUS], ppc['branch'][l_index, T_BUS] + n_bus]
        data = (bsl(l_index) / 2) * np.array([1, 1, 1, 1])
        matrix_2 = coo_matrix((data, (i_loc, i_loc)), shape=(2*n_bus, 2*n_bus))

        return matrix - matrix_2

    return y_k, y_k_, m_k, yline_ft, yline_tf, y_line_ft, y_line_tf, y_l, y_l_
Пример #12
0
def runcpf(basecasedata=None,
           targetcasedata=None,
           ppopt=None,
           fname='',
           solvedcase=''):

    # default arguments
    if basecasedata is None:
        basecasedata = join(dirname(__file__), 'case9')
    if targetcasedata is None:
        targetcasedata = join(dirname(__file__), 'case9target')
    ppopt = ppoption(ppopt)

    # options
    verbose = ppopt["VERBOSE"]
    step = ppopt["CPF_STEP"]
    parameterization = ppopt["CPF_PARAMETERIZATION"]
    adapt_step = ppopt["CPF_ADAPT_STEP"]
    cb_args = ppopt["CPF_USER_CALLBACK_ARGS"]

    # set up callbacks
    callback_names = ["cpf_default_callback"]
    if len(ppopt["CPF_USER_CALLBACK"]) > 0:
        if isinstance(ppopt["CPF_USER_CALLBACK"], list):
            callback_names = r_[callback_names, ppopt["CPF_USER_CALLBACK"]]
        else:
            callback_names.append(ppopt["CPF_USER_CALLBACK"])
    callbacks = []
    for callback_name in callback_names:
        callbacks.append(getattr(cpf_callbacks, callback_name))

    # read base case data
    ppcbase = loadcase(basecasedata)
    nb = ppcbase["bus"].shape[0]

    # add zero columns to branch for flows if needed
    if ppcbase["branch"].shape[1] < QT:
        ppcbase["branch"] = c_[ppcbase["branch"],
                               zeros((ppcbase["branch"].shape[0],
                                      QT - ppcbase["branch"].shape[1] + 1))]

    # convert to internal indexing
    ppcbase = ext2int(ppcbase)
    baseMVAb, busb, genb, branchb = \
        ppcbase["baseMVA"], ppcbase["bus"], ppcbase["gen"], ppcbase["branch"]

    # get bus index lists of each type of bus
    ref, pv, pq = bustypes(busb, genb)

    # generator info
    onb = find(genb[:, GEN_STATUS] > 0)  # which generators are on?
    gbusb = genb[onb, GEN_BUS].astype(int)  # what buses are they at?

    # read target case data
    ppctarget = loadcase(targetcasedata)

    # add zero columns to branch for flows if needed
    if ppctarget["branch"].shape[1] < QT:
        ppctarget["branch"] = c_[ppctarget["branch"],
                                 zeros(
                                     (ppctarget["branch"].shape[0],
                                      QT - ppctarget["branch"].shape[1] + 1))]

    # convert to internal indexing
    ppctarget = ext2int(ppctarget)
    baseMVAt, bust, gent, brancht = \
        ppctarget["baseMVA"], ppctarget["bus"], ppctarget["gen"], ppctarget["branch"]

    # get bus index lists of each type of bus
    # ref, pv, pq = bustypes(bust, gent)

    # generator info
    ont = find(gent[:, GEN_STATUS] > 0)  # which generators are on?
    gbust = gent[ont, GEN_BUS].astype(int)  # what buses are they at?

    # -----  run the power flow  -----
    t0 = time()
    if verbose > 0:
        v = ppver('all')
        stdout.write('PYPOWER Version %s, %s' % (v["Version"], v["Date"]))
        stdout.write(' -- AC Continuation Power Flow\n')

    # initial state
    # V0    = ones(bus.shape[0])            ## flat start
    V0 = busb[:, VM] * exp(1j * pi / 180 * busb[:, VA])
    vcb = ones(V0.shape)  # create mask of voltage-controlled buses
    vcb[pq] = 0  # exclude PQ buses
    k = find(vcb[gbusb])  # in-service gens at v-c buses
    V0[gbusb[k]] = genb[onb[k], VG] / abs(V0[gbusb[k]]) * V0[gbusb[k]]

    # build admittance matrices
    Ybus, Yf, Yt = makeYbus(baseMVAb, busb, branchb)

    # compute base case complex bus power injections (generation - load)
    Sbusb = makeSbus(baseMVAb, busb, genb)
    # compute target case complex bus power injections (generation - load)
    Sbust = makeSbus(baseMVAt, bust, gent)

    # scheduled transfer
    Sxfr = Sbust - Sbusb

    # Run the base case power flow solution
    if verbose > 2:
        ppopt_pf = ppoption(ppopt, VERBOSE=max(0, verbose - 1))
    else:
        ppopt_pf = ppoption(ppopt, VERBOSE=max(0, verbose - 2))

    lam = 0
    V, success, iterations = newtonpf(Ybus, Sbusb, V0, ref, pv, pq, ppopt_pf)
    if verbose > 2:
        print('step %3d : lambda = %6.3f\n' % (0, 0))
    elif verbose > 1:
        print('step %3d : lambda = %6.3f, %2d Newton steps\n',
              (0, 0, iterations))

    lamprv = lam  # lam at previous step
    Vprv = V  # V at previous step
    continuation = 1
    cont_steps = 0

    # input args for callbacks
    cb_data = {
        "ppc_base": ppcbase,
        "ppc_target": ppctarget,
        "Sxfr": Sxfr,
        "Ybus": Ybus,
        "Yf": Yf,
        "Yt": Yt,
        "ref": ref,
        "pv": pv,
        "pq": pq,
        "ppopt": ppopt
    }
    cb_state = {}

    # invoke callbacks
    for k in range(len(callbacks)):
        cb_state, _ = callbacks[k](cont_steps, V, lam, V, lam, cb_data,
                                   cb_state, cb_args)

    if linalg.norm(Sxfr) == 0:
        if verbose:
            print(
                'base case and target case have identical load and generation\n'
            )

        continuation = 0
        V0 = V
        lam0 = lam

    # tangent predictor z = [dx;dlam]
    z = zeros(2 * len(V) + 1)
    z[-1] = 1.0
    while continuation:
        cont_steps = cont_steps + 1
        # prediction for next step
        V0, lam0, z = cpf_predictor(V, lam, Ybus, Sxfr, pv, pq, step, z, Vprv,
                                    lamprv, parameterization)

        # save previous voltage, lambda before updating
        Vprv = V
        lamprv = lam

        # correction
        V, success, i, lam = cpf_corrector(Ybus, Sbusb, V0, ref, pv, pq, lam0,
                                           Sxfr, Vprv, lamprv, z, step,
                                           parameterization, ppopt_pf)

        if not success:
            continuation = 0
            if verbose:
                print(
                    'step %3d : lambda = %6.3f, corrector did not converge in %d iterations\n'
                    % (cont_steps, lam, i))
            break

        if verbose > 2:
            print('step %3d : lambda = %6.3f\n' % (cont_steps, lam))
        elif verbose > 1:
            print('step %3d : lambda = %6.3f, %2d corrector Newton steps\n' %
                  (cont_steps, lam, i))

        # invoke callbacks
        for k in range(len(callbacks)):
            cb_state, _ = callbacks[k](cont_steps, V, lam, V0, lam0, cb_data,
                                       cb_state, cb_args)

        if isinstance(ppopt["CPF_STOP_AT"], str):
            if ppopt["CPF_STOP_AT"].upper() == "FULL":
                if abs(lam) < 1e-8:  # traced the full continuation curve
                    if verbose:
                        print(
                            '\nTraced full continuation curve in %d continuation steps\n'
                            % cont_steps)
                    continuation = 0
                elif lam < lamprv and lam - step < 0:  # next step will overshoot
                    step = lam  # modify step-size
                    parameterization = 1  # change to natural parameterization
                    adapt_step = False  # disable step-adaptivity

            else:  # == 'NOSE'
                if lam < lamprv:  # reached the nose point
                    if verbose:
                        print(
                            '\nReached steady state loading limit in %d continuation steps\n'
                            % cont_steps)
                    continuation = 0

        else:
            if lam < lamprv:
                if verbose:
                    print(
                        '\nReached steady state loading limit in %d continuation steps\n'
                        % cont_steps)
                continuation = 0
            elif abs(ppopt["CPF_STOP_AT"] -
                     lam) < 1e-8:  # reached desired lambda
                if verbose:
                    print(
                        '\nReached desired lambda %3.2f in %d continuation steps\n'
                        % (ppopt["CPF_STOP_AT"], cont_steps))
                continuation = 0
            # will reach desired lambda in next step
            elif lam + step > ppopt["CPF_STOP_AT"]:
                step = ppopt["CPF_STOP_AT"] - lam  # modify step-size
                parameterization = 1  # change to natural parameterization
                adapt_step = False  # disable step-adaptivity

        if adapt_step and continuation:
            pvpq = r_[pv, pq]
            # Adapt stepsize
            cpf_error = linalg.norm(
                r_[angle(V[pq]), abs(V[pvpq]), lam] -
                r_[angle(V0[pq]), abs(V0[pvpq]), lam0], inf)
            if cpf_error < ppopt["CPF_ERROR_TOL"]:
                # Increase stepsize
                step = step * ppopt["CPF_ERROR_TOL"] / cpf_error
                if step > ppopt["CPF_STEP_MAX"]:
                    step = ppopt["CPF_STEP_MAX"]
            else:
                # decrese stepsize
                step = step * ppopt["CPF_ERROR_TOL"] / cpf_error
                if step < ppopt["CPF_STEP_MIN"]:
                    step = ppopt["CPF_STEP_MIN"]

    # invoke callbacks
    if success:
        cpf_results = {}
        for k in range(len(callbacks)):
            cb_state, cpf_results = callbacks[k](cont_steps,
                                                 V,
                                                 lam,
                                                 V0,
                                                 lam0,
                                                 cb_data,
                                                 cb_state,
                                                 cb_args,
                                                 results=cpf_results,
                                                 is_final=True)
    else:
        cpf_results["iterations"] = i

    # update bus and gen matrices to reflect the loading and generation
    # at the noise point
    bust[:, PD] = busb[:, PD] + lam * (bust[:, PD] - busb[:, PD])
    bust[:, QD] = busb[:, QD] + lam * (bust[:, QD] - busb[:, QD])
    gent[:, PG] = genb[:, PG] + lam * (gent[:, PG] - genb[:, PG])

    # update data matrices with solution
    bust, gent, brancht = pfsoln(baseMVAt, bust, gent, brancht, Ybus, Yf, Yt,
                                 V, ref, pv, pq)

    ppctarget["et"] = time() - t0
    ppctarget["success"] = success

    # -----  output results  -----
    # convert back to original bus numbering & print results
    ppctarget["bus"], ppctarget["gen"], ppctarget[
        "branch"] = bust, gent, brancht
    if success:
        n = cpf_results["iterations"] + 1
        cpf_results["V_p"] = i2e_data(ppctarget, cpf_results["V_p"],
                                      full((nb, n), nan), "bus", 0)
        cpf_results["V_c"] = i2e_data(ppctarget, cpf_results["V_c"],
                                      full((nb, n), nan), "bus", 0)
    results = int2ext(ppctarget)
    results["cpf"] = cpf_results

    # zero out result fields of out-of-service gens & branches
    if len(results["order"]["gen"]["status"]["off"]) > 0:
        results["gen"][ix_(results["order"]["gen"]["status"]["off"],
                           [PG, QG])] = 0

    if len(results["order"]["branch"]["status"]["off"]) > 0:
        results["branch"][ix_(results["order"]["branch"]["status"]["off"],
                              [PF, QF, PT, QT])] = 0

    if fname:
        fd = None
        try:
            fd = open(fname, "a")
        except Exception as detail:
            stderr.write("Error opening %s: %s.\n" % (fname, detail))
        finally:
            if fd is not None:
                printpf(results, fd, ppopt)
                fd.close()
    else:
        printpf(results, stdout, ppopt)

    # save solved case
    if solvedcase:
        savecase(solvedcase, results)

    return results, success
Пример #13
0
def Ybus(ppc):
    ppc = ext2int(ppc)
    baseMVA, bus, gen, branch = ppc["baseMVA"], ppc["bus"], ppc["gen"], ppc[
        "branch"]
    Ybus, Yf, Yt = makeYbus(baseMVA, bus, branch)
    return Ybus
Пример #14
0
def solveropfnlp_2(ppc, solver="ipopt"):
    if solver == "ipopt":
        opt = SolverFactory("ipopt", executable="/home/iso/PycharmProjects/opfLC_python3/Python3/py_solvers/ipopt-linux64/ipopt")
    if solver == "bonmin":
        opt = SolverFactory("bonmin", executable="/home/iso/PycharmProjects/opfLC_python3/Python3/py_solvers/bonmin-linux64/bonmin")
    if solver == "knitro":
        opt = SolverFactory("knitro", executable="D:/ICT/Artelys/Knitro 10.2.1/knitroampl/knitroampl")

    ppc = ext2int(ppc)      # convert to continuous indexing starting from 0

    # Gather information about the system
    # =============================================================
    baseMVA, bus, gen, branch = \
        ppc["baseMVA"], ppc["bus"], ppc["gen"], ppc["branch"]

    nb = bus.shape[0]       # number of buses
    ng = gen.shape[0]       # number of generators
    nl = branch.shape[0]    # number of lines

    # generator buses
    gb = tolist(np.array(gen[:, GEN_BUS]).astype(int))

    sb = find((bus[:, BUS_TYPE] == REF))    # slack bus index
    fr = branch[:, F_BUS].astype(int)       # from bus indices
    to = branch[:, T_BUS].astype(int)       # to bus indices

    tr = branch[:, TAP]     # transformation ratios
    tr[find(tr == 0)] = 1   # set to 1 transformation ratios that are 0

    r = branch[:, BR_R]     # branch resistances
    x = branch[:, BR_X]     # branch reactances
    b = branch[:, BR_B]     # branch susceptances

    start_time = time.clock()

    # Admittance matrix computation
    # =============================================================
    y = makeYbus(baseMVA, bus, branch)[0]   # admittance matrix

    yk = 1./(r+x*1j)                        # branch admittance
    yft = yk + 0.5j*b                       # branch admittance + susceptance
    gk = yk.real                            # branch resistance
    yk = yk/tr                              # include /tr in yk

    # Optimization
    # =============================================================
    branch[find(branch[:, RATE_A] == 0), RATE_A] = 9999     # set undefined Sflow limit to 9999
    Smax = branch[:, RATE_A] / baseMVA                      # Max. Sflow

    # Power demand parameters
    Pd = bus[:, PD] / baseMVA
    Qd = bus[:, QD] / baseMVA

    # Max and min Pg and Qg
    Pg_max = zeros(nb)
    Pg_max[gb] = gen[:, PMAX] / baseMVA
    Pg_min = zeros(nb)
    Pg_min[gb] = gen[:, PMIN] / baseMVA
    Qg_max = zeros(nb)
    Qg_max[gb] = gen[:, QMAX] / baseMVA
    Qg_min = zeros(nb)
    Qg_min[gb] = gen[:, QMIN] / baseMVA

    # Vmax and Vmin vectors
    Vmax = bus[:, VMAX]
    Vmin = bus[:, VMIN]

    vm = bus[:, VM]
    va = bus[:, VA]*pi/180

    # create a new optimization model
    model = ConcreteModel()

    # Define sets
    # ------------
    model.bus = Set(ordered=True, initialize=range(nb))     # Set of all buses
    model.gen = Set(ordered=True, initialize=gb)                # Set of buses with generation
    model.line = Set(ordered=True, initialize=range(nl))    # Set of all lines

    # Define variables
    # -----------------
    # Voltage magnitudes vector (vm)
    model.vm = Var(model.bus)

    # Voltage angles vector (va)
    model.va = Var(model.bus)

    # Reactive power generation, synchronous machines(SM) (Qg)
    model.Qg = Var(model.gen)
    Qg0 = zeros(nb)
    Qg0[gb] = gen[:, QG]/baseMVA

    # Active power generation, synchronous machines(SM) (Pg)
    model.Pg = Var(model.gen)
    Pg0 = zeros(nb)
    Pg0[gb] = gen[:, PG] / baseMVA

    # Active and reactive power from at all branches
    model.Pf = Var(model.line)
    model.Qf = Var(model.line)

    # Active and reactive power to at all branches
    model.Pt = Var(model.line)
    model.Qt = Var(model.line)

    # Warm start the problem
    # ------------------------
    for i in range(nb):
        model.vm[i] = vm[i]
        model.va[i] = va[i]
        if i in gb:
            model.Pg[i] = Pg0[i]
            model.Qg[i] = Qg0[i]
    for i in range(nl):
        model.Pf[i] = vm[fr[i]] ** 2 * abs(yft[i]) / (tr[i] ** 2) * np.cos(-ang(yft[i])) -\
                      vm[fr[i]] * vm[to[i]] * abs(yk[i]) * np.cos(va[fr[i]] - va[to[i]] - ang(yk[i]))
        model.Qf[i] = vm[fr[i]] ** 2 * abs(yft[i]) / (tr[i] ** 2) * np.sin(-ang(yft[i])) -\
                      vm[fr[i]] * vm[to[i]] * abs(yk[i]) * np.sin(va[fr[i]] - va[to[i]] - ang(yk[i]))
        model.Pt[i] = vm[to[i]] ** 2 * abs(yft[i]) * np.cos(-ang(yft[i])) -\
                      vm[to[i]] * vm[fr[i]] * abs(yk[i]) * np.cos(va[to[i]] - va[fr[i]] - ang(yk[i]))
        model.Qt[i] = vm[to[i]] ** 2 * abs(yft[i]) * np.sin(-ang(yft[i])) -\
                      vm[to[i]] * vm[fr[i]] * abs(yk[i]) * np.sin(va[to[i]] - va[fr[i]] - ang(yk[i]))

    # Define constraints
    # ----------------------------

    # Equalities:
    # ------------

    # Active power flow equalities
    def powerflowact(model, i):
        if i in gb:
            return model.Pg[i]-Pd[i] == sum(model.vm[i]*model.vm[j]*abs(y[i, j]) *
                                            cos(model.va[i] - model.va[j] - ang(y[i, j])) for j in range(nb))
        else:
            return sum(model.vm[i]*model.vm[j]*abs(y[i, j]) * cos(model.va[i] - model.va[j] -
                                                                  ang(y[i, j])) for j in range(nb)) == -Pd[i]

    model.const1 = Constraint(model.bus, rule=powerflowact)

    # Reactive power flow equalities
    def powerflowreact(model, i):
        if i in gb:
            return model.Qg[i]-Qd[i] == sum(model.vm[i]*model.vm[j]*abs(y[i, j]) *
                                            sin(model.va[i] - model.va[j] - ang(y[i, j])) for j in range(nb))
        else:
            return sum(model.vm[i]*model.vm[j]*abs(y[i, j]) * sin(model.va[i] - model.va[j] -
                                                                  ang(y[i, j])) for j in range(nb)) == -Qd[i]

    model.const2 = Constraint(model.bus, rule=powerflowreact)

    # Active power from
    def pfrom(model, i):
        return model.Pf[i] == model.vm[fr[i]] ** 2 * abs(yft[i]) / (tr[i] ** 2) * np.cos(-ang(yft[i])) - \
                              model.vm[fr[i]] * model.vm[to[i]] * abs(yk[i]) * \
                              cos(model.va[fr[i]] - model.va[to[i]] - ang(yk[i]))

    model.const3 = Constraint(model.line, rule=pfrom)

    # Reactive power from
    def qfrom(model, i):
        return model.Qf[i] == model.vm[fr[i]] ** 2 * abs(yft[i]) / (tr[i] ** 2) * np.sin(-ang(yft[i])) - \
                              model.vm[fr[i]] * model.vm[to[i]] * abs(yk[i]) * \
                              sin(model.va[fr[i]] - model.va[to[i]] - ang(yk[i]))

    model.const4 = Constraint(model.line, rule=qfrom)

    # Active power to
    def pto(model, i):
        return model.Pt[i] == model.vm[to[i]] ** 2 * abs(yft[i]) * np.cos(-ang(yft[i])) - \
                              model.vm[to[i]] * model.vm[fr[i]] * abs(yk[i]) * \
                              cos(model.va[to[i]] - model.va[fr[i]] - ang(yk[i]))

    model.const5 = Constraint(model.line, rule=pto)

    # Reactive power to
    def qto(model, i):
        return model.Qt[i] == model.vm[to[i]] ** 2 * abs(yft[i]) * np.sin(-ang(yft[i])) - \
                              model.vm[to[i]] * model.vm[fr[i]] * abs(yk[i]) * \
                              sin(model.va[to[i]] - model.va[fr[i]] - ang(yk[i]))

    model.const6 = Constraint(model.line, rule=qto)

    # Slack bus phase angle
    model.const7 = Constraint(expr=model.va[sb[0]] == 0)

    # Inequalities:
    # ----------------

    # Active power generator limits Pg_min <= Pg <= Pg_max
    def genplimits(model, i):
        return Pg_min[i] <= model.Pg[i] <= Pg_max[i]

    model.const8 = Constraint(model.gen, rule=genplimits)

    # Reactive power generator limits Qg_min <= Qg <= Qg_max
    def genqlimits(model, i):
        return Qg_min[i] <= model.Qg[i] <= Qg_max[i]

    model.const9 = Constraint(model.gen, rule=genqlimits)

    # Voltage constraints ( Vmin <= V <= Vmax )
    def vlimits(model, i):
        return Vmin[i] <= model.vm[i] <= Vmax[i]

    model.const10 = Constraint(model.bus, rule=vlimits)

    # Sfrom line limit
    def sfrommax(model, i):
        return model.Pf[i]**2 + model.Qf[i]**2 <= Smax[i]**2

    model.const11 = Constraint(model.line, rule=sfrommax)

    # Sto line limit
    def stomax(model, i):
        return model.Pt[i]**2 + model.Qt[i]**2 <= Smax[i]**2

    model.const12 = Constraint(model.line, rule=stomax)

    # Set objective function
    # ------------------------
    def obj_fun(model):
        return sum(gk[i] * ((model.vm[fr[i]] / tr[i])**2 + model.vm[to[i]]**2 -
                         2/tr[i] * model.vm[fr[i]] * model.vm[to[i]] *
                         cos(model.va[fr[i]] - model.va[to[i]])) for i in range(nl))

    model.obj = Objective(rule=obj_fun, sense=minimize)

    mt = time.clock() - start_time                  # Modeling time

    # Execute solve command with the selected solver
    # ------------------------------------------------
    start_time = time.clock()
    results = opt.solve(model, tee=True)
    et = time.clock() - start_time                  # Elapsed time
    print(results)

    # Update the case info with the optimized variables
    # ==================================================
    for i in range(nb):
        bus[i, VM] = model.vm[i].value              # Bus voltage magnitudes
        bus[i, VA] = model.va[i].value*180/pi       # Bus voltage angles
    # Include Pf - Qf - Pt - Qt in the branch matrix
    branchsol = zeros((nl, 17))
    branchsol[:, :-4] = branch
    for i in range(nl):
        branchsol[i, PF] = model.Pf[i].value * baseMVA
        branchsol[i, QF] = model.Qf[i].value * baseMVA
        branchsol[i, PT] = model.Pt[i].value * baseMVA
        branchsol[i, QT] = model.Qt[i].value * baseMVA
    # Update gen matrix variables
    for i in range(ng):
        gen[i, PG] = model.Pg[gb[i]].value * baseMVA
        gen[i, QG] = model.Qg[gb[i]].value * baseMVA
        gen[i, VG] = bus[gb[i], VM]
    # Convert to external (original) numbering and save case results
    ppc = int2ext(ppc)
    ppc['bus'][:, 1:] = bus[:, 1:]
    branchsol[:, 0:2] = ppc['branch'][:, 0:2]
    ppc['branch'] = branchsol
    ppc['gen'][:, 1:] = gen[:, 1:]
    ppc['obj'] = value(obj_fun(model))
    ppc['ploss'] = value(obj_fun(model)) * baseMVA
    ppc['et'] = et
    ppc['mt'] = mt
    ppc['success'] = 1

    # ppc solved case is returned
    return ppc
Пример #15
0
def pipsopf_solver(om, ppopt, out_opt=None):
    """Solves AC optimal power flow using PIPS.

    Inputs are an OPF model object, a PYPOWER options vector and
    a dict containing keys (can be empty) for each of the desired
    optional output fields.

    outputs are a C{results} dict, C{success} flag and C{raw} output dict.

    C{results} is a PYPOWER case dict (ppc) with the usual baseMVA, bus
    branch, gen, gencost fields, along with the following additional
    fields:
        - C{order}      see 'help ext2int' for details of this field
        - C{x}          final value of optimization variables (internal order)
        - C{f}          final objective function value
        - C{mu}         shadow prices on ...
            - C{var}
                - C{l}  lower bounds on variables
                - C{u}  upper bounds on variables
            - C{nln}
                - C{l}  lower bounds on nonlinear constraints
                - C{u}  upper bounds on nonlinear constraints
            - C{lin}
                - C{l}  lower bounds on linear constraints
                - C{u}  upper bounds on linear constraints

    C{success} is C{True} if solver converged successfully, C{False} otherwise

    C{raw} is a raw output dict in form returned by MINOS
        - xr     final value of optimization variables
        - pimul  constraint multipliers
        - info   solver specific termination code
        - output solver specific output information

    @see: L{opf}, L{pips}

    @author: Ray Zimmerman (PSERC Cornell)
    @author: Carlos E. Murillo-Sanchez (PSERC Cornell & Universidad
    Autonoma de Manizales)
    @author: Richard Lincoln
    """
    ##----- initialization -----
    ## optional output
    if out_opt is None:
        out_opt = {}

    ## options
    verbose = ppopt['VERBOSE']
    feastol = ppopt['PDIPM_FEASTOL']
    gradtol = ppopt['PDIPM_GRADTOL']
    comptol = ppopt['PDIPM_COMPTOL']
    costtol = ppopt['PDIPM_COSTTOL']
    max_it  = ppopt['PDIPM_MAX_IT']
    max_red = ppopt['SCPDIPM_RED_IT']
    step_control = (ppopt['OPF_ALG'] == 565)  ## OPF_ALG == 565, PIPS-sc
    if feastol == 0:
        feastol = ppopt['OPF_VIOLATION']
    opt = {  'feastol': feastol,
             'gradtol': gradtol,
             'comptol': comptol,
             'costtol': costtol,
             'max_it': max_it,
             'max_red': max_red,
             'step_control': step_control,
             'cost_mult': 1e-4,
             'verbose': verbose  }

    ## unpack data
    ppc = om.get_ppc()
    baseMVA, bus, gen, branch, gencost = \
        ppc["baseMVA"], ppc["bus"], ppc["gen"], ppc["branch"], ppc["gencost"]
    vv, _, nn, _ = om.get_idx()

    ## problem dimensions
    nb = bus.shape[0]          ## number of buses
    nl = branch.shape[0]       ## number of branches
    ny = om.getN('var', 'y')   ## number of piece-wise linear costs

    ## linear constraints
    A, l, u = om.linear_constraints()

    ## bounds on optimization vars
    _, xmin, xmax = om.getv()

    ## build admittance matrices
    Ybus, Yf, Yt = makeYbus(baseMVA, bus, branch)

    ## try to select an interior initial point
    ll, uu = xmin.copy(), xmax.copy()
    ll[xmin == -Inf] = -1e10   ## replace Inf with numerical proxies
    uu[xmax ==  Inf] =  1e10
    x0 = (ll + uu) / 2
    Varefs = bus[bus[:, BUS_TYPE] == REF, VA] * (pi / 180)
    ## angles set to first reference angle
    x0[vv["i1"]["Va"]:vv["iN"]["Va"]] = Varefs[0]
    if ny > 0:
        ipwl = find(gencost[:, MODEL] == PW_LINEAR)
#         PQ = r_[gen[:, PMAX], gen[:, QMAX]]
#         c = totcost(gencost[ipwl, :], PQ[ipwl])
        c = gencost.flatten('F')[sub2ind(gencost.shape, ipwl, NCOST+2*gencost[ipwl, NCOST])]    ## largest y-value in CCV data
        x0[vv["i1"]["y"]:vv["iN"]["y"]] = max(c) + 0.1 * abs(max(c))
#        x0[vv["i1"]["y"]:vv["iN"]["y"]] = c + 0.1 * abs(c)

    ## find branches with flow limits
    il = find((branch[:, RATE_A] != 0) & (branch[:, RATE_A] < 1e10))
    nl2 = len(il)           ## number of constrained lines

    ##-----  run opf  -----
    f_fcn = lambda x, return_hessian=False: opf_costfcn(x, om, return_hessian)
    gh_fcn = lambda x: opf_consfcn(x, om, Ybus, Yf[il, :], Yt[il,:], ppopt, il)
    hess_fcn = lambda x, lmbda, cost_mult: opf_hessfcn(x, lmbda, om, Ybus, Yf[il, :], Yt[il, :], ppopt, il, cost_mult)

    solution = pips(f_fcn, x0, A, l, u, xmin, xmax, gh_fcn, hess_fcn, opt)
    x, f, info, lmbda, output = solution["x"], solution["f"], \
            solution["eflag"], solution["lmbda"], solution["output"]

    success = (info > 0)

    ## update solution data
    Va = x[vv["i1"]["Va"]:vv["iN"]["Va"]]
    Vm = x[vv["i1"]["Vm"]:vv["iN"]["Vm"]]
    Pg = x[vv["i1"]["Pg"]:vv["iN"]["Pg"]]
    Qg = x[vv["i1"]["Qg"]:vv["iN"]["Qg"]]

    V = Vm * exp(1j * Va)

    ##-----  calculate return values  -----
    ## update voltages & generator outputs
    bus[:, VA] = Va * 180 / pi
    bus[:, VM] = Vm
    gen[:, PG] = Pg * baseMVA
    gen[:, QG] = Qg * baseMVA
    gen[:, VG] = Vm[ gen[:, GEN_BUS].astype(int) ]

    ## compute branch flows
    Sf = V[ branch[:, F_BUS].astype(int) ] * conj(Yf * V)  ## cplx pwr at "from" bus, p["u"].
    St = V[ branch[:, T_BUS].astype(int) ] * conj(Yt * V)  ## cplx pwr at "to" bus, p["u"].
    branch[:, PF] = Sf.real * baseMVA
    branch[:, QF] = Sf.imag * baseMVA
    branch[:, PT] = St.real * baseMVA
    branch[:, QT] = St.imag * baseMVA

    ## line constraint is actually on square of limit
    ## so we must fix multipliers
    muSf = zeros(nl)
    muSt = zeros(nl)
    if len(il) > 0:
        muSf[il] = \
            2 * lmbda["ineqnonlin"][:nl2] * branch[il, RATE_A] / baseMVA
        muSt[il] = \
            2 * lmbda["ineqnonlin"][nl2:nl2+nl2] * branch[il, RATE_A] / baseMVA

    ## update Lagrange multipliers
    bus[:, MU_VMAX]  = lmbda["upper"][vv["i1"]["Vm"]:vv["iN"]["Vm"]]
    bus[:, MU_VMIN]  = lmbda["lower"][vv["i1"]["Vm"]:vv["iN"]["Vm"]]
    gen[:, MU_PMAX]  = lmbda["upper"][vv["i1"]["Pg"]:vv["iN"]["Pg"]] / baseMVA
    gen[:, MU_PMIN]  = lmbda["lower"][vv["i1"]["Pg"]:vv["iN"]["Pg"]] / baseMVA
    gen[:, MU_QMAX]  = lmbda["upper"][vv["i1"]["Qg"]:vv["iN"]["Qg"]] / baseMVA
    gen[:, MU_QMIN]  = lmbda["lower"][vv["i1"]["Qg"]:vv["iN"]["Qg"]] / baseMVA

    bus[:, LAM_P] = \
        lmbda["eqnonlin"][nn["i1"]["Pmis"]:nn["iN"]["Pmis"]] / baseMVA
    bus[:, LAM_Q] = \
        lmbda["eqnonlin"][nn["i1"]["Qmis"]:nn["iN"]["Qmis"]] / baseMVA
    branch[:, MU_SF] = muSf / baseMVA
    branch[:, MU_ST] = muSt / baseMVA

    ## package up results
    nlnN = om.getN('nln')

    ## extract multipliers for nonlinear constraints
    kl = find(lmbda["eqnonlin"] < 0)
    ku = find(lmbda["eqnonlin"] > 0)
    nl_mu_l = zeros(nlnN)
    nl_mu_u = r_[zeros(2*nb), muSf, muSt]
    nl_mu_l[kl] = -lmbda["eqnonlin"][kl]
    nl_mu_u[ku] =  lmbda["eqnonlin"][ku]

    mu = {
      'var': {'l': lmbda["lower"], 'u': lmbda["upper"]},
      'nln': {'l': nl_mu_l, 'u': nl_mu_u},
      'lin': {'l': lmbda["mu_l"], 'u': lmbda["mu_u"]} }

    results = ppc
    results["bus"], results["branch"], results["gen"], \
        results["om"], results["x"], results["mu"], results["f"] = \
            bus, branch, gen, om, x, mu, f

    pimul = r_[
        results["mu"]["nln"]["l"] - results["mu"]["nln"]["u"],
        results["mu"]["lin"]["l"] - results["mu"]["lin"]["u"],
        -ones(ny),
        results["mu"]["var"]["l"] - results["mu"]["var"]["u"],
    ]
    raw = {'xr': x, 'pimul': pimul, 'info': info, 'output': output}

    return results, success, raw
Пример #16
0
def run_sim(ppc, elements, dynopt=None, events=None, recorder=None):
    """
    Run a time-domain simulation
    
    Inputs:
        ppc         PYPOWER load flow case
        elements    Dictionary of dynamic model objects (machines, controllers, etc) with Object ID as key
        events      Events object
        recorder    Recorder object (empty)
    
    Outputs:
        recorder    Recorder object (with data)
    """

    #########
    # SETUP #
    #########

    # Get version information
    ver = pydyn_ver()
    print('PYPOWER-Dynamics ' + ver['Version'] + ', ' + ver['Date'])

    # Program options
    if dynopt:
        h = dynopt['h']
        t_sim = dynopt['t_sim']
        max_err = dynopt['max_err']
        max_iter = dynopt['max_iter']
        verbose = dynopt['verbose']
    else:
        # Default program options
        h = 0.01  # step length (s)
        t_sim = 5  # simulation time (s)
        max_err = 0.0001  # Maximum error in network iteration (voltage mismatches)
        max_iter = 25  # Maximum number of network iterations
        verbose = False

    # Make lists of current injection sources (generators, external grids, etc) and controllers
    sources = []
    controllers = []
    for element in elements.values():
        if element.__module__ in [
                'pydyn.sym_order6a', 'pydyn.sym_order6b', 'pydyn.sym_order4',
                'pydyn.ext_grid', 'pydyn.vsc_average', 'pydyn.asym_1cage',
                'pydyn.asym_2cage'
        ]:
            sources.append(element)

        if element.__module__ == 'pydyn.controller':
            controllers.append(element)

    # Set up interfaces
    interfaces = init_interfaces(elements)

    ##################
    # INITIALISATION #
    ##################
    print('Initialising models...')

    # Run power flow and update bus voltages and angles in PYPOWER case object
    results, success = runpf(ppc)
    ppc["bus"][:, VM] = results["bus"][:, VM]
    ppc["bus"][:, VA] = results["bus"][:, VA]

    # Build Ybus matrix
    ppc_int = ext2int(ppc)
    baseMVA, bus, branch = ppc_int["baseMVA"], ppc_int["bus"], ppc_int[
        "branch"]
    Ybus, Yf, Yt = makeYbus(baseMVA, bus, branch)

    # Build modified Ybus matrix
    Ybus = mod_Ybus(Ybus, elements, bus, ppc_int['gen'], baseMVA)

    # Calculate initial voltage phasors
    v0 = bus[:, VM] * (np.cos(np.radians(bus[:, VA])) +
                       1j * np.sin(np.radians(bus[:, VA])))

    # Initialise sources from load flow
    for source in sources:
        if source.__module__ in ['pydyn.asym_1cage', 'pydyn.asym_2cage']:
            # Asynchronous machine
            source_bus = int(ppc_int['bus'][source.bus_no, 0])
            v_source = v0[source_bus]
            source.initialise(v_source, 0)
        else:
            # Generator or VSC
            source_bus = int(ppc_int['gen'][source.gen_no, 0])
            S_source = np.complex(results["gen"][source.gen_no, 1] / baseMVA,
                                  results["gen"][source.gen_no, 2] / baseMVA)
            v_source = v0[source_bus]
            source.initialise(v_source, S_source)

    # Interface controllers and machines (for initialisation)
    for intf in interfaces:
        int_type = intf[0]
        var_name = intf[1]
        if int_type == 'OUTPUT':
            # If an output, interface in the reverse direction for initialisation
            intf[2].signals[var_name] = intf[3].signals[var_name]
        else:
            # Inputs are interfaced in normal direction during initialisation
            intf[3].signals[var_name] = intf[2].signals[var_name]

    # Initialise controllers
    for controller in controllers:
        controller.initialise()

    #############
    # MAIN LOOP #
    #############

    if events == None:
        print('Warning: no events!')

    # Factorise Ybus matrix
    Ybus_inv = splu(Ybus)

    y1 = []
    v_prev = v0
    print('Simulating...')
    for t in range(int(t_sim / h) + 1):
        if np.mod(t, 1 / h) == 0:
            print('t=' + str(t * h) + 's')

        # Interface controllers and machines
        for intf in interfaces:
            var_name = intf[1]
            intf[3].signals[var_name] = intf[2].signals[var_name]

        # Solve differential equations
        for j in range(4):
            # Solve step of differential equations
            for element in elements.values():
                element.solve_step(h, j)

            # Interface with network equations
            v_prev = solve_network(sources, v_prev, Ybus_inv, ppc_int,
                                   len(bus), max_err, max_iter)

        if recorder != None:
            # Record signals or states
            recorder.record_variables(t * h, elements)

        if events != None:
            # Check event stack
            ppc, refactorise = events.handle_events(np.round(t * h, 5),
                                                    elements, ppc, baseMVA)

            if refactorise == True:
                # Rebuild Ybus from new ppc_int

                prev_ybus = Ybus.todense().copy()

                ppc_int = ext2int(ppc)
                baseMVA, bus, branch = ppc_int["baseMVA"], ppc_int[
                    "bus"], ppc_int["branch"]
                Ybus, Yf, Yt = makeYbus(baseMVA, bus, branch)

                # Rebuild modified Ybus
                Ybus = mod_Ybus(Ybus, elements, bus, ppc_int['gen'], baseMVA)

                ybus_delta = np.array(Ybus - prev_ybus)

                # Refactorise Ybus
                Ybus_inv = splu(Ybus)

                # Solve network equations
                v_prev = solve_network(sources, v_prev, Ybus_inv, ppc_int,
                                       len(bus), max_err, max_iter)

    return recorder
Пример #17
0
def admittance_from_UKGDS(filename,header=28,separate_Yslack=True):
	baseMVA,bus_matrix,branch_matrix = bus_branch_from_UKGDSexcel(filename,header)
	return makeYbus(baseMVA,bus_matrix,branch_matrix,separate_Yslack)
Пример #18
0
def t_jacobian(quiet=False):
    """Numerical tests of partial derivative code.

    @author: Ray Zimmerman (PSERC Cornell)
    """
    t_begin(28, quiet)

    ## run powerflow to get solved case
    ppopt = ppoption(VERBOSE=0, OUT_ALL=0)
    ppc = loadcase(case30())

    results, _ = runpf(ppc, ppopt)
    baseMVA, bus, gen, branch = \
        results['baseMVA'], results['bus'], results['gen'], results['branch']

    ## switch to internal bus numbering and build admittance matrices
    _, bus, gen, branch = ext2int1(bus, gen, branch)
    Ybus, Yf, Yt = makeYbus(baseMVA, bus, branch)
    Ybus_full = Ybus.todense()
    Yf_full   = Yf.todense()
    Yt_full   = Yt.todense()
    Vm = bus[:, VM]
    Va = bus[:, VA] * (pi / 180)
    V = Vm * exp(1j * Va)
    f = branch[:, F_BUS].astype(int)       ## list of "from" buses
    t = branch[:, T_BUS].astype(int)       ## list of "to" buses
    #nl = len(f)
    nb = len(V)
    pert = 1e-8

    Vm = array([Vm]).T  # column array
    Va = array([Va]).T  # column array
    Vc = array([V]).T   # column array

    ##-----  check dSbus_dV code  -----
    ## full matrices
    dSbus_dVm_full, dSbus_dVa_full = dSbus_dV(Ybus_full, V)

    ## sparse matrices
    dSbus_dVm, dSbus_dVa = dSbus_dV(Ybus, V)
    dSbus_dVm_sp = dSbus_dVm.todense()
    dSbus_dVa_sp = dSbus_dVa.todense()

    ## compute numerically to compare
    Vmp = (Vm * ones((1, nb)) + pert*eye(nb)) * (exp(1j * Va) * ones((1, nb)))
    Vap = (Vm * ones((1, nb))) * (exp(1j * (Va*ones((1, nb)) + pert*eye(nb))))
    num_dSbus_dVm = (Vmp * conj(Ybus * Vmp) - Vc * ones((1, nb)) * conj(Ybus * Vc * ones((1, nb)))) / pert
    num_dSbus_dVa = (Vap * conj(Ybus * Vap) - Vc * ones((1, nb)) * conj(Ybus * Vc * ones((1, nb)))) / pert

    t_is(dSbus_dVm_sp, num_dSbus_dVm, 5, 'dSbus_dVm (sparse)')
    t_is(dSbus_dVa_sp, num_dSbus_dVa, 5, 'dSbus_dVa (sparse)')
    t_is(dSbus_dVm_full, num_dSbus_dVm, 5, 'dSbus_dVm (full)')
    t_is(dSbus_dVa_full, num_dSbus_dVa, 5, 'dSbus_dVa (full)')

    ##-----  check dSbr_dV code  -----
    ## full matrices
    dSf_dVa_full, dSf_dVm_full, dSt_dVa_full, dSt_dVm_full, _, _ = \
            dSbr_dV(branch, Yf_full, Yt_full, V)

    ## sparse matrices
    dSf_dVa, dSf_dVm, dSt_dVa, dSt_dVm, Sf, St = dSbr_dV(branch, Yf, Yt, V)
    dSf_dVa_sp = dSf_dVa.todense()
    dSf_dVm_sp = dSf_dVm.todense()
    dSt_dVa_sp = dSt_dVa.todense()
    dSt_dVm_sp = dSt_dVm.todense()

    ## compute numerically to compare
    Vmpf = Vmp[f, :]
    Vapf = Vap[f, :]
    Vmpt = Vmp[t, :]
    Vapt = Vap[t, :]
    Sf2 = (Vc[f] * ones((1, nb))) * conj(Yf * Vc * ones((1, nb)))
    St2 = (Vc[t] * ones((1, nb))) * conj(Yt * Vc * ones((1, nb)))
    Smpf = Vmpf * conj(Yf * Vmp)
    Sapf = Vapf * conj(Yf * Vap)
    Smpt = Vmpt * conj(Yt * Vmp)
    Sapt = Vapt * conj(Yt * Vap)

    num_dSf_dVm = (Smpf - Sf2) / pert
    num_dSf_dVa = (Sapf - Sf2) / pert
    num_dSt_dVm = (Smpt - St2) / pert
    num_dSt_dVa = (Sapt - St2) / pert

    t_is(dSf_dVm_sp, num_dSf_dVm, 5, 'dSf_dVm (sparse)')
    t_is(dSf_dVa_sp, num_dSf_dVa, 5, 'dSf_dVa (sparse)')
    t_is(dSt_dVm_sp, num_dSt_dVm, 5, 'dSt_dVm (sparse)')
    t_is(dSt_dVa_sp, num_dSt_dVa, 5, 'dSt_dVa (sparse)')
    t_is(dSf_dVm_full, num_dSf_dVm, 5, 'dSf_dVm (full)')
    t_is(dSf_dVa_full, num_dSf_dVa, 5, 'dSf_dVa (full)')
    t_is(dSt_dVm_full, num_dSt_dVm, 5, 'dSt_dVm (full)')
    t_is(dSt_dVa_full, num_dSt_dVa, 5, 'dSt_dVa (full)')

    ##-----  check dAbr_dV code  -----
    ## full matrices
    dAf_dVa_full, dAf_dVm_full, dAt_dVa_full, dAt_dVm_full = \
        dAbr_dV(dSf_dVa_full, dSf_dVm_full, dSt_dVa_full, dSt_dVm_full, Sf, St)
    ## sparse matrices
    dAf_dVa, dAf_dVm, dAt_dVa, dAt_dVm = \
                            dAbr_dV(dSf_dVa, dSf_dVm, dSt_dVa, dSt_dVm, Sf, St)
    dAf_dVa_sp = dAf_dVa.todense()
    dAf_dVm_sp = dAf_dVm.todense()
    dAt_dVa_sp = dAt_dVa.todense()
    dAt_dVm_sp = dAt_dVm.todense()

    ## compute numerically to compare
    num_dAf_dVm = (abs(Smpf)**2 - abs(Sf2)**2) / pert
    num_dAf_dVa = (abs(Sapf)**2 - abs(Sf2)**2) / pert
    num_dAt_dVm = (abs(Smpt)**2 - abs(St2)**2) / pert
    num_dAt_dVa = (abs(Sapt)**2 - abs(St2)**2) / pert

    t_is(dAf_dVm_sp, num_dAf_dVm, 4, 'dAf_dVm (sparse)')
    t_is(dAf_dVa_sp, num_dAf_dVa, 4, 'dAf_dVa (sparse)')
    t_is(dAt_dVm_sp, num_dAt_dVm, 4, 'dAt_dVm (sparse)')
    t_is(dAt_dVa_sp, num_dAt_dVa, 4, 'dAt_dVa (sparse)')
    t_is(dAf_dVm_full, num_dAf_dVm, 4, 'dAf_dVm (full)')
    t_is(dAf_dVa_full, num_dAf_dVa, 4, 'dAf_dVa (full)')
    t_is(dAt_dVm_full, num_dAt_dVm, 4, 'dAt_dVm (full)')
    t_is(dAt_dVa_full, num_dAt_dVa, 4, 'dAt_dVa (full)')

    ##-----  check dIbr_dV code  -----
    ## full matrices
    dIf_dVa_full, dIf_dVm_full, dIt_dVa_full, dIt_dVm_full, _, _ = \
            dIbr_dV(branch, Yf_full, Yt_full, V)

    ## sparse matrices
    dIf_dVa, dIf_dVm, dIt_dVa, dIt_dVm, _, _ = dIbr_dV(branch, Yf, Yt, V)
    dIf_dVa_sp = dIf_dVa.todense()
    dIf_dVm_sp = dIf_dVm.todense()
    dIt_dVa_sp = dIt_dVa.todense()
    dIt_dVm_sp = dIt_dVm.todense()

    ## compute numerically to compare
    num_dIf_dVm = (Yf * Vmp - Yf * Vc * ones((1, nb))) / pert
    num_dIf_dVa = (Yf * Vap - Yf * Vc * ones((1, nb))) / pert
    num_dIt_dVm = (Yt * Vmp - Yt * Vc * ones((1, nb))) / pert
    num_dIt_dVa = (Yt * Vap - Yt * Vc * ones((1, nb))) / pert

    t_is(dIf_dVm_sp, num_dIf_dVm, 5, 'dIf_dVm (sparse)')
    t_is(dIf_dVa_sp, num_dIf_dVa, 5, 'dIf_dVa (sparse)')
    t_is(dIt_dVm_sp, num_dIt_dVm, 5, 'dIt_dVm (sparse)')
    t_is(dIt_dVa_sp, num_dIt_dVa, 5, 'dIt_dVa (sparse)')
    t_is(dIf_dVm_full, num_dIf_dVm, 5, 'dIf_dVm (full)')
    t_is(dIf_dVa_full, num_dIf_dVa, 5, 'dIf_dVa (full)')
    t_is(dIt_dVm_full, num_dIt_dVm, 5, 'dIt_dVm (full)')
    t_is(dIt_dVa_full, num_dIt_dVa, 5, 'dIt_dVa (full)')

    t_end()
Пример #19
0
def opf_execute(om, ppopt):
    """Executes the OPF specified by an OPF model object.

    C{results} are returned with internal indexing, all equipment
    in-service, etc.

    @see: L{opf}, L{opf_setup}

    @author: Ray Zimmerman (PSERC Cornell)
    @author: Richard Lincoln
    """
    ##-----  setup  -----
    ## options
    dc = ppopt['PF_DC']  ## 1 = DC OPF, 0 = AC OPF
    alg = ppopt['OPF_ALG']
    verbose = ppopt['VERBOSE']

    ## build user-defined costs
    om.build_cost_params()

    ## get indexing
    vv, ll, nn, _ = om.get_idx()

    if verbose > 0:
        v = ppver('all')
        stdout.write('PYPOWER Version %s, %s' % (v['Version'], v['Date']))

    ##-----  run DC OPF solver  -----
    if dc:
        if verbose > 0:
            stdout.write(' -- DC Optimal Power Flow\n')

        results, success, raw = dcopf_solver(om, ppopt)
    else:
        ##-----  run AC OPF solver  -----
        if verbose > 0:
            stdout.write(' -- AC Optimal Power Flow\n')

        ## if OPF_ALG not set, choose best available option
        if alg == 0:
            alg = 560  ## MIPS

        ## update deprecated algorithm codes to new, generalized formulation equivalents
        if alg == 100 | alg == 200:  ## CONSTR
            alg = 300
        elif alg == 120 | alg == 220:  ## dense LP
            alg = 320
        elif alg == 140 | alg == 240:  ## sparse (relaxed) LP
            alg = 340
        elif alg == 160 | alg == 260:  ## sparse (full) LP
            alg = 360

        ppopt['OPF_ALG_POLY'] = alg

        ## run specific AC OPF solver
        if alg == 560 or alg == 565:  ## PIPS
            results, success, raw = pipsopf_solver(om, ppopt)
        elif alg == 580:  ## IPOPT # pragma: no cover
            try:
                __import__('pyipopt')
                results, success, raw = ipoptopf_solver(om, ppopt)
            except ImportError:
                raise ImportError('OPF_ALG %d requires IPOPT '
                                  '(see https://projects.coin-or.org/Ipopt/)' %
                                  alg)
        else:
            stderr.write(
                'opf_execute: OPF_ALG %d is not a valid algorithm code\n' %
                alg)

    if ('output' not in raw) or ('alg' not in raw['output']):
        raw['output']['alg'] = alg

    if success:
        if not dc:
            ## copy bus voltages back to gen matrix
            results['gen'][:, VG] = results['bus'][
                results['gen'][:, GEN_BUS].astype(int), VM]

            ## gen PQ capability curve multipliers
            if (ll['N']['PQh'] > 0) | (ll['N']['PQl'] > 0):  # pragma: no cover
                mu_PQh = results['mu']['lin']['l'][
                    ll['i1']['PQh']:ll['iN']['PQh']] - results['mu']['lin'][
                        'u'][ll['i1']['PQh']:ll['iN']['PQh']]
                mu_PQl = results['mu']['lin']['l'][
                    ll['i1']['PQl']:ll['iN']['PQl']] - results['mu']['lin'][
                        'u'][ll['i1']['PQl']:ll['iN']['PQl']]
                Apqdata = om.userdata('Apqdata')
                results['gen'] = update_mupq(results['baseMVA'],
                                             results['gen'], mu_PQh, mu_PQl,
                                             Apqdata)

            ## compute g, dg, f, df, d2f if requested by RETURN_RAW_DER = 1
            if ppopt['RETURN_RAW_DER']:  # pragma: no cover
                ## move from results to raw if using v4.0 of MINOPF or TSPOPF
                if 'dg' in results:
                    raw = {}
                    raw['dg'] = results['dg']
                    raw['g'] = results['g']

                ## compute g, dg, unless already done by post-v4.0 MINOPF or TSPOPF
                if 'dg' not in raw:
                    ppc = om.get_ppc()
                    Ybus, Yf, Yt = makeYbus(ppc['baseMVA'], ppc['bus'],
                                            ppc['branch'])
                    g, geq, dg, dgeq = opf_consfcn(results['x'], om, Ybus, Yf,
                                                   Yt, ppopt)
                    raw['g'] = r_[geq, g]
                    raw['dg'] = r_[dgeq.T, dg.T]  ## true Jacobian organization

                ## compute df, d2f
                _, df, d2f = opf_costfcn(results['x'], om, True)
                raw['df'] = df
                raw['d2f'] = d2f

        ## delete g and dg fieldsfrom results if using v4.0 of MINOPF or TSPOPF
        if 'dg' in results:
            del results['dg']
            del results['g']

        ## angle limit constraint multipliers
        if ll['N']['ang'] > 0:
            iang = om.userdata('iang')
            results['branch'][iang, MU_ANGMIN] = results['mu']['lin']['l'][
                ll['i1']['ang']:ll['iN']['ang']] * pi / 180
            results['branch'][iang, MU_ANGMAX] = results['mu']['lin']['u'][
                ll['i1']['ang']:ll['iN']['ang']] * pi / 180
    else:
        ## assign empty g, dg, f, df, d2f if requested by RETURN_RAW_DER = 1
        if not dc and ppopt['RETURN_RAW_DER']:
            raw['dg'] = array([])
            raw['g'] = array([])
            raw['df'] = array([])
            raw['d2f'] = array([])

    ## assign values and limit shadow prices for variables
    if om.var['order']:
        results['var'] = {'val': {}, 'mu': {'l': {}, 'u': {}}}
    for name in om.var['order']:
        if om.getN('var', name):
            idx = arange(vv['i1'][name], vv['iN'][name])
            results['var']['val'][name] = results['x'][idx]
            results['var']['mu']['l'][name] = results['mu']['var']['l'][idx]
            results['var']['mu']['u'][name] = results['mu']['var']['u'][idx]

    ## assign shadow prices for linear constraints
    if om.lin['order']:
        results['lin'] = {'mu': {'l': {}, 'u': {}}}
    for name in om.lin['order']:
        if om.getN('lin', name):
            idx = arange(ll['i1'][name], ll['iN'][name])
            results['lin']['mu']['l'][name] = results['mu']['lin']['l'][idx]
            results['lin']['mu']['u'][name] = results['mu']['lin']['u'][idx]

    ## assign shadow prices for nonlinear constraints
    if not dc:
        if om.nln['order']:
            results['nln'] = {'mu': {'l': {}, 'u': {}}}
        for name in om.nln['order']:
            if om.getN('nln', name):
                idx = arange(nn['i1'][name], nn['iN'][name])
                results['nln']['mu']['l'][name] = results['mu']['nln']['l'][
                    idx]
                results['nln']['mu']['u'][name] = results['mu']['nln']['u'][
                    idx]

    ## assign values for components of user cost
    if om.cost['order']:
        results['cost'] = {}
    for name in om.cost['order']:
        if om.getN('cost', name):
            results['cost'][name] = om.compute_cost(results['x'], name)

    ## if single-block PWL costs were converted to POLY, insert dummy y into x
    ## Note: The "y" portion of x will be nonsense, but everything should at
    ##       least be in the expected locations.
    pwl1 = om.userdata('pwl1')
    if (len(pwl1) > 0) and (alg != 545) and (alg != 550):
        ## get indexing
        vv, _, _, _ = om.get_idx()
        if dc:
            nx = vv['iN']['Pg']
        else:
            nx = vv['iN']['Qg']

        y = zeros(len(pwl1))
        raw['xr'] = r_[raw['xr'][:nx], y, raw['xr'][nx:]]
        results['x'] = r_[results['x'][:nx], y, results['x'][nx:]]

    return results, success, raw
Пример #20
0
def solveropfnlp_4(ppc, solver="ipopt"):
    if solver == "ipopt":
        opt = SolverFactory(
            "ipopt",
            executable=
            "/home/iso/PycharmProjects/opfLC_python3/Python3/py_solvers/ipopt-linux64/ipopt"
        )
    if solver == "bonmin":
        opt = SolverFactory(
            "bonmin",
            executable=
            "/home/iso/PycharmProjects/opfLC_python3/Python3/py_solvers/bonmin-linux64/bonmin"
        )
    if solver == "knitro":
        opt = SolverFactory(
            "knitro",
            executable="D:/ICT/Artelys/Knitro 10.2.1/knitroampl/knitroampl")

    ppc = ext2int(ppc)  # convert to continuous indexing starting from 0

    # Gather information about the system
    # =============================================================
    baseMVA, bus, gen, branch = \
        ppc["baseMVA"], ppc["bus"], ppc["gen"], ppc["branch"]

    nb = bus.shape[0]  # number of buses
    ng = gen.shape[0]  # number of generators
    nl = branch.shape[0]  # number of lines

    # generator buses
    gb = tolist(np.array(gen[:, GEN_BUS]).astype(int))

    sb = find((bus[:, BUS_TYPE] == REF))  # slack bus index
    fr = branch[:, F_BUS].astype(int)  # from bus indices
    to = branch[:, T_BUS].astype(int)  # to bus indices

    tr0 = copy(branch[:, TAP])  # transformation ratios
    tr0[find(tr0 == 0)] = 1  # set to 1 transformation ratios that are 0
    tp = find(branch[:, TAP] != 0)  # lines with tap changers
    ntp = find(branch[:, TAP] == 0)  # lines without tap changers

    # Tap changer settings
    dudtap = 0.01  # Voltage per unit variation with tap changes
    tapmax = 10  # Highest tap changer setting
    tapmin = -10  # Lowest tap changer setting

    # Shunt element options
    stepmax = 1  # maximum step of the shunt element

    Bs0 = bus[:, BS] / baseMVA  # shunt elements susceptance
    sd = find(bus[:, BS] != 0)  # buses with shunt devices

    r = branch[:, BR_R]  # branch resistances
    x = branch[:, BR_X]  # branch reactances
    b = branch[:, BR_B]  # branch susceptances

    start_time = time.clock()

    # Admittance matrix computation
    # =============================================================
    # Set tap ratios and shunt elements to neutral position
    branch[:, TAP] = 1
    bus[:, BS] = 0

    y = makeYbus(baseMVA, bus, branch)[0]  # admittance matrix
    yk = 1. / (r + x * 1j)  # branch admittance
    yft = yk + 0.5j * b  # branch admittance + susceptance
    gk = yk.real  # branch resistance

    # Optimization
    # =============================================================
    branch[find(branch[:, RATE_A] == 0),
           RATE_A] = 9999  # set undefined Sflow limit to 9999
    Smax = branch[:, RATE_A] / baseMVA  # Max. Sflow

    # Power demand parameters
    Pd = bus[:, PD] / baseMVA
    Qd = bus[:, QD] / baseMVA

    # Max and min Pg and Qg
    Pg_max = zeros(nb)
    Pg_max[gb] = gen[:, PMAX] / baseMVA
    Pg_min = zeros(nb)
    Pg_min[gb] = gen[:, PMIN] / baseMVA
    Qg_max = zeros(nb)
    Qg_max[gb] = gen[:, QMAX] / baseMVA
    Qg_min = zeros(nb)
    Qg_min[gb] = gen[:, QMIN] / baseMVA

    # Vmax and Vmin vectors
    Vmax = bus[:, VMAX]
    Vmin = bus[:, VMIN]

    vm = bus[:, VM]
    va = bus[:, VA] * pi / 180

    # create a new optimization model
    model = ConcreteModel()

    # Define sets
    # ------------
    model.bus = Set(ordered=True, initialize=range(nb))  # Set of all buses
    model.gen = Set(ordered=True,
                    initialize=gb)  # Set of buses with generation
    model.line = Set(ordered=True, initialize=range(nl))  # Set of all lines
    model.taps = Set(ordered=True,
                     initialize=tp)  # Set of all lines with tap changers
    model.shunt = Set(ordered=True,
                      initialize=sd)  # Set of buses with shunt elements

    # Define variables
    # -----------------
    # Voltage magnitudes vector (vm)
    model.vm = Var(model.bus)

    # Voltage angles vector (va)
    model.va = Var(model.bus)

    # Reactive power generation, synchronous machines(SM) (Qg)
    model.Qg = Var(model.gen)
    Qg0 = zeros(nb)
    Qg0[gb] = gen[:, QG] / baseMVA

    # Active power generation, synchronous machines(SM) (Pg)
    model.Pg = Var(model.gen)
    Pg0 = zeros(nb)
    Pg0[gb] = gen[:, PG] / baseMVA

    # Active and reactive power from at all branches
    model.Pf = Var(model.line)
    model.Qf = Var(model.line)

    # Active and reactive power to at all branches
    model.Pt = Var(model.line)
    model.Qt = Var(model.line)

    # Transformation ratios
    model.tr = Var(model.taps)

    # Tap changer positions + their bounds
    model.tap = Var(model.taps, bounds=(tapmin, tapmax))

    # Shunt susceptance
    model.Bs = Var(model.shunt)

    # Shunt positions + their bounds
    model.s = Var(model.shunt, bounds=(0, stepmax))

    # Warm start the problem
    # ------------------------
    for i in range(nb):
        model.vm[i] = vm[i]
        model.va[i] = va[i]
        if i in gb:
            model.Pg[i] = Pg0[i]
            model.Qg[i] = Qg0[i]
    for i in range(nl):
        model.Pf[i] = vm[fr[i]] ** 2 * abs(yft[i]) / (tr0[i] ** 2) * np.cos(-ang(yft[i])) -\
            vm[fr[i]] * vm[to[i]] * abs(yk[i]) / tr0[i] * np.cos(va[fr[i]] - va[to[i]] - ang(yk[i]))
        model.Qf[i] = vm[fr[i]] ** 2 * abs(yft[i]) / (tr0[i] ** 2) * np.sin(-ang(yft[i])) -\
            vm[fr[i]] * vm[to[i]] * abs(yk[i]) / tr0[i] * np.sin(va[fr[i]] - va[to[i]] - ang(yk[i]))
        model.Pt[i] = vm[to[i]] ** 2 * abs(yft[i]) * np.cos(-ang(yft[i])) -\
            vm[to[i]] * vm[fr[i]] * abs(yk[i]) / tr0[i] * np.cos(va[to[i]] - va[fr[i]] - ang(yk[i]))
        model.Qt[i] = vm[to[i]] ** 2 * abs(yft[i]) * np.sin(-ang(yft[i])) -\
            vm[to[i]] * vm[fr[i]] * abs(yk[i]) / tr0[i] * np.sin(va[to[i]] - va[fr[i]] - ang(yk[i]))
    for i in tp:
        model.tr[i] = tr0[i]
    for i in sd:
        model.Bs[i] = Bs0[i]

    # Define constraints
    # ----------------------------

    # Equalities:
    # ------------

    # Active power flow equalities
    def powerflowact(model, i):
        bfrom_i = tp[find(fr[tp] == i)]  # branches from bus i with transformer
        bto_i = tp[find(to[tp] == i)]  # branches to bus i with transformer
        allbut_i = find(bus[:, BUS_I] != i)  # Set of other buses
        if i in gb:
            return model.Pg[i]-Pd[i] == sum(model.vm[i] * model.vm[j] * abs(y[i, j]) *
                                            cos(model.va[i] - model.va[j] - ang(y[i, j])) for j in allbut_i) - \
                   sum(model.vm[i] * model.vm[to[j]] * abs(yk[j]) * cos(model.va[i] -
                       model.va[to[j]] - ang(yk[j])) * (1 / model.tr[j] - 1) for j in bfrom_i) - \
                   sum(model.vm[i] * model.vm[fr[j]] * abs(yk[j]) * cos(model.va[i] -
                       model.va[fr[j]] - ang(yk[j])) * (1 / model.tr[j] - 1) for j in bto_i) + \
                   model.vm[i] ** 2 * (sum(abs(yk[j]) * (1 / model.tr[j]**2 - 1) *
                                           np.cos(- ang(yk[j])) for j in bfrom_i) + real(y[i, i]))
        else:
            return sum(model.vm[i] * model.vm[j] * abs(y[i, j]) *
                       cos(model.va[i] - model.va[j] - ang(y[i, j])) for j in allbut_i) - \
                   sum(model.vm[i] * model.vm[to[j]] * abs(yk[j]) * cos(model.va[i] -
                       model.va[to[j]] - ang(yk[j])) * (1 / model.tr[j] - 1) for j in bfrom_i) - \
                   sum(model.vm[i] * model.vm[fr[j]] * abs(yk[j]) * cos(model.va[i] -
                       model.va[fr[j]] - ang(yk[j])) * (1 / model.tr[j] - 1) for j in bto_i) + \
                   model.vm[i] ** 2 * (sum(abs(yk[j]) * (1 / model.tr[j]**2 - 1) *
                                           np.cos(- ang(yk[j])) for j in bfrom_i) + real(y[i, i])) == -Pd[i]

    model.const1 = Constraint(model.bus, rule=powerflowact)

    # Reactive power flow equalities
    def powerflowreact(model, i):
        bfrom_i = tp[find(fr[tp] == i)]  # branches from bus i with transformer
        bto_i = tp[find(to[tp] == i)]  # branches to bus i with transformer
        allbut_i = find(bus[:, BUS_I] != i)  # Set of other buses
        sh = sd[find(sd == i)]  # Detect shunt elements
        if i in gb:
            return model.Qg[i]-Qd[i] == \
                   sum(model.vm[i] * model.vm[j] * abs(y[i, j]) *
                       sin(model.va[i] - model.va[j] - ang(y[i, j])) for j in allbut_i) - \
                   sum(model.vm[i] * model.vm[to[j]] * abs(yk[j]) * sin(model.va[i] - model.va[to[j]] - ang(yk[j]))
                       * (1 / model.tr[j] - 1) for j in bfrom_i) - \
                   sum(model.vm[i] * model.vm[fr[j]] * abs(yk[j]) * sin(model.va[i] - model.va[fr[j]] - ang(yk[j]))
                       * (1 / model.tr[j] - 1) for j in bto_i) + \
                   model.vm[i] ** 2 * (sum(abs(yk[j]) * (1 / model.tr[j] ** 2 - 1) * np.sin(- ang(yk[j]))
                                           for j in bfrom_i) - imag(y[i, i]) - sum(model.Bs[j] for j in sh))
        else:
            return sum(model.vm[i] * model.vm[j] * abs(y[i, j]) *
                       sin(model.va[i] - model.va[j] - ang(y[i, j])) for j in allbut_i) - \
                   sum(model.vm[i] * model.vm[to[j]] * abs(yk[j]) * sin(model.va[i] -
                       model.va[to[j]] - ang(yk[j])) * (1 / model.tr[j] - 1) for j in bfrom_i) - \
                   sum(model.vm[i] * model.vm[fr[j]] * abs(yk[j]) * sin(model.va[i] -
                       model.va[fr[j]] - ang(yk[j])) * (1 / model.tr[j] - 1) for j in bto_i) + \
                   model.vm[i] ** 2 * (sum(abs(yk[j]) * (1 / model.tr[j] ** 2 - 1) * np.sin(- ang(yk[j]))
                                           for j in bfrom_i) - imag(y[i, i]) - sum(model.Bs[j] for j in sh)) == - Qd[i]

    model.const2 = Constraint(model.bus, rule=powerflowreact)

    # Active power from
    def pfrom(model, i):
        if i in tp:
            return model.Pf[i] == model.vm[fr[i]] ** 2 * abs(yft[i]) / (model.tr[i] ** 2) * np.cos(-ang(yft[i])) - \
                                  model.vm[fr[i]] * model.vm[to[i]] * abs(yk[i]) / model.tr[i] * \
                                  cos(model.va[fr[i]] - model.va[to[i]] - ang(yk[i]))
        else:
            return model.Pf[i] == model.vm[fr[i]] ** 2 * abs(yft[i]) / tr0[i] ** 2 * np.cos(-ang(yft[i])) - \
                                  model.vm[fr[i]] * model.vm[to[i]] * abs(yk[i]) / tr0[i] * \
                                  cos(model.va[fr[i]] - model.va[to[i]] - ang(yk[i]))

    model.const3 = Constraint(model.line, rule=pfrom)

    # Reactive power from
    def qfrom(model, i):
        if i in tp:
            return model.Qf[i] == model.vm[fr[i]] ** 2 * abs(yft[i]) / (model.tr[i] ** 2) * np.sin(-ang(yft[i])) - \
                                  model.vm[fr[i]] * model.vm[to[i]] * abs(yk[i]) / model.tr[i] * \
                                  sin(model.va[fr[i]] - model.va[to[i]] - ang(yk[i]))
        else:
            return model.Qf[i] == model.vm[fr[i]] ** 2 * abs(yft[i]) / tr0[i] ** 2 * np.sin(-ang(yft[i])) - \
                                  model.vm[fr[i]] * model.vm[to[i]] * abs(yk[i]) / tr0[i] * \
                                  sin(model.va[fr[i]] - model.va[to[i]] - ang(yk[i]))

    model.const4 = Constraint(model.line, rule=qfrom)

    # Active power to
    def pto(model, i):
        if i in tp:
            return model.Pt[i] == model.vm[to[i]] ** 2 * abs(yft[i]) * np.cos(-ang(yft[i])) - \
                                  model.vm[to[i]] * model.vm[fr[i]] * abs(yk[i]) / model.tr[i] * \
                                  cos(model.va[to[i]] - model.va[fr[i]] - ang(yk[i]))
        else:
            return model.Pt[i] == model.vm[to[i]] ** 2 * abs(yft[i]) * np.cos(-ang(yft[i])) - \
                                  model.vm[to[i]] * model.vm[fr[i]] * abs(yk[i]) / tr0[i] * \
                                  cos(model.va[to[i]] - model.va[fr[i]] - ang(yk[i]))

    model.const5 = Constraint(model.line, rule=pto)

    # Reactive power to
    def qto(model, i):
        if i in tp:
            return model.Qt[i] == model.vm[to[i]] ** 2 * abs(yft[i]) * np.sin(-ang(yft[i])) - \
                                  model.vm[to[i]] * model.vm[fr[i]] * abs(yk[i]) / model.tr[i] * \
                                  sin(model.va[to[i]] - model.va[fr[i]] - ang(yk[i]))
        else:
            return model.Qt[i] == model.vm[to[i]] ** 2 * abs(yft[i]) * np.sin(-ang(yft[i])) - \
                                  model.vm[to[i]] * model.vm[fr[i]] * abs(yk[i]) / tr0[i] * \
                                  sin(model.va[to[i]] - model.va[fr[i]] - ang(yk[i]))

    model.const6 = Constraint(model.line, rule=qto)

    # Slack bus phase angle
    model.const7 = Constraint(expr=model.va[sb[0]] == 0)

    # Transformation ratio equalities
    def trfunc(model, i):
        return model.tr[i] == 1 + dudtap * model.tap[i]

    model.const8 = Constraint(model.taps, rule=trfunc)

    # Shunt susceptance equality
    def shuntfunc(model, i):
        return model.Bs[i] == model.s[i] / stepmax * Bs0[i]

    model.const9 = Constraint(model.shunt, rule=shuntfunc)

    # Inequalities:
    # ----------------

    # Active power generator limits Pg_min <= Pg <= Pg_max
    def genplimits(model, i):
        return Pg_min[i] <= model.Pg[i] <= Pg_max[i]

    model.const10 = Constraint(model.gen, rule=genplimits)

    # Reactive power generator limits Qg_min <= Qg <= Qg_max
    def genqlimits(model, i):
        return Qg_min[i] <= model.Qg[i] <= Qg_max[i]

    model.const11 = Constraint(model.gen, rule=genqlimits)

    # Voltage constraints ( Vmin <= V <= Vmax )
    def vlimits(model, i):
        return Vmin[i] <= model.vm[i] <= Vmax[i]

    model.const12 = Constraint(model.bus, rule=vlimits)

    # Sfrom line limit
    def sfrommax(model, i):
        return model.Pf[i]**2 + model.Qf[i]**2 <= Smax[i]**2

    model.const13 = Constraint(model.line, rule=sfrommax)

    # Sto line limit
    def stomax(model, i):
        return model.Pt[i]**2 + model.Qt[i]**2 <= Smax[i]**2

    model.const14 = Constraint(model.line, rule=stomax)

    # Set objective function
    # ------------------------
    def obj_fun(model):
        return sum(gk[i] * ((model.vm[fr[i]] / model.tr[i])**2 + model.vm[to[i]]**2 -
                            2 / model.tr[i] * model.vm[fr[i]] * model.vm[to[i]] *
                            cos(model.va[fr[i]] - model.va[to[i]])) for i in tp) + \
               sum(gk[i] * ((model.vm[fr[i]] / tr0[i]) ** 2 + model.vm[to[i]] ** 2 -
                            2 / tr0[i] * model.vm[fr[i]] * model.vm[to[i]] *
                            cos(model.va[fr[i]] - model.va[to[i]])) for i in ntp)

    model.obj = Objective(rule=obj_fun, sense=minimize)

    mt = time.clock() - start_time  # Modeling time

    # Execute solve command with the selected solver
    # ------------------------------------------------
    start_time = time.clock()
    results = opt.solve(model, tee=True)
    et = time.clock() - start_time  # Elapsed time
    print(results)

    # Update the case info with the optimized variables and approximate the continuous variables to discrete values
    # ==============================================================================================================
    for i in range(nb):
        if i in sd:
            bus[i, BS] = round(model.s[i].value) * Bs0[i] * baseMVA
        bus[i, VM] = model.vm[i].value  # Bus voltage magnitudes
        bus[i, VA] = model.va[i].value * 180 / pi  # Bus voltage angles
    # Update transformation ratios
    for i in range(nl):
        if i in tp:
            branch[i, TAP] = 1 + dudtap * round(model.tap[i].value)
    # Update gen matrix variables
    for i in range(ng):
        gen[i, PG] = model.Pg[gb[i]].value * baseMVA
        gen[i, QG] = model.Qg[gb[i]].value * baseMVA
        gen[i, VG] = bus[gb[i], VM]
    # Convert to external (original) numbering and save case results
    ppc = int2ext(ppc)
    ppc['bus'][:, 1:] = bus[:, 1:]
    branch[:, 0:2] = ppc['branch'][:, 0:2]
    ppc['branch'] = branch
    ppc['gen'][:, 1:] = gen[:, 1:]

    # Execute a second optimization with only the discrete approximated values (requires solveropfnlp_2)
    sol = solveropfnlp_2(ppc)
    sol['mt'] = sol['mt'] + mt
    sol['et'] = sol['et'] + et
    sol['tap'] = zeros((tp.shape[0], 1))
    for i in range(tp.shape[0]):
        sol['tap'][i] = round(model.tap[tp[i]].value)
    sol['shunt'] = zeros((sd.shape[0], 1))
    for i in range(sd.shape[0]):
        sol['shunt'][i] = round(model.s[sd[i]].value)

    # ppc solved case is returned
    return sol
Пример #21
0
def run_sim(ppc, elements, dynopt=None, events=None, recorder=None):
    """
    Run a time-domain simulation
    
    Inputs:
        ppc         PYPOWER load flow case
        elements    Dictionary of dynamic model objects (machines, controllers, etc) with Object ID as key
        events      Events object
        recorder    Recorder object (empty)
    
    Outputs:
        recorder    Recorder object (with data)
    """

    #########
    # SETUP #
    #########

    # Get version information
    ver = pydyn_ver()
    print('PYPOWER-Dynamics ' + ver['Version'] + ', ' + ver['Date'])

    # Program options
    if dynopt:
        h = dynopt['h']
        t_sim = dynopt['t_sim']
        max_err = dynopt['max_err']
        max_iter = dynopt['max_iter']
        verbose = dynopt['verbose']
    else:
        # Default program options
        h = 0.01  # step length (s)
        t_sim = 5  # simulation time (s)
        max_err = 0.0001  # Maximum error in network iteration (voltage mismatches)
        max_iter = 25  # Maximum number of network iterations
        verbose = False

    if dynopt['sample_period']:
        sample_rate = max(int(dynopt['sample_period'] / h) - 1, 0)
    else:
        sample_rate = 0

    # Make lists of current injection sources (generators, external grids, etc) and controllers
    sources = []
    controllers = []
    for element in elements.values():
        if element.__module__ in [
                'pydyn.sym_order6a', 'pydyn.sym_order6b', 'pydyn.sym_order4',
                'pydyn.ext_grid', 'pydyn.vsc_average', 'pydyn.asym_1cage',
                'pydyn.asym_2cage'
        ]:
            sources.append(element)

        if element.__module__ == 'pydyn.controller':
            controllers.append(element)

    # Set up interfaces
    interfaces = init_interfaces(elements)
    interfaces0 = init_interfaces0(elements)

    # find events
    events_controllers = []

    # find blocks that create events in controllers
    for element_id in elements.keys():
        element = elements[element_id]
        if element.__module__ == 'pydyn.controller':
            for line in element.equations:
                if line[1] == 'EVENT':
                    new_event = [element_id, line[0], line[2]] + line[3:]
                    events_controllers.append(new_event)

    ##################
    # INITIALISATION #
    ##################
    print('Initialising models...')

    if not verbose:
        ppopt = ppoption(VERBOSE=0, OUT_ALL=0)
    else:
        ppopt = ppoption()
        #print('not verbose')

    # Run power flow and update bus voltages and angles in PYPOWER case object
    results, success = runpf(ppc, ppopt)
    ppc["bus"][:, VM] = results["bus"][:, VM]
    ppc["bus"][:, VA] = results["bus"][:, VA]

    # Build Ybus matrix
    ppc_int = ext2int(ppc)
    baseMVA, bus, branch = ppc_int["baseMVA"], ppc_int["bus"], ppc_int[
        "branch"]
    Ybus, Yf, Yt = makeYbus(baseMVA, bus, branch)

    # Build modified Ybus matrix
    try:
        Ybus = mod_Ybus(Ybus, elements, bus, ppc_int['gen'], baseMVA)
    except:
        bp()
        Ybus = mod_Ybus(Ybus, elements, bus, ppc_int['gen'], baseMVA)

    # Calculate initial voltage phasors
    v0 = bus[:, VM] * (np.cos(np.radians(bus[:, VA])) +
                       1j * np.sin(np.radians(bus[:, VA])))

    # Initialise sources from load flow
    for source in sources:
        if source.__module__ in ['pydyn.asym_1cage', 'pydyn.asym_2cage']:
            # Asynchronous machine
            source_bus = ppc_int['bus'][source.bus_no, 0].astype(np.int64)
            v_source = v0[source_bus]
            source.initialise(v_source, 0)
        else:
            # Generator or VSC
            source_bus = ppc_int['gen'][source.gen_no, 0].astype(np.int64)
            S_source = np.complex(results["gen"][source.gen_no, 1] / baseMVA,
                                  results["gen"][source.gen_no, 2] / baseMVA)
            v_source = v0[source_bus]
            source.initialise(v_source, S_source)

    # initialise bus
    elements['bus'] = bus_int(ppc)
    elements['sys_matrices'] = sys_matrices_int(ppc)
    #elements['branch'] = ppc['branch']

    # Do we need interfaces0?
    # Interface controllers and machines (for initialisation)
    #for intf in interfaces:
    for k in range(len(interfaces)):
        intf = interfaces[k]
        intf0 = interfaces0[k]
        int_type = intf[0]
        var_name = intf0[1]
        source_var = intf[1]
        source_id = intf[2]
        dest_var = intf[3]
        dest_id = intf[4]
        if int_type == 'OUTPUT':
            # If an output, interface in the reverse direction for initialisation
            #intf[2].signals[var_name] = intf[3].signals[var_name]
            #if (intf0[2] != source_id) or (var_name != source_var) or (var_name != dest_var):
            #    bp()
            elements[source_id].signals[source_var] = elements[
                dest_id].signals[dest_var]
        else:
            # Inputs are interfaced in normal direction during initialisation
            #intf[3].signals[var_name] = intf[2].signals[var_name]
            #if (intf0[3] != dest_id)  or (var_name != source_var) or (var_name != dest_var):
            #    bp()
            elements[dest_id].signals[dest_var] = elements[source_id].signals[
                source_var]

        #try:
        #    element_source.signals[ var_name_source ] = element_dest.signals[ var_name_dest ]
        #except:
        #    bp()

    # Initialise controllers
    for controller in controllers:
        controller.initialise()

    #############
    # MAIN LOOP #
    #############

    sample_age = 0

    if events == None:
        print('Warning: no events!')

    # Factorise Ybus matrix
    Ybus_inv = splu(Ybus)

    y1 = []
    v_prev = v0
    print('Simulating...')
    for t in range(int(t_sim / h) + 1):
        if np.mod(t, 1 / h) == 0 and verbose:
            print('t=' + str(t * h) + 's')

        # Interface controllers and machines
        #for intf in interfaces:
        for k in range(len(interfaces)):
            intf = interfaces[k]
            intf0 = interfaces0[k]

            var_name = intf0[1]
            source_var = intf[1]
            source_id = intf[2]
            dest_var = intf[3]
            dest_id = intf[4]
            #if var_name_dest not in element_dest.signals.keys():
            #bp()
            #element_dest.signals[ var_name_dest ] = element_source.signals[ var_name_source ]

            #if (intf0[2] != source_id) or (var_name != source_var) or (var_name != dest_var) or (intf0[3] != dest_id):
            #    bp()

            elements[dest_id].signals[dest_var] = elements[source_id].signals[
                source_var]
            #intf[3].signals[var_name] = intf[2].signals[var_name]

        # Solve differential equations
        for j in range(4):
            # Solve step of differential equations
            for element in elements.values():
                try:
                    element.solve_step(h, j)
                except:
                    bp()
                    element.solve_step(h, j)

            # Interface with network equations
            v_prev = solve_network(sources, v_prev, Ybus_inv, ppc_int,
                                   len(bus), max_err, max_iter)

        # check for events
        for event_c in events_controllers:
            new_event = None
            ctrl = event_c[0]
            ctrl_var = event_c[2]
            var_result = event_c[1]
            condition = elements[ctrl].signals[ctrl_var]
            if condition >= 1:
                #event_type = event_c[0]
                #node = event_c[1]
                new_event = [np.round(t * h, 5)] + event_c[3:]
                #print(new_event)
                try:
                    events.event_stack.append(new_event)
                    elements[ctrl].signals[var_result] = 1.0
                    #bp()
                except:
                    bp()
            else:
                elements[ctrl].signals[var_result] = 0.0

        if sample_age < sample_rate:
            sample_age += 1
        else:
            sample_age = 0
            if recorder != None:
                # Record signals or states
                recorder.record_variables(t * h, elements)

        if events != None:
            #if new_event != None:
            #    bp()
            # Check event stack
            ppc, refactorise = events.handle_events(np.round(t * h, 5),
                                                    elements, ppc, baseMVA)

            if refactorise == True:
                # Rebuild Ybus from new ppc_int
                ppc_int = ext2int(ppc)
                baseMVA, bus, branch = ppc_int["baseMVA"], ppc_int[
                    "bus"], ppc_int["branch"]
                Ybus, Yf, Yt = makeYbus(baseMVA, bus, branch)

                # Rebuild modified Ybus
                Ybus = mod_Ybus(Ybus, elements, bus, ppc_int['gen'], baseMVA)

                # Refactorise Ybus
                Ybus_inv = splu(Ybus)

                # Solve network equations
                v_prev = solve_network(sources, v_prev, Ybus_inv, ppc_int,
                                       len(bus), max_err, max_iter)

        # update the voltage in 'bus' matrix
        ppc['bus'][:, VM] = abs(v_prev)
        ppc['bus'][:, VA] = 2 * np.arctan(v_prev.imag /
                                          (abs(v_prev) + v_prev.real))

        # update the system matrices
        elements['bus'].update(ppc)
        elements['sys_matrices'].update(ppc)

        #bp()

    return recorder
Пример #22
0
def t_hessian(quiet=False):
    """Numerical tests of 2nd derivative code.

    @author: Ray Zimmerman (PSERC Cornell)
    """
    t_begin(44, quiet)

    ## run powerflow to get solved case
    ppopt = ppoption(VERBOSE=0, OUT_ALL=0)
    results, _ = runpf(case30(), ppopt)
    baseMVA, bus, gen, branch = \
        results['baseMVA'], results['bus'], results['gen'], results['branch']

    ## switch to internal bus numbering and build admittance matrices
    _, bus, gen, branch = ext2int1(bus, gen, branch)
    Ybus, Yf, Yt = makeYbus(baseMVA, bus, branch)
    Vm = bus[:, VM]
    Va = bus[:, VA] * (pi / 180)
    V = Vm * exp(1j * Va)
    f = branch[:, F_BUS]       ## list of "from" buses
    t = branch[:, T_BUS]       ## list of "to" buses
    nl = len(f)
    nb = len(V)
    Cf = sparse((ones(nl), (range(nl), f)), (nl, nb))  ## connection matrix for line & from buses
    Ct = sparse((ones(nl), (range(nl), t)), (nl, nb))  ## connection matrix for line & to buses
    pert = 1e-8

    ##-----  check d2Sbus_dV2 code  -----
    t = ' - d2Sbus_dV2 (complex power injections)'
    lam = 10 * random.rand(nb)
    num_Haa = zeros((nb, nb), complex)
    num_Hav = zeros((nb, nb), complex)
    num_Hva = zeros((nb, nb), complex)
    num_Hvv = zeros((nb, nb), complex)
    dSbus_dVm, dSbus_dVa = dSbus_dV(Ybus, V)
    Haa, Hav, Hva, Hvv = d2Sbus_dV2(Ybus, V, lam)
    for i in range(nb):
        Vap = V.copy()
        Vap[i] = Vm[i] * exp(1j * (Va[i] + pert))
        dSbus_dVm_ap, dSbus_dVa_ap = dSbus_dV(Ybus, Vap)
        num_Haa[:, i] = (dSbus_dVa_ap - dSbus_dVa).T * lam / pert
        num_Hva[:, i] = (dSbus_dVm_ap - dSbus_dVm).T * lam / pert

        Vmp = V.copy()
        Vmp[i] = (Vm[i] + pert) * exp(1j * Va[i])
        dSbus_dVm_mp, dSbus_dVa_mp = dSbus_dV(Ybus, Vmp)
        num_Hav[:, i] = (dSbus_dVa_mp - dSbus_dVa).T * lam / pert
        num_Hvv[:, i] = (dSbus_dVm_mp - dSbus_dVm).T * lam / pert

    t_is(Haa.todense(), num_Haa, 4, ['Haa', t])
    t_is(Hav.todense(), num_Hav, 4, ['Hav', t])
    t_is(Hva.todense(), num_Hva, 4, ['Hva', t])
    t_is(Hvv.todense(), num_Hvv, 4, ['Hvv', t])

    ##-----  check d2Sbr_dV2 code  -----
    t = ' - d2Sbr_dV2 (complex power flows)'
    lam = 10 * random.rand(nl)
    # lam = [1 zeros(nl-1, 1)]
    num_Gfaa = zeros((nb, nb), complex)
    num_Gfav = zeros((nb, nb), complex)
    num_Gfva = zeros((nb, nb), complex)
    num_Gfvv = zeros((nb, nb), complex)
    num_Gtaa = zeros((nb, nb), complex)
    num_Gtav = zeros((nb, nb), complex)
    num_Gtva = zeros((nb, nb), complex)
    num_Gtvv = zeros((nb, nb), complex)
    dSf_dVa, dSf_dVm, dSt_dVa, dSt_dVm, _, _ = dSbr_dV(branch, Yf, Yt, V)
    Gfaa, Gfav, Gfva, Gfvv = d2Sbr_dV2(Cf, Yf, V, lam)
    Gtaa, Gtav, Gtva, Gtvv = d2Sbr_dV2(Ct, Yt, V, lam)
    for i in range(nb):
        Vap = V.copy()
        Vap[i] = Vm[i] * exp(1j * (Va[i] + pert))
        dSf_dVa_ap, dSf_dVm_ap, dSt_dVa_ap, dSt_dVm_ap, Sf_ap, St_ap = \
            dSbr_dV(branch, Yf, Yt, Vap)
        num_Gfaa[:, i] = (dSf_dVa_ap - dSf_dVa).T * lam / pert
        num_Gfva[:, i] = (dSf_dVm_ap - dSf_dVm).T * lam / pert
        num_Gtaa[:, i] = (dSt_dVa_ap - dSt_dVa).T * lam / pert
        num_Gtva[:, i] = (dSt_dVm_ap - dSt_dVm).T * lam / pert

        Vmp = V.copy()
        Vmp[i] = (Vm[i] + pert) * exp(1j * Va[i])
        dSf_dVa_mp, dSf_dVm_mp, dSt_dVa_mp, dSt_dVm_mp, Sf_mp, St_mp = \
            dSbr_dV(branch, Yf, Yt, Vmp)
        num_Gfav[:, i] = (dSf_dVa_mp - dSf_dVa).T * lam / pert
        num_Gfvv[:, i] = (dSf_dVm_mp - dSf_dVm).T * lam / pert
        num_Gtav[:, i] = (dSt_dVa_mp - dSt_dVa).T * lam / pert
        num_Gtvv[:, i] = (dSt_dVm_mp - dSt_dVm).T * lam / pert

    t_is(Gfaa.todense(), num_Gfaa, 4, ['Gfaa', t])
    t_is(Gfav.todense(), num_Gfav, 4, ['Gfav', t])
    t_is(Gfva.todense(), num_Gfva, 4, ['Gfva', t])
    t_is(Gfvv.todense(), num_Gfvv, 4, ['Gfvv', t])

    t_is(Gtaa.todense(), num_Gtaa, 4, ['Gtaa', t])
    t_is(Gtav.todense(), num_Gtav, 4, ['Gtav', t])
    t_is(Gtva.todense(), num_Gtva, 4, ['Gtva', t])
    t_is(Gtvv.todense(), num_Gtvv, 4, ['Gtvv', t])

    ##-----  check d2Ibr_dV2 code  -----
    t = ' - d2Ibr_dV2 (complex currents)'
    lam = 10 * random.rand(nl)
    # lam = [1, zeros(nl-1)]
    num_Gfaa = zeros((nb, nb), complex)
    num_Gfav = zeros((nb, nb), complex)
    num_Gfva = zeros((nb, nb), complex)
    num_Gfvv = zeros((nb, nb), complex)
    num_Gtaa = zeros((nb, nb), complex)
    num_Gtav = zeros((nb, nb), complex)
    num_Gtva = zeros((nb, nb), complex)
    num_Gtvv = zeros((nb, nb), complex)
    dIf_dVa, dIf_dVm, dIt_dVa, dIt_dVm, _, _ = dIbr_dV(branch, Yf, Yt, V)
    Gfaa, Gfav, Gfva, Gfvv = d2Ibr_dV2(Yf, V, lam)

    Gtaa, Gtav, Gtva, Gtvv = d2Ibr_dV2(Yt, V, lam)
    for i in range(nb):
        Vap = V.copy()
        Vap[i] = Vm[i] * exp(1j * (Va[i] + pert))
        dIf_dVa_ap, dIf_dVm_ap, dIt_dVa_ap, dIt_dVm_ap, If_ap, It_ap = \
            dIbr_dV(branch, Yf, Yt, Vap)
        num_Gfaa[:, i] = (dIf_dVa_ap - dIf_dVa).T * lam / pert
        num_Gfva[:, i] = (dIf_dVm_ap - dIf_dVm).T * lam / pert
        num_Gtaa[:, i] = (dIt_dVa_ap - dIt_dVa).T * lam / pert
        num_Gtva[:, i] = (dIt_dVm_ap - dIt_dVm).T * lam / pert

        Vmp = V.copy()
        Vmp[i] = (Vm[i] + pert) * exp(1j * Va[i])
        dIf_dVa_mp, dIf_dVm_mp, dIt_dVa_mp, dIt_dVm_mp, If_mp, It_mp = \
            dIbr_dV(branch, Yf, Yt, Vmp)
        num_Gfav[:, i] = (dIf_dVa_mp - dIf_dVa).T * lam / pert
        num_Gfvv[:, i] = (dIf_dVm_mp - dIf_dVm).T * lam / pert
        num_Gtav[:, i] = (dIt_dVa_mp - dIt_dVa).T * lam / pert
        num_Gtvv[:, i] = (dIt_dVm_mp - dIt_dVm).T * lam / pert

    t_is(Gfaa.todense(), num_Gfaa, 4, ['Gfaa', t])
    t_is(Gfav.todense(), num_Gfav, 4, ['Gfav', t])
    t_is(Gfva.todense(), num_Gfva, 4, ['Gfva', t])
    t_is(Gfvv.todense(), num_Gfvv, 4, ['Gfvv', t])

    t_is(Gtaa.todense(), num_Gtaa, 4, ['Gtaa', t])
    t_is(Gtav.todense(), num_Gtav, 4, ['Gtav', t])
    t_is(Gtva.todense(), num_Gtva, 4, ['Gtva', t])
    t_is(Gtvv.todense(), num_Gtvv, 4, ['Gtvv', t])

    ##-----  check d2ASbr_dV2 code  -----
    t = ' - d2ASbr_dV2 (squared apparent power flows)'
    lam = 10 * random.rand(nl)
    # lam = [1 zeros(nl-1, 1)]
    num_Gfaa = zeros((nb, nb), complex)
    num_Gfav = zeros((nb, nb), complex)
    num_Gfva = zeros((nb, nb), complex)
    num_Gfvv = zeros((nb, nb), complex)
    num_Gtaa = zeros((nb, nb), complex)
    num_Gtav = zeros((nb, nb), complex)
    num_Gtva = zeros((nb, nb), complex)
    num_Gtvv = zeros((nb, nb), complex)
    dSf_dVa, dSf_dVm, dSt_dVa, dSt_dVm, Sf, St = dSbr_dV(branch, Yf, Yt, V)
    dAf_dVa, dAf_dVm, dAt_dVa, dAt_dVm = \
                            dAbr_dV(dSf_dVa, dSf_dVm, dSt_dVa, dSt_dVm, Sf, St)
    Gfaa, Gfav, Gfva, Gfvv = d2ASbr_dV2(dSf_dVa, dSf_dVm, Sf, Cf, Yf, V, lam)
    Gtaa, Gtav, Gtva, Gtvv = d2ASbr_dV2(dSt_dVa, dSt_dVm, St, Ct, Yt, V, lam)
    for i in range(nb):
        Vap = V.copy()
        Vap[i] = Vm[i] * exp(1j * (Va[i] + pert))
        dSf_dVa_ap, dSf_dVm_ap, dSt_dVa_ap, dSt_dVm_ap, Sf_ap, St_ap = \
            dSbr_dV(branch, Yf, Yt, Vap)
        dAf_dVa_ap, dAf_dVm_ap, dAt_dVa_ap, dAt_dVm_ap = \
            dAbr_dV(dSf_dVa_ap, dSf_dVm_ap, dSt_dVa_ap, dSt_dVm_ap, Sf_ap, St_ap)
        num_Gfaa[:, i] = (dAf_dVa_ap - dAf_dVa).T * lam / pert
        num_Gfva[:, i] = (dAf_dVm_ap - dAf_dVm).T * lam / pert
        num_Gtaa[:, i] = (dAt_dVa_ap - dAt_dVa).T * lam / pert
        num_Gtva[:, i] = (dAt_dVm_ap - dAt_dVm).T * lam / pert

        Vmp = V.copy()
        Vmp[i] = (Vm[i] + pert) * exp(1j * Va[i])
        dSf_dVa_mp, dSf_dVm_mp, dSt_dVa_mp, dSt_dVm_mp, Sf_mp, St_mp = \
            dSbr_dV(branch, Yf, Yt, Vmp)
        dAf_dVa_mp, dAf_dVm_mp, dAt_dVa_mp, dAt_dVm_mp = \
            dAbr_dV(dSf_dVa_mp, dSf_dVm_mp, dSt_dVa_mp, dSt_dVm_mp, Sf_mp, St_mp)
        num_Gfav[:, i] = (dAf_dVa_mp - dAf_dVa).T * lam / pert
        num_Gfvv[:, i] = (dAf_dVm_mp - dAf_dVm).T * lam / pert
        num_Gtav[:, i] = (dAt_dVa_mp - dAt_dVa).T * lam / pert
        num_Gtvv[:, i] = (dAt_dVm_mp - dAt_dVm).T * lam / pert

    t_is(Gfaa.todense(), num_Gfaa, 2, ['Gfaa', t])
    t_is(Gfav.todense(), num_Gfav, 2, ['Gfav', t])
    t_is(Gfva.todense(), num_Gfva, 2, ['Gfva', t])
    t_is(Gfvv.todense(), num_Gfvv, 2, ['Gfvv', t])

    t_is(Gtaa.todense(), num_Gtaa, 2, ['Gtaa', t])
    t_is(Gtav.todense(), num_Gtav, 2, ['Gtav', t])
    t_is(Gtva.todense(), num_Gtva, 2, ['Gtva', t])
    t_is(Gtvv.todense(), num_Gtvv, 2, ['Gtvv', t])

    ##-----  check d2ASbr_dV2 code  -----
    t = ' - d2ASbr_dV2 (squared real power flows)'
    lam = 10 * random.rand(nl)
    # lam = [1 zeros(nl-1, 1)]
    num_Gfaa = zeros((nb, nb), complex)
    num_Gfav = zeros((nb, nb), complex)
    num_Gfva = zeros((nb, nb), complex)
    num_Gfvv = zeros((nb, nb), complex)
    num_Gtaa = zeros((nb, nb), complex)
    num_Gtav = zeros((nb, nb), complex)
    num_Gtva = zeros((nb, nb), complex)
    num_Gtvv = zeros((nb, nb), complex)
    dSf_dVa, dSf_dVm, dSt_dVa, dSt_dVm, Sf, St = dSbr_dV(branch, Yf, Yt, V)
    dAf_dVa, dAf_dVm, dAt_dVa, dAt_dVm = \
           dAbr_dV(dSf_dVa.real, dSf_dVm.real, dSt_dVa.real, dSt_dVm.real, Sf.real, St.real)
    Gfaa, Gfav, Gfva, Gfvv = d2ASbr_dV2(dSf_dVa.real, dSf_dVm.real, Sf.real, Cf, Yf, V, lam)
    Gtaa, Gtav, Gtva, Gtvv = d2ASbr_dV2(dSt_dVa.real, dSt_dVm.real, St.real, Ct, Yt, V, lam)
    for i in range(nb):
        Vap = V.copy()
        Vap[i] = Vm[i] * exp(1j * (Va[i] + pert))
        dSf_dVa_ap, dSf_dVm_ap, dSt_dVa_ap, dSt_dVm_ap, Sf_ap, St_ap = \
            dSbr_dV(branch, Yf, Yt, Vap)
        dAf_dVa_ap, dAf_dVm_ap, dAt_dVa_ap, dAt_dVm_ap = \
            dAbr_dV(dSf_dVa_ap.real, dSf_dVm_ap.real, dSt_dVa_ap.real, dSt_dVm_ap.real, Sf_ap.real, St_ap.real)
        num_Gfaa[:, i] = (dAf_dVa_ap - dAf_dVa).T * lam / pert
        num_Gfva[:, i] = (dAf_dVm_ap - dAf_dVm).T * lam / pert
        num_Gtaa[:, i] = (dAt_dVa_ap - dAt_dVa).T * lam / pert
        num_Gtva[:, i] = (dAt_dVm_ap - dAt_dVm).T * lam / pert

        Vmp = V.copy()
        Vmp[i] = (Vm[i] + pert) * exp(1j * Va[i])
        dSf_dVa_mp, dSf_dVm_mp, dSt_dVa_mp, dSt_dVm_mp, Sf_mp, St_mp = \
            dSbr_dV(branch, Yf, Yt, Vmp)
        dAf_dVa_mp, dAf_dVm_mp, dAt_dVa_mp, dAt_dVm_mp = \
            dAbr_dV(dSf_dVa_mp.real, dSf_dVm_mp.real, dSt_dVa_mp.real, dSt_dVm_mp.real, Sf_mp.real, St_mp.real)
        num_Gfav[:, i] = (dAf_dVa_mp - dAf_dVa).T * lam / pert
        num_Gfvv[:, i] = (dAf_dVm_mp - dAf_dVm).T * lam / pert
        num_Gtav[:, i] = (dAt_dVa_mp - dAt_dVa).T * lam / pert
        num_Gtvv[:, i] = (dAt_dVm_mp - dAt_dVm).T * lam / pert

    t_is(Gfaa.todense(), num_Gfaa, 2, ['Gfaa', t])
    t_is(Gfav.todense(), num_Gfav, 2, ['Gfav', t])
    t_is(Gfva.todense(), num_Gfva, 2, ['Gfva', t])
    t_is(Gfvv.todense(), num_Gfvv, 2, ['Gfvv', t])

    t_is(Gtaa.todense(), num_Gtaa, 2, ['Gtaa', t])
    t_is(Gtav.todense(), num_Gtav, 2, ['Gtav', t])
    t_is(Gtva.todense(), num_Gtva, 2, ['Gtva', t])
    t_is(Gtvv.todense(), num_Gtvv, 2, ['Gtvv', t])

    ##-----  check d2AIbr_dV2 code  -----
    t = ' - d2AIbr_dV2 (squared current magnitudes)'
    lam = 10 * random.rand(nl)
    # lam = [1 zeros(nl-1, 1)]
    num_Gfaa = zeros((nb, nb), complex)
    num_Gfav = zeros((nb, nb), complex)
    num_Gfva = zeros((nb, nb), complex)
    num_Gfvv = zeros((nb, nb), complex)
    num_Gtaa = zeros((nb, nb), complex)
    num_Gtav = zeros((nb, nb), complex)
    num_Gtva = zeros((nb, nb), complex)
    num_Gtvv = zeros((nb, nb), complex)
    dIf_dVa, dIf_dVm, dIt_dVa, dIt_dVm, If, It = dIbr_dV(branch, Yf, Yt, V)
    dAf_dVa, dAf_dVm, dAt_dVa, dAt_dVm = \
                            dAbr_dV(dIf_dVa, dIf_dVm, dIt_dVa, dIt_dVm, If, It)
    Gfaa, Gfav, Gfva, Gfvv = d2AIbr_dV2(dIf_dVa, dIf_dVm, If, Yf, V, lam)
    Gtaa, Gtav, Gtva, Gtvv = d2AIbr_dV2(dIt_dVa, dIt_dVm, It, Yt, V, lam)
    for i in range(nb):
        Vap = V.copy()
        Vap[i] = Vm[i] * exp(1j * (Va[i] + pert))
        dIf_dVa_ap, dIf_dVm_ap, dIt_dVa_ap, dIt_dVm_ap, If_ap, It_ap = \
            dIbr_dV(branch, Yf, Yt, Vap)
        dAf_dVa_ap, dAf_dVm_ap, dAt_dVa_ap, dAt_dVm_ap = \
            dAbr_dV(dIf_dVa_ap, dIf_dVm_ap, dIt_dVa_ap, dIt_dVm_ap, If_ap, It_ap)
        num_Gfaa[:, i] = (dAf_dVa_ap - dAf_dVa).T * lam / pert
        num_Gfva[:, i] = (dAf_dVm_ap - dAf_dVm).T * lam / pert
        num_Gtaa[:, i] = (dAt_dVa_ap - dAt_dVa).T * lam / pert
        num_Gtva[:, i] = (dAt_dVm_ap - dAt_dVm).T * lam / pert

        Vmp = V.copy()
        Vmp[i] = (Vm[i] + pert) * exp(1j * Va[i])
        dIf_dVa_mp, dIf_dVm_mp, dIt_dVa_mp, dIt_dVm_mp, If_mp, It_mp = \
            dIbr_dV(branch, Yf, Yt, Vmp)
        dAf_dVa_mp, dAf_dVm_mp, dAt_dVa_mp, dAt_dVm_mp = \
            dAbr_dV(dIf_dVa_mp, dIf_dVm_mp, dIt_dVa_mp, dIt_dVm_mp, If_mp, It_mp)
        num_Gfav[:, i] = (dAf_dVa_mp - dAf_dVa).T * lam / pert
        num_Gfvv[:, i] = (dAf_dVm_mp - dAf_dVm).T * lam / pert
        num_Gtav[:, i] = (dAt_dVa_mp - dAt_dVa).T * lam / pert
        num_Gtvv[:, i] = (dAt_dVm_mp - dAt_dVm).T * lam / pert

    t_is(Gfaa.todense(), num_Gfaa, 3, ['Gfaa', t])
    t_is(Gfav.todense(), num_Gfav, 3, ['Gfav', t])
    t_is(Gfva.todense(), num_Gfva, 3, ['Gfva', t])
    t_is(Gfvv.todense(), num_Gfvv, 2, ['Gfvv', t])

    t_is(Gtaa.todense(), num_Gtaa, 3, ['Gtaa', t])
    t_is(Gtav.todense(), num_Gtav, 3, ['Gtav', t])
    t_is(Gtva.todense(), num_Gtva, 3, ['Gtva', t])
    t_is(Gtvv.todense(), num_Gtvv, 2, ['Gtvv', t])

    t_end()
Пример #23
0
gen_active = find(gen[:, GEN_STATUS] == 1)
genBus = gen[gen_active, GEN_BUS]

## convert to p.u.
bus[:, [PD, QD]] /= baseMVA
gen[:, [PMAX, PMIN, QMAX, QMIN]] /= baseMVA
gencost[:, COST] *= baseMVA**2
gencost[:, COST + 1] *= baseMVA

## problem dimensions
nb = bus.shape[0]  # number of buses
nl = branch.shape[0]  # number of branches
ng = len(gen_active)  # number of piece-wise linear costs

## build admittance matrices
Ybus, Yf, Yt = makeYbus(baseMVA, bus, branch)

##---------- partition the system ---------------------------------------------
na = 3  # number of regions
# the input format for partition should be a nb*1 matlab matrix with elements denoting area number
partitionName = 'OP14_2region.mat'
# partitionName = 'OP118_w05_40region_sizediff.mat'
# partitionName = 'OP118_rd_8region_scale100000.mat'
partitionDir = '/Users/junyaoguo/Dropbox/ADMM/Partition'
partitionFile = join(partitionDir, partitionName)
partition = loadmat(partitionFile)
# partitionnumber = 0
op = partition['OP14'][0]
op[10:] = 3
# op[:] = 1
# op = partition['C'][partitionnumber]
Пример #24
0
def ipoptopf_solver(om, ppopt):
    """Solves AC optimal power flow using IPOPT.

    Inputs are an OPF model object and a PYPOWER options vector.

    Outputs are a C{results} dict, C{success} flag and C{raw} output dict.

    C{results} is a PYPOWER case dict (ppc) with the usual C{baseMVA}, C{bus}
    C{branch}, C{gen}, C{gencost} fields, along with the following additional
    fields:
        - C{order}      see 'help ext2int' for details of this field
        - C{x}          final value of optimization variables (internal order)
        - C{f}          final objective function value
        - C{mu}         shadow prices on ...
            - C{var}
                - C{l}  lower bounds on variables
                - C{u}  upper bounds on variables
            - C{nln}
                - C{l}  lower bounds on nonlinear constraints
                - C{u}  upper bounds on nonlinear constraints
            - C{lin}
                - C{l}  lower bounds on linear constraints
                - C{u}  upper bounds on linear constraints

    C{success} is C{True} if solver converged successfully, C{False} otherwise

    C{raw} is a raw output dict in form returned by MINOS
        - C{xr}     final value of optimization variables
        - C{pimul}  constraint multipliers
        - C{info}   solver specific termination code
        - C{output} solver specific output information

    @see: L{opf}, L{pips}

    @author: Ray Zimmerman (PSERC Cornell)
    @author: Carlos E. Murillo-Sanchez (PSERC Cornell & Universidad
    Autonoma de Manizales)
    @author: Richard Lincoln
    """
    import pyipopt

    ## unpack data
    ppc = om.get_ppc()
    baseMVA, bus, gen, branch, gencost = \
        ppc['baseMVA'], ppc['bus'], ppc['gen'], ppc['branch'], ppc['gencost']
    vv, _, nn, _ = om.get_idx()

    ## problem dimensions
    nb = shape(bus)[0]  ## number of buses
    ng = shape(gen)[0]  ## number of gens
    nl = shape(branch)[0]  ## number of branches
    ny = om.getN('var', 'y')  ## number of piece-wise linear costs

    ## linear constraints
    A, l, u = om.linear_constraints()

    ## bounds on optimization vars
    _, xmin, xmax = om.getv()

    ## build admittance matrices
    Ybus, Yf, Yt = makeYbus(baseMVA, bus, branch)

    ## try to select an interior initial point
    ll = xmin.copy()
    uu = xmax.copy()
    ll[xmin == -Inf] = -2e19  ## replace Inf with numerical proxies
    uu[xmax == Inf] = 2e19
    x0 = (ll + uu) / 2
    Varefs = bus[bus[:, BUS_TYPE] == REF, VA] * (pi / 180)
    x0[vv['i1']['Va']:vv['iN']['Va']] = Varefs[
        0]  ## angles set to first reference angle
    if ny > 0:
        ipwl = find(gencost[:, MODEL] == PW_LINEAR)
        #        PQ = r_[gen[:, PMAX], gen[:, QMAX]]
        #        c = totcost(gencost[ipwl, :], PQ[ipwl])
        ## largest y-value in CCV data
        c = gencost.flatten('F')[sub2ind(shape(gencost), ipwl,
                                         NCOST + 2 * gencost[ipwl, NCOST])]
        x0[vv['i1']['y']:vv['iN']['y']] = max(c) + 0.1 * abs(max(c))


#        x0[vv['i1']['y']:vv['iN']['y']) = c + 0.1 * abs(c)

## find branches with flow limits
    il = find((branch[:, RATE_A] != 0) & (branch[:, RATE_A] < 1e10))
    nl2 = len(il)  ## number of constrained lines

    ##-----  run opf  -----
    ## build Jacobian and Hessian structure
    if A is not None and issparse(A):
        nA = A.shape[0]  ## number of original linear constraints
    else:
        nA = 0
    nx = len(x0)
    f = branch[:, F_BUS]  ## list of "from" buses
    t = branch[:, T_BUS]  ## list of "to" buses
    Cf = sparse((ones(nl), (arange(nl), f)),
                (nl, nb))  ## connection matrix for line & from buses
    Ct = sparse((ones(nl), (arange(nl), t)),
                (nl, nb))  ## connection matrix for line & to buses
    Cl = Cf + Ct
    Cb = Cl.T * Cl + speye(nb, nb)
    Cl2 = Cl[il, :]
    Cg = sparse((ones(ng), (gen[:, GEN_BUS], arange(ng))), (nb, ng))
    nz = nx - 2 * (nb + ng)
    nxtra = nx - 2 * nb
    if nz > 0:
        Js = vstack([
            hstack([Cb, Cb, Cg, sparse(
                (nb, ng)), sparse((nb, nz))]),
            hstack([Cb, Cb, sparse(
                (nb, ng)), Cg, sparse((nb, nz))]),
            hstack([Cl2, Cl2,
                    sparse((nl2, 2 * ng)),
                    sparse((nl2, nz))]),
            hstack([Cl2, Cl2,
                    sparse((nl2, 2 * ng)),
                    sparse((nl2, nz))])
        ], 'coo')
    else:
        Js = vstack([
            hstack([Cb, Cb, Cg, sparse((nb, ng))]),
            hstack([
                Cb,
                Cb,
                sparse((nb, ng)),
                Cg,
            ]),
            hstack([
                Cl2,
                Cl2,
                sparse((nl2, 2 * ng)),
            ]),
            hstack([
                Cl2,
                Cl2,
                sparse((nl2, 2 * ng)),
            ])
        ], 'coo')

    if A is not None and issparse(A):
        Js = vstack([Js, A], 'coo')

    f, _, d2f = opf_costfcn(x0, om, True)
    Hs = tril(d2f + vstack([
        hstack([Cb, Cb, sparse((nb, nxtra))]),
        hstack([Cb, Cb, sparse((nb, nxtra))]),
        sparse((nxtra, nx))
    ]),
              format='coo')

    ## set options struct for IPOPT
    #    options = {}
    #    options['ipopt'] = ipopt_options([], ppopt)

    ## extra data to pass to functions
    userdata = {
        'om': om,
        'Ybus': Ybus,
        'Yf': Yf[il, :],
        'Yt': Yt[il, :],
        'ppopt': ppopt,
        'il': il,
        'A': A,
        'nA': nA,
        'neqnln': 2 * nb,
        'niqnln': 2 * nl2,
        'Js': Js,
        'Hs': Hs
    }

    ## check Jacobian and Hessian structure
    #xr                  = rand(x0.shape)
    #lmbda               = rand( 2 * nb + 2 * nl2)
    #Js1 = eval_jac_g(x, flag, userdata) #(xr, options.auxdata)
    #Hs1  = eval_h(xr, 1, lmbda, userdata)
    #i1, j1, s = find(Js)
    #i2, j2, s = find(Js1)
    #if (len(i1) != len(i2)) | (norm(i1 - i2) != 0) | (norm(j1 - j2) != 0):
    #    raise ValueError, 'something''s wrong with the Jacobian structure'
    #
    #i1, j1, s = find(Hs)
    #i2, j2, s = find(Hs1)
    #if (len(i1) != len(i2)) | (norm(i1 - i2) != 0) | (norm(j1 - j2) != 0):
    #    raise ValueError, 'something''s wrong with the Hessian structure'

    ## define variable and constraint bounds
    # n is the number of variables
    n = x0.shape[0]
    # xl is the lower bound of x as bounded constraints
    xl = xmin
    # xu is the upper bound of x as bounded constraints
    xu = xmax

    neqnln = 2 * nb
    niqnln = 2 * nl2

    # number of constraints
    m = neqnln + niqnln + nA
    # lower bound of constraint
    gl = r_[zeros(neqnln), -Inf * ones(niqnln), l]
    # upper bound of constraints
    gu = r_[zeros(neqnln), zeros(niqnln), u]

    # number of nonzeros in Jacobi matrix
    nnzj = Js.nnz
    # number of non-zeros in Hessian matrix, you can set it to 0
    nnzh = Hs.nnz

    eval_hessian = True
    if eval_hessian:
        hessian = lambda x, lagrange, obj_factor, flag, user_data=None: \
                eval_h(x, lagrange, obj_factor, flag, userdata)

        nlp = pyipopt.create(n, xl, xu, m, gl, gu, nnzj, nnzh, eval_f,
                             eval_grad_f, eval_g, eval_jac_g, hessian)
    else:
        nnzh = 0
        nlp = pyipopt.create(n, xl, xu, m, gl, gu, nnzj, nnzh, eval_f,
                             eval_grad_f, eval_g, eval_jac_g)

    nlp.int_option('print_level', 5)
    nlp.num_option('tol', 1.0000e-12)
    nlp.int_option('max_iter', 250)
    nlp.num_option('dual_inf_tol', 0.10000)
    nlp.num_option('constr_viol_tol', 1.0000e-06)
    nlp.num_option('compl_inf_tol', 1.0000e-05)
    nlp.num_option('acceptable_tol', 1.0000e-08)
    nlp.num_option('acceptable_constr_viol_tol', 1.0000e-04)
    nlp.num_option('acceptable_compl_inf_tol', 0.0010000)
    nlp.str_option('mu_strategy', 'adaptive')

    iter = 0

    def intermediate_callback(algmod,
                              iter_count,
                              obj_value,
                              inf_pr,
                              inf_du,
                              mu,
                              d_norm,
                              regularization_size,
                              alpha_du,
                              alpha_pr,
                              ls_trials,
                              user_data=None):
        iter = iter_count
        return True

    nlp.set_intermediate_callback(intermediate_callback)

    ## run the optimization
    # returns final solution x, upper and lower bound for multiplier, final
    # objective function obj and the return status of ipopt
    x, zl, zu, obj, status, zg = nlp.solve(x0, m, userdata)

    info = {
        'x': x,
        'zl': zl,
        'zu': zu,
        'obj': obj,
        'status': status,
        'lmbda': zg
    }

    nlp.close()

    success = (status == 0) | (status == 1)

    output = {'iterations': iter}

    f, _ = opf_costfcn(x, om)

    ## update solution data
    Va = x[vv['i1']['Va']:vv['iN']['Va']]
    Vm = x[vv['i1']['Vm']:vv['iN']['Vm']]
    Pg = x[vv['i1']['Pg']:vv['iN']['Pg']]
    Qg = x[vv['i1']['Qg']:vv['iN']['Qg']]
    V = Vm * exp(1j * Va)

    ##-----  calculate return values  -----
    ## update voltages & generator outputs
    bus[:, VA] = Va * 180 / pi
    bus[:, VM] = Vm
    gen[:, PG] = Pg * baseMVA
    gen[:, QG] = Qg * baseMVA
    gen[:, VG] = Vm[gen[:, GEN_BUS].astype(int)]

    ## compute branch flows
    f_br = branch[:, F_BUS].astype(int)
    t_br = branch[:, T_BUS].astype(int)
    Sf = V[f_br] * conj(Yf * V)  ## cplx pwr at "from" bus, p.u.
    St = V[t_br] * conj(Yt * V)  ## cplx pwr at "to" bus, p.u.
    branch[:, PF] = Sf.real * baseMVA
    branch[:, QF] = Sf.imag * baseMVA
    branch[:, PT] = St.real * baseMVA
    branch[:, QT] = St.imag * baseMVA

    ## line constraint is actually on square of limit
    ## so we must fix multipliers
    muSf = zeros(nl)
    muSt = zeros(nl)
    if len(il) > 0:
        muSf[il] = 2 * info['lmbda'][2 * nb +
                                     arange(nl2)] * branch[il,
                                                           RATE_A] / baseMVA
        muSt[il] = 2 * info['lmbda'][2 * nb + nl2 +
                                     arange(nl2)] * branch[il,
                                                           RATE_A] / baseMVA

    ## update Lagrange multipliers
    bus[:, MU_VMAX] = info['zu'][vv['i1']['Vm']:vv['iN']['Vm']]
    bus[:, MU_VMIN] = info['zl'][vv['i1']['Vm']:vv['iN']['Vm']]
    gen[:, MU_PMAX] = info['zu'][vv['i1']['Pg']:vv['iN']['Pg']] / baseMVA
    gen[:, MU_PMIN] = info['zl'][vv['i1']['Pg']:vv['iN']['Pg']] / baseMVA
    gen[:, MU_QMAX] = info['zu'][vv['i1']['Qg']:vv['iN']['Qg']] / baseMVA
    gen[:, MU_QMIN] = info['zl'][vv['i1']['Qg']:vv['iN']['Qg']] / baseMVA
    bus[:, LAM_P] = info['lmbda'][nn['i1']['Pmis']:nn['iN']['Pmis']] / baseMVA
    bus[:, LAM_Q] = info['lmbda'][nn['i1']['Qmis']:nn['iN']['Qmis']] / baseMVA
    branch[:, MU_SF] = muSf / baseMVA
    branch[:, MU_ST] = muSt / baseMVA

    ## package up results
    nlnN = om.getN('nln')

    ## extract multipliers for nonlinear constraints
    kl = find(info['lmbda'][:2 * nb] < 0)
    ku = find(info['lmbda'][:2 * nb] > 0)
    nl_mu_l = zeros(nlnN)
    nl_mu_u = r_[zeros(2 * nb), muSf, muSt]
    nl_mu_l[kl] = -info['lmbda'][kl]
    nl_mu_u[ku] = info['lmbda'][ku]

    ## extract multipliers for linear constraints
    lam_lin = info['lmbda'][2 * nb + 2 * nl2 +
                            arange(nA)]  ## lmbda for linear constraints
    kl = find(lam_lin < 0)  ## lower bound binding
    ku = find(lam_lin > 0)  ## upper bound binding
    mu_l = zeros(nA)
    mu_l[kl] = -lam_lin[kl]
    mu_u = zeros(nA)
    mu_u[ku] = lam_lin[ku]

    mu = {
      'var': {'l': info['zl'], 'u': info['zu']},
      'nln': {'l': nl_mu_l, 'u': nl_mu_u}, \
      'lin': {'l': mu_l, 'u': mu_u}
    }

    results = ppc
    results['bus'], results['branch'], results['gen'], \
        results['om'], results['x'], results['mu'], results['f'] = \
            bus, branch, gen, om, x, mu, f

    pimul = r_[results['mu']['nln']['l'] - results['mu']['nln']['u'],
               results['mu']['lin']['l'] - results['mu']['lin']['u'],
               -ones(ny > 0),
               results['mu']['var']['l'] - results['mu']['var']['u']]
    raw = {'xr': x, 'pimul': pimul, 'info': info['status'], 'output': output}

    return results, success, raw
Пример #25
0
def opf_execute(om, ppopt):
    """Executes the OPF specified by an OPF model object.

    C{results} are returned with internal indexing, all equipment
    in-service, etc.

    @see: L{opf}, L{opf_setup}

    @author: Ray Zimmerman (PSERC Cornell)
    """
    ##-----  setup  -----
    ## options
    dc  = ppopt['PF_DC']        ## 1 = DC OPF, 0 = AC OPF
    alg = ppopt['OPF_ALG']
    verbose = ppopt['VERBOSE']

    ## build user-defined costs
    om.build_cost_params()

    ## get indexing
    vv, ll, nn, _ = om.get_idx()

    if verbose > 0:
        v = ppver('all')
        stdout.write('PYPOWER Version %s, %s' % (v['Version'], v['Date']))

    ##-----  run DC OPF solver  -----
    if dc:
        if verbose > 0:
            stdout.write(' -- DC Optimal Power Flow\n')

        results, success, raw = dcopf_solver(om, ppopt)
    else:
        ##-----  run AC OPF solver  -----
        if verbose > 0:
            stdout.write(' -- AC Optimal Power Flow\n')

        ## if OPF_ALG not set, choose best available option
        if alg == 0:
            alg = 560                ## MIPS

        ## update deprecated algorithm codes to new, generalized formulation equivalents
        if alg == 100 | alg == 200:        ## CONSTR
            alg = 300
        elif alg == 120 | alg == 220:      ## dense LP
            alg = 320
        elif alg == 140 | alg == 240:      ## sparse (relaxed) LP
            alg = 340
        elif alg == 160 | alg == 260:      ## sparse (full) LP
            alg = 360

        ppopt['OPF_ALG_POLY'] = alg

        ## run specific AC OPF solver
        if alg == 560 or alg == 565:                   ## PIPS
            results, success, raw = pipsopf_solver(om, ppopt)
        elif alg == 580:                              ## IPOPT
            try:
                __import__('pyipopt')
                results, success, raw = ipoptopf_solver(om, ppopt)
            except ImportError:
                raise ImportError('OPF_ALG %d requires IPOPT '
                                  '(see https://projects.coin-or.org/Ipopt/)' %
                                  alg)
        else:
            stderr.write('opf_execute: OPF_ALG %d is not a valid algorithm code\n' % alg)

    if ('output' not in raw) or ('alg' not in raw['output']):
        raw['output']['alg'] = alg

    if success:
        if not dc:
            ## copy bus voltages back to gen matrix
            results['gen'][:, VG] = results['bus'][results['gen'][:, GEN_BUS].astype(int), VM]

            ## gen PQ capability curve multipliers
            if (ll['N']['PQh'] > 0) | (ll['N']['PQl'] > 0):
                mu_PQh = results['mu']['lin']['l'][ll['i1']['PQh']:ll['iN']['PQh']] - results['mu']['lin']['u'][ll['i1']['PQh']:ll['iN']['PQh']]
                mu_PQl = results['mu']['lin']['l'][ll['i1']['PQl']:ll['iN']['PQl']] - results['mu']['lin']['u'][ll['i1']['PQl']:ll['iN']['PQl']]
                Apqdata = om.userdata('Apqdata')
                results['gen'] = update_mupq(results['baseMVA'], results['gen'], mu_PQh, mu_PQl, Apqdata)

            ## compute g, dg, f, df, d2f if requested by RETURN_RAW_DER = 1
            if ppopt['RETURN_RAW_DER']:
                ## move from results to raw if using v4.0 of MINOPF or TSPOPF
                if 'dg' in results:
                    raw = {}
                    raw['dg'] = results['dg']
                    raw['g'] = results['g']

                ## compute g, dg, unless already done by post-v4.0 MINOPF or TSPOPF
                if 'dg' not in raw:
                    ppc = om.get_ppc()
                    Ybus, Yf, Yt = makeYbus(ppc['baseMVA'], ppc['bus'], ppc['branch'])
                    g, geq, dg, dgeq = opf_consfcn(results['x'], om, Ybus, Yf, Yt, ppopt)
                    raw['g'] = r_[geq, g]
                    raw['dg'] = r_[dgeq.T, dg.T]   ## true Jacobian organization

                ## compute df, d2f
                _, df, d2f = opf_costfcn(results['x'], om, True)
                raw['df'] = df
                raw['d2f'] = d2f

        ## delete g and dg fieldsfrom results if using v4.0 of MINOPF or TSPOPF
        if 'dg' in results:
            del results['dg']
            del results['g']

        ## angle limit constraint multipliers
        if ll['N']['ang'] > 0:
            iang = om.userdata('iang')
            results['branch'][iang, MU_ANGMIN] = results['mu']['lin']['l'][ll['i1']['ang']:ll['iN']['ang']] * pi / 180
            results['branch'][iang, MU_ANGMAX] = results['mu']['lin']['u'][ll['i1']['ang']:ll['iN']['ang']] * pi / 180
    else:
        ## assign empty g, dg, f, df, d2f if requested by RETURN_RAW_DER = 1
        if not dc and ppopt['RETURN_RAW_DER']:
            raw['dg'] = array([])
            raw['g'] = array([])
            raw['df'] = array([])
            raw['d2f'] = array([])

    ## assign values and limit shadow prices for variables
    if om.var['order']:
        results['var'] = {'val': {}, 'mu': {'l': {}, 'u': {}}}
    for name in om.var['order']:
        if om.getN('var', name):
            idx = arange(vv['i1'][name], vv['iN'][name])
            results['var']['val'][name] = results['x'][idx]
            results['var']['mu']['l'][name] = results['mu']['var']['l'][idx]
            results['var']['mu']['u'][name] = results['mu']['var']['u'][idx]

    ## assign shadow prices for linear constraints
    if om.lin['order']:
        results['lin'] = {'mu': {'l': {}, 'u': {}}}
    for name in om.lin['order']:
        if om.getN('lin', name):
            idx = arange(ll['i1'][name], ll['iN'][name])
            results['lin']['mu']['l'][name] = results['mu']['lin']['l'][idx]
            results['lin']['mu']['u'][name] = results['mu']['lin']['u'][idx]

    ## assign shadow prices for nonlinear constraints
    if not dc:
        if om.nln['order']:
            results['nln'] = {'mu': {'l': {}, 'u': {}}}
        for name in om.nln['order']:
            if om.getN('nln', name):
                idx = arange(nn['i1'][name], nn['iN'][name])
                results['nln']['mu']['l'][name] = results['mu']['nln']['l'][idx]
                results['nln']['mu']['u'][name] = results['mu']['nln']['u'][idx]

    ## assign values for components of user cost
    if om.cost['order']:
        results['cost'] = {}
    for name in om.cost['order']:
        if om.getN('cost', name):
            results['cost'][name] = om.compute_cost(results['x'], name)

    ## if single-block PWL costs were converted to POLY, insert dummy y into x
    ## Note: The "y" portion of x will be nonsense, but everything should at
    ##       least be in the expected locations.
    pwl1 = om.userdata('pwl1')
    if (len(pwl1) > 0) and (alg != 545) and (alg != 550):
        ## get indexing
        vv, _, _, _ = om.get_idx()
        if dc:
            nx = vv['iN']['Pg']
        else:
            nx = vv['iN']['Qg']

        y = zeros(len(pwl1))
        raw['xr'] = r_[raw['xr'][:nx], y, raw['xr'][nx:]]
        results['x'] = r_[results['x'][:nx], y, results['x'][nx:]]

    return results, success, raw
Пример #26
0
def runpf(casedata=None, ppopt=None, fname='', solvedcase=''):
    """Runs a power flow.

    Runs a power flow [full AC Newton's method by default] and optionally
    returns the solved values in the data matrices, a flag which is C{True} if
    the algorithm was successful in finding a solution, and the elapsed
    time in seconds. All input arguments are optional. If C{casename} is
    provided it specifies the name of the input data file or dict
    containing the power flow data. The default value is 'case9'.

    If the ppopt is provided it overrides the default PYPOWER options
    vector and can be used to specify the solution algorithm and output
    options among other things. If the 3rd argument is given the pretty
    printed output will be appended to the file whose name is given in
    C{fname}. If C{solvedcase} is specified the solved case will be written
    to a case file in PYPOWER format with the specified name. If C{solvedcase}
    ends with '.mat' it saves the case as a MAT-file otherwise it saves it
    as a Python-file.

    If the C{ENFORCE_Q_LIMS} options is set to C{True} [default is false] then
    if any generator reactive power limit is violated after running the AC
    power flow, the corresponding bus is converted to a PQ bus, with Qg at
    the limit, and the case is re-run. The voltage magnitude at the bus
    will deviate from the specified value in order to satisfy the reactive
    power limit. If the reference bus is converted to PQ, the first
    remaining PV bus will be used as the slack bus for the next iteration.
    This may result in the real power output at this generator being
    slightly off from the specified values.

    Enforcing of generator Q limits inspired by contributions from Mu Lin,
    Lincoln University, New Zealand (1/14/05).

    @author: Ray Zimmerman (PSERC Cornell)
    """
    ## default arguments
    if casedata is None:
        casedata = join(dirname(__file__), 'case9')
    ppopt = ppoption(ppopt)

    ## options
    verbose = ppopt["VERBOSE"]
    qlim = ppopt["ENFORCE_Q_LIMS"]  ## enforce Q limits on gens?
    dc = ppopt["PF_DC"]  ## use DC formulation?

    ## read data
    ppc = loadcase(casedata)

    ## add zero columns to branch for flows if needed
    if ppc["branch"].shape[1] < QT:
        ppc["branch"] = c_[ppc["branch"],
                           zeros((ppc["branch"].shape[0],
                                  QT - ppc["branch"].shape[1] + 1))]

    ## convert to internal indexing
    ppc = ext2int(ppc)
    baseMVA, bus, gen, branch = \
        ppc["baseMVA"], ppc["bus"], ppc["gen"], ppc["branch"]

    ## get bus index lists of each type of bus
    ref, pv, pq = bustypes(bus, gen)

    ## generator info
    on = find(gen[:, GEN_STATUS] > 0)  ## which generators are on?
    gbus = gen[on, GEN_BUS].astype(int)  ## what buses are they at?

    ##-----  run the power flow  -----
    t0 = time()
    if verbose > 0:
        v = ppver('all')
        stdout.write('PYPOWER Version %s, %s' % (v["Version"], v["Date"]))

    if dc:  # DC formulation
        if verbose:
            stdout.write(' -- DC Power Flow\n')

        ## initial state
        Va0 = bus[:, VA] * (pi / 180)

        ## build B matrices and phase shift injections
        B, Bf, Pbusinj, Pfinj = makeBdc(baseMVA, bus, branch)

        ## compute complex bus power injections [generation - load]
        ## adjusted for phase shifters and real shunts
        Pbus = makeSbus(baseMVA, bus,
                        gen).real - Pbusinj - bus[:, GS] / baseMVA

        ## "run" the power flow
        Va = dcpf(B, Pbus, Va0, ref, pv, pq)

        ## update data matrices with solution
        branch[:, [QF, QT]] = zeros((branch.shape[0], 2))
        branch[:, PF] = (Bf * Va + Pfinj) * baseMVA
        branch[:, PT] = -branch[:, PF]
        bus[:, VM] = ones(bus.shape[0])
        bus[:, VA] = Va * (180 / pi)
        ## update Pg for slack generator (1st gen at ref bus)
        ## (note: other gens at ref bus are accounted for in Pbus)
        ##      Pg = Pinj + Pload + Gs
        ##      newPg = oldPg + newPinj - oldPinj
        refgen = zeros(len(ref), dtype=int)
        for k in range(len(ref)):
            temp = find(gbus == ref[k])
            refgen[k] = on[temp[0]]
        gen[refgen,
            PG] = gen[refgen, PG] + (B[ref, :] * Va - Pbus[ref]) * baseMVA

        success = 1
    else:  ## AC formulation
        alg = ppopt['PF_ALG']
        if verbose > 0:
            if alg == 1:
                solver = 'Newton'
            elif alg == 2:
                solver = 'fast-decoupled, XB'
            elif alg == 3:
                solver = 'fast-decoupled, BX'
            elif alg == 4:
                solver = 'Gauss-Seidel'
            else:
                solver = 'unknown'
            print(' -- AC Power Flow (%s)\n' % solver)

        ## initial state
        # V0    = ones(bus.shape[0])            ## flat start
        V0 = bus[:, VM] * exp(1j * pi / 180 * bus[:, VA])
        V0[gbus] = gen[on, VG] / abs(V0[gbus]) * V0[gbus]

        if qlim:
            ref0 = ref  ## save index and angle of
            Varef0 = bus[ref0, VA]  ##   original reference bus(es)
            limited = []  ## list of indices of gens @ Q lims
            fixedQg = zeros(gen.shape[0])  ## Qg of gens at Q limits

        repeat = True
        while repeat:
            ## build admittance matrices
            Ybus, Yf, Yt = makeYbus(baseMVA, bus, branch)

            ## compute complex bus power injections [generation - load]
            Sbus = makeSbus(baseMVA, bus, gen)

            ## run the power flow
            alg = ppopt["PF_ALG"]
            if alg == 1:
                V, success, _ = newtonpf(Ybus, Sbus, V0, ref, pv, pq, ppopt)
            elif alg == 2 or alg == 3:
                Bp, Bpp = makeB(baseMVA, bus, branch, alg)
                V, success, _ = fdpf(Ybus, Sbus, V0, Bp, Bpp, ref, pv, pq,
                                     ppopt)
            elif alg == 4:
                V, success, _ = gausspf(Ybus, Sbus, V0, ref, pv, pq, ppopt)
            else:
                stderr.write('Only Newton'
                             's method, fast-decoupled, and '
                             'Gauss-Seidel power flow algorithms currently '
                             'implemented.\n')

            ## update data matrices with solution
            bus, gen, branch = pfsoln(baseMVA, bus, gen, branch, Ybus, Yf, Yt,
                                      V, ref, pv, pq)

            if qlim:  ## enforce generator Q limits
                ## find gens with violated Q constraints
                gen_status = gen[:, GEN_STATUS] > 0
                qg_max_lim = gen[:, QG] > gen[:, QMAX]
                qg_min_lim = gen[:, QG] < gen[:, QMIN]

                mx = find(gen_status & qg_max_lim)
                mn = find(gen_status & qg_min_lim)

                if len(mx) > 0 or len(
                        mn) > 0:  ## we have some Q limit violations
                    # No PV generators
                    if len(pv) == 0:
                        if verbose:
                            if len(mx) > 0:
                                print(
                                    'Gen %d [only one left] exceeds upper Q limit : INFEASIBLE PROBLEM\n'
                                    % mx + 1)
                            else:
                                print(
                                    'Gen %d [only one left] exceeds lower Q limit : INFEASIBLE PROBLEM\n'
                                    % mn + 1)

                        success = 0
                        break

                    ## one at a time?
                    if qlim == 2:  ## fix largest violation, ignore the rest
                        k = argmax(r_[gen[mx, QG] - gen[mx, QMAX],
                                      gen[mn, QMIN] - gen[mn, QG]])
                        if k > len(mx):
                            mn = mn[k - len(mx)]
                            mx = []
                        else:
                            mx = mx[k]
                            mn = []

                    if verbose and len(mx) > 0:
                        for i in range(len(mx)):
                            print('Gen ' + str(mx[i] + 1) +
                                  ' at upper Q limit, converting to PQ bus\n')

                    if verbose and len(mn) > 0:
                        for i in range(len(mn)):
                            print('Gen ' + str(mn[i] + 1) +
                                  ' at lower Q limit, converting to PQ bus\n')

                    ## save corresponding limit values
                    fixedQg[mx] = gen[mx, QMAX]
                    fixedQg[mn] = gen[mn, QMIN]
                    mx = r_[mx, mn].astype(int)

                    ## convert to PQ bus
                    gen[mx, QG] = fixedQg[mx]  ## set Qg to binding
                    for i in range(
                            len(mx)
                    ):  ## [one at a time, since they may be at same bus]
                        gen[mx[i],
                            GEN_STATUS] = 0  ## temporarily turn off gen,
                        bi = gen[mx[i], GEN_BUS]  ## adjust load accordingly,
                        bus[bi, [PD, QD]] = (bus[bi, [PD, QD]] -
                                             gen[mx[i], [PG, QG]])

                    if len(ref) > 1 and any(bus[gen[mx, GEN_BUS],
                                                BUS_TYPE] == REF):
                        raise ValueError('Sorry, PYPOWER cannot enforce Q '
                                         'limits for slack buses in systems '
                                         'with multiple slacks.')

                    bus[gen[mx, GEN_BUS].astype(int),
                        BUS_TYPE] = PQ  ## & set bus type to PQ

                    ## update bus index lists of each type of bus
                    ref_temp = ref
                    ref, pv, pq = bustypes(bus, gen)
                    if verbose and ref != ref_temp:
                        print('Bus %d is new slack bus\n' % ref)

                    limited = r_[limited, mx].astype(int)
                else:
                    repeat = 0  ## no more generator Q limits violated
            else:
                repeat = 0  ## don't enforce generator Q limits, once is enough

        if qlim and len(limited) > 0:
            ## restore injections from limited gens [those at Q limits]
            gen[limited, QG] = fixedQg[limited]  ## restore Qg value,
            for i in range(
                    len(limited
                        )):  ## [one at a time, since they may be at same bus]
                bi = gen[limited[i], GEN_BUS]  ## re-adjust load,
                bus[bi,
                    [PD, QD]] = bus[bi, [PD, QD]] + gen[limited[i], [PG, QG]]
                gen[limited[i], GEN_STATUS] = 1  ## and turn gen back on

            if ref != ref0:
                ## adjust voltage angles to make original ref bus correct
                bus[:, VA] = bus[:, VA] - bus[ref0, VA] + Varef0

    ppc["et"] = time() - t0
    ppc["success"] = success

    ##-----  output results  -----
    ## convert back to original bus numbering & print results
    ppc["bus"], ppc["gen"], ppc["branch"] = bus, gen, branch
    results = int2ext(ppc)

    ## zero out result fields of out-of-service gens & branches
    if len(results["order"]["gen"]["status"]["off"]) > 0:
        results["gen"][ix_(results["order"]["gen"]["status"]["off"],
                           [PG, QG])] = 0

    if len(results["order"]["branch"]["status"]["off"]) > 0:
        results["branch"][ix_(results["order"]["branch"]["status"]["off"],
                              [PF, QF, PT, QT])] = 0

    if fname:
        fd = None
        try:
            fd = open(fname, "a")
        except Exception as detail:
            stderr.write("Error opening %s: %s.\n" % (fname, detail))
        finally:
            if fd is not None:
                printpf(results, fd, ppopt)
                fd.close()
    else:
        printpf(results, stdout, ppopt)

    ## save solved case
    if solvedcase:
        savecase(solvedcase, results)

    return results, success
Пример #27
0
def runWorker(ID, s, output):

    client = EthJsonRpc('10.64.83.200', 39000 + ID)
    obj = web3.Web3(web3.HTTPProvider('http://10.64.83.200:3900' + str(ID)))
    print(client.eth_accounts()[0])
    #print(client1.eth_accounts()[1])

    print("Worker %d initialized successfully!" % (ID, ))

    all_gas = []
    nu = 0  #iteration count
    itermax = s.admmopt.iterMaxlocal  #get maximum iteration
    flag = False
    new_gas = 0

    start_balance = obj.eth.getBalance(
        obj.toChecksumAddress(client.eth_accounts()[0]))

    j = 0
    s.admmopt.tau = 1
    last_block = obj.eth.blockNumber
    while (1):
        trans_by_block = obj.eth.getBlockTransactionCount(last_block - j)
        if (trans_by_block > 0):
            #dest = list(s.nbor.keys())
            #if(ID==1):getNextValues(ID,s,client,obj,last_block - j, trans_by_block)

            #s.update_z()
            #s.choose_max_rho()
            break

        j = j + 1

    prev_convegenceTable = []
    P_history = []
    Q_history = []
    start_time2 = time()

    while nu <= itermax and not flag:
        if s.recvmsg:
            s.update_z()
            s.choose_max_rho()

            #print(ID,"i have rho", s.var["rho"])

        start_time = time()
        result = s.pipslopf_solver()

        end_time = time()

        if result['eflag'] and nu % 20 == 0:
            print('Subproblem %d at iteration %d solved!' % (ID, nu))
            # print("Time for solving subproblem %d: %ssecs to %ssecs" % (ID, start_time, end_time))

        s.update_x()
        P_history.append(sum(s.var['Pg']))
        Q_history.append(sum(s.var['Qg']))

        if s.recvmsg:  # not the initialization
            s.update_y()
            s.update_rho()

            prev_convegenceTable = s.gapAll[s.ID - 1]

        # check convergence
        #if(nu>10):flag =
        flag = s.converge()
        s.recvmsg = {}  # clear the received messages

        #s.send()

        dest = s.nbor.keys()

        for k in dest:
            # prepare the message to be sent to neighbor k
            #tm.sleep(0.05)
            msg3 = message()
            msg3.config(s.ID, k, s.var, s.nbor[k].tlidx['int'], s.gapAll)
            data2 = json.dumps(msg3.__dict__, cls=MyEncoder)

            json_data = json.JSONEncoder().encode(data2)

            json_data = '0x' + json_data.encode("utf-8").hex()

            sampleDict = obj.txpool.content.pending

            new_gas = new_gas + 18000000000 * obj.eth.estimateGas({
                'to':
                obj.toChecksumAddress(
                    '0xa8085d8331f16a5b76690e665d9f5eaaaa85ee1c'),
                'data':
                json_data
            })

            client.eth_sendTransaction(
                from_address=client.eth_accounts()[0],
                to_address="0xa8085d8331f16a5b76690e665d9f5eaaaa85ee1c",
                gas=0xf4240,
                gas_price=18000000000,
                value=1,  # 2441406250
                data=json_data)

        txpooljson = obj.txpool.content.pending.__dict__

        recvmsg = {}

        twait = s.admmopt.pollWaitingtime
        dest = list(s.nbor.keys())
        recvFlag = [0] * s.region['nnbor']
        arrived = 0  # number of arrived neighbors
        pollround = 0
        while arrived < s.region['nwait'] and pollround < 5:
            #for i in range(len(dest)):
            #k = dest[i]
            #s.recvmsg[k] = recvmsg[k]
            #recvFlag[i] = 1

            for k in txpooljson.keys():

                txpooljson2 = txpooljson[k].__dict__
                last_nonce = max(txpooljson2, key=int)
                #print(ID,", last nonce",last_nonce)
                last_nonce_dict = txpooljson2[last_nonce].__dict__

                hexjson = last_nonce_dict['input'][2:]
                jsonstring = codecs.decode(hexjson, "hex").decode('utf-8')

                jsonvalues = json.JSONDecoder().decode(jsonstring)
                values_dict = json.loads(jsonvalues, cls=MyDecoder)

                temp_msg = message()
                if (values_dict['fID'] in s.nbor.keys()):
                    for last_nonce in range(int(max(txpooljson2, key=int)), 0,
                                            -1):
                        last_nonce_dict = txpooljson2[str(last_nonce)].__dict__

                        hexjson = last_nonce_dict['input'][2:]
                        jsonstring = codecs.decode(hexjson,
                                                   "hex").decode('utf-8')

                        jsonvalues = json.JSONDecoder().decode(jsonstring)
                        values_dict = json.loads(jsonvalues, cls=MyDecoder)
                        if (values_dict['tID'] == s.ID): break

                #print(ID,"last nonce=",last_nonce,"from",values_dict['fID'])
                temp_msg.fID = values_dict['fID']
                temp_msg.tID = values_dict['tID']
                temp_msg.fields['AVmd'] = numpy.asarray(
                    values_dict['fields']['AVmd'])
                temp_msg.fields['AVms'] = numpy.asarray(
                    values_dict['fields']['AVms'])
                temp_msg.fields['AVad'] = numpy.asarray(
                    values_dict['fields']['AVad'])
                temp_msg.fields['AVas'] = numpy.asarray(
                    values_dict['fields']['AVas'])
                temp_msg.fields['ymd'] = numpy.asarray(
                    values_dict['fields']['ymd'])
                temp_msg.fields['yms'] = numpy.asarray(
                    values_dict['fields']['yms'])
                temp_msg.fields['yad'] = numpy.asarray(
                    values_dict['fields']['yad'])
                temp_msg.fields['yas'] = numpy.asarray(
                    values_dict['fields']['yas'])
                temp_msg.fields['rho'] = values_dict['fields']['rho']
                temp_msg.fields['convergeTable'] = values_dict['fields'][
                    'convergeTable']

                if (temp_msg.tID == s.ID):
                    recvmsg[temp_msg.fID] = temp_msg
                    #recvFlag[i] = 1

                arrived = len(recvmsg)
                pollround += 1

        s.recvmsg = copy.deepcopy(recvmsg)

        all_gas.append(new_gas)
        nu += 1

    # record results
    print("Worker %d finished!" % (ID, ))

    for k in dest:

        starting_point = message2()
        starting_point.config(s.ID, k, s.var, s.nbor[k].tlidx['int'], s.gapAll)
        data2 = json.dumps(starting_point.__dict__, cls=MyEncoder)
        json_data = json.JSONEncoder().encode(data2)
        json_data = '0x' + json_data.encode("utf-8").hex()
        sampleDict = obj.txpool.content.pending

        client.eth_sendTransaction(
            from_address=client.eth_accounts()[0],
            to_address="0xa8085d8331f16a5b76690e665d9f5eaaaa85ee1c",
            gas=0xf4240,
            gas_price=18000000000,
            value=1,  # 2441406250
            data=json_data)

    print(starting_point.__dict__)

    x, f, info, lmbda, output2 = result["x"], result["f"], result[
        "eflag"], result["lmbda"], result["output"]
    nx = len(x)
    nb = s.region['nb']
    ng = s.region['ng']
    iv = s.idx['var']
    bus = s.region['bus']
    gen = s.region['gen']
    branch = s.region['branch']
    baseMVA = s.region['baseMVA']
    Ybus = s.region['Ybus']
    ridx = s.idx['rbus']['int']
    # idx ranges
    iVa = iv['iVa']
    iVm = iv['iVm']
    iPg = iv['iPg']
    iQg = iv['iQg']
    # grab Pg and Qg
    gen[:, PG] = x[iPg] * s.region["baseMVA"]
    gen[:, QG] = x[iQg] * s.region["baseMVA"]
    bus[:, PD] = bus[:, PD] * s.region["baseMVA"]
    bus[:, QD] = bus[:, QD] * s.region["baseMVA"]
    # reconstruct V
    Va, Vm = x[iVa], x[iVm]
    V = Vm * exp(1j * Va)

    #print(V)
    nl = shape(branch)[0]  ## number of branches
    bus[:, VA] = Va * 180 / pi
    bus[:, VM] = Vm

    if shape(branch)[1] < MU_ANGMAX + 1:
        branch = c_[branch, zeros((nl, MU_ANGMAX + 1 - shape(branch)[1]))]

    Ybus2, Yf, Yt = makeYbus(baseMVA, bus, branch)
    #print(Yf)
    ## compute branch flows
    Sf = V[branch[:, F_BUS].astype(int)] * conj(
        Yf * V)  ## cplx pwr at "from" bus, p["u"].
    St = V[branch[:, T_BUS].astype(int)] * conj(
        Yt * V)  ## cplx pwr at "to" bus, p["u"].

    branch[:, PF] = Sf.real * baseMVA
    branch[:, QF] = Sf.imag * baseMVA
    branch[:, PT] = St.real * baseMVA
    branch[:, QT] = St.imag * baseMVA

    #gen[:, VG] = Vm[ gen[:, GEN_BUS].astype(int) ]

    nlam = len(lmbda["eqnonlin"]) // 2
    lamP = zeros(nb)  #for non-included pf balances use 0 as multiplier
    lamQ = zeros(nb)
    lamP[s.idx['rbus']['int']] = lmbda["eqnonlin"][:nlam] / s.region["baseMVA"]
    lamQ[s.idx['rbus']['int']] = lmbda["eqnonlin"][nlam:nlam +
                                                   nlam] / s.region["baseMVA"]

    ong = find((gen[:, GEN_STATUS] > 0) & ~isload(gen))
    objValue1 = 0
    objValue2 = 0

    fd = stdout
    fd.write('\n REGION %d' % (s.ID))

    fd.write(
        '\nBus/Area  Voltage          Generation             Load        ')
    fd.write('  Lambda($/MVA-hr)')
    fd.write(
        '\n  #   Mag(pu) Ang(deg)   P (MW)   Q (MVAr)   P (MW)   Q (MVAr)')
    fd.write('     P        Q   ')
    fd.write(
        '\n----- ------- --------  --------  --------  --------  --------')
    fd.write('  -------  -------')
    for i in range(nb):
        for glob, loc in s.idx["mapping"].items():
            if loc == i:
                busid = glob + 1
                #bus[i,BUS_I]=glob+1
                pass
        fd.write('\n%5d/' % busid)
        fd.write('%d%7.3f%9.3f' % tuple(bus[i, [BUS_AREA, VM, VA]]))
        if bus[i, BUS_TYPE] == REF:
            fd.write('*')
        else:
            fd.write(' ')
        g = find((gen[:, GEN_STATUS] > 0) & (gen[:, GEN_BUS] == bus[i, BUS_I])
                 & ~isload(gen))
        ld = find((gen[:, GEN_STATUS] > 0) & (gen[:, GEN_BUS] == bus[i, BUS_I])
                  & isload(gen))
        if any(g + 1):
            fd.write('%9.2f%10.2f' % (sum(gen[g, PG]), sum(gen[g, QG])))
            objValue1 = objValue1 + (lamP[i]) * (sum(gen[g, PG]))
        else:
            fd.write('      -         -  ')
        if logical_or(bus[i, PD], bus[i, QD]) | any(ld + 1):
            if any(ld + 1):
                fd.write('%10.2f*%9.2f*' % (bus[i, PD] - sum(gen[ld, PG]),
                                            bus[i, QD] - sum(gen[ld, QG])))
                objValue2 = objValue2 + (lamP[i]) * (bus[i, PD] -
                                                     sum(gen[ld, PG]))
            else:
                fd.write('%10.2f%10.2f ' % tuple(bus[i, [PD, QD]]))
        else:
            fd.write('       -         -   ')

        fd.write('%9.3f' % lamP[i])

        if abs(lamQ[i]) > 1e-4:
            fd.write('%8.3f' % lamQ[i])
        else:
            fd.write('     -')
    fd.write(
        '\n                        --------  --------  --------  --------')
    nzld = find((bus[:, PD] != 0.0) | (bus[:, QD] != 0.0))
    onld = find((gen[:, GEN_STATUS] > 0) & isload(gen))

    fd.write('\n               Total: %9.2f %9.2f %9.2f %9.2f' %
             (sum(gen[ong, PG]), sum(gen[ong, QG]), sum(bus[nzld, PD]) -
              sum(gen[onld, PG]), sum(bus[nzld, QD]) - sum(gen[onld, QG])))
    fd.write('\n')

    print("Local iteration of worker %d is %d" % (ID, nu))
    # calculate local generation cost
    gencost = s.region['gencost']
    pg = s.var['Pg']
    """
	objValue21=0
	for i in range(ng):
		if(pg[i]>0):
			objValue1 = objValue1 - gencost[i,COST+1]* pg[i]
			print(gencost[i,COST+1]* pg[i])
		else:
			objValue21 = objValue21 + gencost[i,COST+1]* (-pg[i])
			print(gencost[i,COST+1]* (-pg[i]))
	objValue2 = objValue21 - objValue2
	objValue = objValue1 + objValue2
	"""

    objValue = dot(gencost[:, COST], pg**2) + dot(
        gencost[:, COST + 1], pg) + sum(gencost[:, COST + 2])
    print(objValue)

    varDual = {
        'ymd': s.var['ymd'],
        'yad': s.var['yad'],
        'yms': s.var['yms'],
        'yas': s.var['yas']
    }
    varPrimal = {
        'Vm': s.var['Vm'],
        'Va': s.var['Va'],
        'Pg': s.var['Pg'],
        'Qg': s.var['Qg']
    }
    Result = {
        'objValue': objValue,
        'varPrimal': varPrimal,
        'varDual': varDual,
        'localiter': nu,
        'primalgap': s.pb['primalgap'],
        'dualgap': s.pb['dualgap']
    }

    ng = s.region['ng']
    for i in range(ng):
        for glob, loc in s.idx["mapping"].items():
            if gen[i, GEN_BUS] == loc:
                gen[i, GEN_BUS] = glob + 1
                break

    for i in range(nb):
        for glob, loc in s.idx["mapping"].items():
            if loc == i:

                bus[i, BUS_I] = glob + 1

    nl = s.region['nl']
    for i in range(nl):
        for glob, loc in s.idx["mapping"].items():
            #print(glob, loc, branch[i, F_BUS])
            if branch[i, F_BUS] == loc:
                #print(branch[tl1,F_BUS])
                branch[i, F_BUS] = glob + 1
                break
    for i in range(nl):
        for glob, loc in s.idx["mapping"].items():
            #print(glob, loc, branch[i, F_BUS])
            if branch[i, T_BUS] == loc:
                #print(branch[tl1,F_BUS])
                branch[i, T_BUS] = glob + 1
                break

    success = flag
    reg_nb = find(bus[:, BUS_AREA] == ID)

    lamP = lamP[ix_(reg_nb, )]

    lamP2 = numpy.array(lamP)

    reg_bus = bus[ix_(reg_nb, )]
    print(reg_bus[:, BUS_I])
    reg_lam = numpy.array((reg_bus[:, BUS_I], lamP))

    print(reg_lam)

    ppc = {}
    ppc["bus"], ppc["gen"], ppc["branch"] = reg_bus, gen, branch

    ids1 = reg_bus[:, BUS_I]
    ids = numpy.array(ids1)
    #ppc["success"] = success
    #ppc=ext2int(ppc)
    P_history = [i * s.region["baseMVA"] for i in P_history]
    Q_history = [i * s.region["baseMVA"] for i in Q_history]

    #results = int2ext(ppc)
    """
	fig = plt.figure()
	curfig = fig.add_subplot(1, 2, 1)
	curfig.plot(P_history, color = 'red', linewidth = 2.5, label = 'P')
	curfig = fig.add_subplot(1, 2, 2)
	curfig.plot(Q_history, color = 'blue', linewidth = 2.5, label = 'Q')
	curfig.set_yscale('log')
	curfig.legend(loc='upper right')
	"""

    #plt.show()
    """
	
	print(all_gas)
	
	while( obj.txpool.inspect.pending.__dict__): pass
	end_time2 = time()
	final_balance = obj.eth.getBalance(obj.toChecksumAddress(client.eth_accounts()[0]))
	print("sasasa",ID, "    ",start_balance - final_balance , "Time ", end_time2 - start_time2)
	"""

    output.put((ID - 1, Result, ppc["bus"], ppc["gen"], ppc["branch"], success,
                lamP2, ids, P_history, Q_history))
    """
Пример #28
0
def pipsopf_solver(om, ppopt, out_opt=None):
    """Solves AC optimal power flow using PIPS.

    Inputs are an OPF model object, a PYPOWER options vector and
    a dict containing keys (can be empty) for each of the desired
    optional output fields.

    outputs are a C{results} dict, C{success} flag and C{raw} output dict.

    C{results} is a PYPOWER case dict (ppc) with the usual baseMVA, bus
    branch, gen, gencost fields, along with the following additional
    fields:
        - C{order}      see 'help ext2int' for details of this field
        - C{x}          final value of optimization variables (internal order)
        - C{f}          final objective function value
        - C{mu}         shadow prices on ...
            - C{var}
                - C{l}  lower bounds on variables
                - C{u}  upper bounds on variables
            - C{nln}
                - C{l}  lower bounds on nonlinear constraints
                - C{u}  upper bounds on nonlinear constraints
            - C{lin}
                - C{l}  lower bounds on linear constraints
                - C{u}  upper bounds on linear constraints

    C{success} is C{True} if solver converged successfully, C{False} otherwise

    C{raw} is a raw output dict in form returned by MINOS
        - xr     final value of optimization variables
        - pimul  constraint multipliers
        - info   solver specific termination code
        - output solver specific output information

    @see: L{opf}, L{pips}

    @author: Ray Zimmerman (PSERC Cornell)
    @author: Carlos E. Murillo-Sanchez (PSERC Cornell & Universidad
    Autonoma de Manizales)
    @author: Richard Lincoln
    """
    ##----- initialization -----
    ## optional output
    if out_opt is None:
        out_opt = {}

    ## options
    verbose = ppopt['VERBOSE']
    feastol = ppopt['PDIPM_FEASTOL']
    gradtol = ppopt['PDIPM_GRADTOL']
    comptol = ppopt['PDIPM_COMPTOL']
    costtol = ppopt['PDIPM_COSTTOL']
    max_it  = ppopt['PDIPM_MAX_IT']
    max_red = ppopt['SCPDIPM_RED_IT']
    step_control = (ppopt['OPF_ALG'] == 565)  ## OPF_ALG == 565, PIPS-sc
    if feastol == 0:
        feastol = ppopt['OPF_VIOLATION']
    opt = {  'feastol': feastol,
             'gradtol': gradtol,
             'comptol': comptol,
             'costtol': costtol,
             'max_it': max_it,
             'max_red': max_red,
             'step_control': step_control,
             'cost_mult': 1e-4,
             'verbose': verbose  }

    ## unpack data
    ppc = om.get_ppc()
    baseMVA, bus, gen, branch, gencost = \
        ppc["baseMVA"], ppc["bus"], ppc["gen"], ppc["branch"], ppc["gencost"]
    vv, _, nn, _ = om.get_idx()

    ## problem dimensions
    nb = bus.shape[0]          ## number of buses
    nl = branch.shape[0]       ## number of branches
    ny = om.getN('var', 'y')   ## number of piece-wise linear costs

    ## linear constraints
    A, l, u = om.linear_constraints()

    ## bounds on optimization vars
    _, xmin, xmax = om.getv()

    ## build admittance matrices
    Ybus, Yf, Yt = makeYbus(baseMVA, bus, branch)

    ## try to select an interior initial point
    ll, uu = xmin.copy(), xmax.copy()
    ll[xmin == -Inf] = -1e10   ## replace Inf with numerical proxies
    uu[xmax ==  Inf] =  1e10
    x0 = (ll + uu) / 2
    Varefs = bus[bus[:, BUS_TYPE] == REF, VA] * (pi / 180)
    ## angles set to first reference angle
    x0[vv["i1"]["Va"]:vv["iN"]["Va"]] = Varefs[0]
    if ny > 0:
        ipwl = find(gencost[:, MODEL] == PW_LINEAR)
#         PQ = r_[gen[:, PMAX], gen[:, QMAX]]
#         c = totcost(gencost[ipwl, :], PQ[ipwl])
        c = gencost.flatten('F')[sub2ind(gencost.shape, ipwl, NCOST+2*gencost[ipwl, NCOST])]    ## largest y-value in CCV data
        x0[vv["i1"]["y"]:vv["iN"]["y"]] = max(c) + 0.1 * abs(max(c))
#        x0[vv["i1"]["y"]:vv["iN"]["y"]] = c + 0.1 * abs(c)

    ## find branches with flow limits
    il = find((branch[:, RATE_A] != 0) & (branch[:, RATE_A] < 1e10))
    nl2 = len(il)           ## number of constrained lines

    ##-----  run opf  -----
    f_fcn = lambda x, return_hessian=False: opf_costfcn(x, om, return_hessian)
    gh_fcn = lambda x: opf_consfcn(x, om, Ybus, Yf[il, :], Yt[il,:], ppopt, il)
    hess_fcn = lambda x, lmbda, cost_mult: opf_hessfcn(x, lmbda, om, Ybus, Yf[il, :], Yt[il, :], ppopt, il, cost_mult)

    solution = pips(f_fcn, x0, A, l, u, xmin, xmax, gh_fcn, hess_fcn, opt)
    x, f, info, lmbda, output = solution["x"], solution["f"], \
            solution["eflag"], solution["lmbda"], solution["output"]

    success = (info > 0)

    ## update solution data
    Va = x[vv["i1"]["Va"]:vv["iN"]["Va"]]
    Vm = x[vv["i1"]["Vm"]:vv["iN"]["Vm"]]
    Pg = x[vv["i1"]["Pg"]:vv["iN"]["Pg"]]
    Qg = x[vv["i1"]["Qg"]:vv["iN"]["Qg"]]

    V = Vm * exp(1j * Va)

    ##-----  calculate return values  -----
    ## update voltages & generator outputs
    bus[:, VA] = Va * 180 / pi
    bus[:, VM] = Vm
    gen[:, PG] = Pg * baseMVA
    gen[:, QG] = Qg * baseMVA
    gen[:, VG] = Vm[ gen[:, GEN_BUS].astype(int) ]

    ## compute branch flows
    Sf = V[ branch[:, F_BUS].astype(int) ] * conj(Yf * V)  ## cplx pwr at "from" bus, p["u"].
    St = V[ branch[:, T_BUS].astype(int) ] * conj(Yt * V)  ## cplx pwr at "to" bus, p["u"].
    branch[:, PF] = Sf.real * baseMVA
    branch[:, QF] = Sf.imag * baseMVA
    branch[:, PT] = St.real * baseMVA
    branch[:, QT] = St.imag * baseMVA

    ## line constraint is actually on square of limit
    ## so we must fix multipliers
    muSf = zeros(nl)
    muSt = zeros(nl)
    if len(il) > 0:
        muSf[il] = \
            2 * lmbda["ineqnonlin"][:nl2] * branch[il, RATE_A] / baseMVA
        muSt[il] = \
            2 * lmbda["ineqnonlin"][nl2:nl2+nl2] * branch[il, RATE_A] / baseMVA

    ## update Lagrange multipliers
    bus[:, MU_VMAX]  = lmbda["upper"][vv["i1"]["Vm"]:vv["iN"]["Vm"]]
    bus[:, MU_VMIN]  = lmbda["lower"][vv["i1"]["Vm"]:vv["iN"]["Vm"]]
    gen[:, MU_PMAX]  = lmbda["upper"][vv["i1"]["Pg"]:vv["iN"]["Pg"]] / baseMVA
    gen[:, MU_PMIN]  = lmbda["lower"][vv["i1"]["Pg"]:vv["iN"]["Pg"]] / baseMVA
    gen[:, MU_QMAX]  = lmbda["upper"][vv["i1"]["Qg"]:vv["iN"]["Qg"]] / baseMVA
    gen[:, MU_QMIN]  = lmbda["lower"][vv["i1"]["Qg"]:vv["iN"]["Qg"]] / baseMVA

    bus[:, LAM_P] = \
        lmbda["eqnonlin"][nn["i1"]["Pmis"]:nn["iN"]["Pmis"]] / baseMVA
    bus[:, LAM_Q] = \
        lmbda["eqnonlin"][nn["i1"]["Qmis"]:nn["iN"]["Qmis"]] / baseMVA
    branch[:, MU_SF] = muSf / baseMVA
    branch[:, MU_ST] = muSt / baseMVA

    ## package up results
    nlnN = om.getN('nln')

    ## extract multipliers for nonlinear constraints
    kl = find(lmbda["eqnonlin"] < 0)
    ku = find(lmbda["eqnonlin"] > 0)
    nl_mu_l = zeros(nlnN)
    nl_mu_u = r_[zeros(2*nb), muSf, muSt]
    nl_mu_l[kl] = -lmbda["eqnonlin"][kl]
    nl_mu_u[ku] =  lmbda["eqnonlin"][ku]

    mu = {
      'var': {'l': lmbda["lower"], 'u': lmbda["upper"]},
      'nln': {'l': nl_mu_l, 'u': nl_mu_u},
      'lin': {'l': lmbda["mu_l"], 'u': lmbda["mu_u"]} }

    results = ppc
    results["bus"], results["branch"], results["gen"], \
        results["om"], results["x"], results["mu"], results["f"] = \
            bus, branch, gen, om, x, mu, f

    pimul = r_[
        results["mu"]["nln"]["l"] - results["mu"]["nln"]["u"],
        results["mu"]["lin"]["l"] - results["mu"]["lin"]["u"],
        -ones(ny > 0),
        results["mu"]["var"]["l"] - results["mu"]["var"]["u"],
    ]
    raw = {'xr': x, 'pimul': pimul, 'info': info, 'output': output}

    return results, success, raw
Пример #29
0
    def admmopf_consfcn(self, x=None):
        if x is None:
            x = self.pb['x0']
        nx = len(x)
        nb = self.region['nb']
        ng = self.region['ng']
        iv = self.idx['var']
        bus = self.region['bus']
        gen = self.region['gen']
        branch = self.region['branch']
        Ybus = self.region['Ybus']
        Yf = self.region['Yf']
        Yt = self.region['Yt']
        baseMVA = self.region['baseMVA']

        ridx = self.idx['rbus']['int']
        # idx ranges
        iVa = iv['iVa']
        iVm = iv['iVm']
        iPg = iv['iPg']
        iQg = iv['iQg']
        # grab Pg and Qg
        gen[:, PG] = x[iPg]
        gen[:, QG] = x[iQg]
        # rebuid Sbus
        Sbus = makeSbus(1, bus, gen)
        # reconstruct V
        Va, Vm = x[iVa], x[iVm]
        V = Vm * exp(1j * Va)
        # evaluate power flow equations
        mis = V * conj(Ybus * V) - Sbus
        g = r_[mis.real, mis.imag]
        row = ridx + [i + nb for i in ridx]
        g = g[row]

        il = find((branch[:, RATE_A] != 0) & (branch[:, RATE_A] < 1e10))
        nl2 = len(il)

        Ybus2, Yf2, Yt2 = makeYbus(baseMVA, bus, branch)
        Yf = Yf2[il, :]
        Yt = Yt2[il, :]

        if nl2 > 0:
            flow_max = (branch[il, RATE_A] / baseMVA)**2
            flow_max[flow_max == 0] = Inf

            ## compute branch power flows
            ## complex power injected at "from" bus (p.u.)
            Sf = V[branch[il, F_BUS].astype(int)] * conj(Yf * V)
            ## complex power injected at "to" bus (p.u.)
            St = V[branch[il, T_BUS].astype(int)] * conj(Yt * V)
            h = r_[Sf.real**2 - flow_max,  ## branch P limits (from bus)
                   St.real**2 - flow_max]  ## branch P limits (to bus)

        else:
            h = array([])

        # ---- evaluate constraint gradients -------
        # compute partials of injected bus powers
        dSbus_dVm, dSbus_dVa = dSbus_dV(Ybus, V)  # w.r.t. V
        neg_Cg = sparse((-ones(ng), (gen[:, GEN_BUS], range(ng))), (nb, ng))

        # construct Jacobian of equality constraints (power flow) and transpose it
        dg = lil_matrix((2 * nb, nx))
        blank = sparse((nb, ng))
        dg = vstack([ \
			#P mismatch w.r.t Va, Vm, Pg, Qg

         hstack([dSbus_dVa.real, dSbus_dVm.real, neg_Cg, blank]),
         # Q mismatch w.r.t Va, Vm, Pg, Qg
         hstack([dSbus_dVa.imag, dSbus_dVm.imag, blank, neg_Cg])
         ], "csr")
        dg = dg[row, :]
        dg = dg.T

        if nl2 > 0:
            ## compute partials of Flows w.r.t. V                  ## power
            dFf_dVa, dFf_dVm, dFt_dVa, dFt_dVm, Ff, Ft = \
                             dSbr_dV(branch[il, :], Yf, Yt, V)
            dFf_dVa = dFf_dVa.real
            dFf_dVm = dFf_dVm.real
            dFt_dVa = dFt_dVa.real
            dFt_dVm = dFt_dVm.real
            Ff = Ff.real
            Ft = Ft.real

            ## squared magnitude of flow (of complex power or current, or real power)
            df_dVa, df_dVm, dt_dVa, dt_dVm = \
                         dAbr_dV(dFf_dVa, dFf_dVm, dFt_dVa, dFt_dVm, Ff, Ft)
            ## construct Jacobian of inequality constraints (branch limits)
            ## and transpose it.
            dh = lil_matrix((2 * nl2, nx))
            dh[:, r_[iVa, iVm].T] = vstack(
                [
                    hstack([df_dVa, df_dVm]),  ## "from" flow limit
                    hstack([dt_dVa, dt_dVm])  ## "to" flow limit
                ],
                "csr")
            dh = dh.T

        else:
            dh = None

        h = array([])
        dh = None

        return h, g, dh, dg
Пример #30
-1
def run_sim(ppc, elements, dynopt = None, events = None, recorder = None):
    """
    Run a time-domain simulation
    
    Inputs:
        ppc         PYPOWER load flow case
        elements    Dictionary of dynamic model objects (machines, controllers, etc) with Object ID as key
        events      Events object
        recorder    Recorder object (empty)
    
    Outputs:
        recorder    Recorder object (with data)
    """
    
    #########
    # SETUP #
    #########
    
    # Get version information
    ver = pydyn_ver()
    print('PYPOWER-Dynamics ' + ver['Version'] + ', ' + ver['Date'])
    
    # Program options
    if dynopt:
        h = dynopt['h']             
        t_sim = dynopt['t_sim']           
        max_err = dynopt['max_err']        
        max_iter = dynopt['max_iter']
        verbose = dynopt['verbose']
    else:
        # Default program options
        h = 0.01                # step length (s)
        t_sim = 5               # simulation time (s)
        max_err = 0.0001        # Maximum error in network iteration (voltage mismatches)
        max_iter = 25           # Maximum number of network iterations
        verbose = False
        
    # Make lists of current injection sources (generators, external grids, etc) and controllers
    sources = []
    controllers = []
    for element in elements.values():
        if element.__module__ in ['pydyn.sym_order6a', 'pydyn.sym_order6b', 'pydyn.sym_order4', 'pydyn.ext_grid', 'pydyn.vsc_average', 'pydyn.asym_1cage', 'pydyn.asym_2cage']:
            sources.append(element)
            
        if element.__module__ == 'pydyn.controller':
            controllers.append(element)
    
    # Set up interfaces
    interfaces = init_interfaces(elements)
    
    ##################
    # INITIALISATION #
    ##################
    print('Initialising models...')
    
    # Run power flow and update bus voltages and angles in PYPOWER case object
    results, success = runpf(ppc) 
    ppc["bus"][:, VM] = results["bus"][:, VM]
    ppc["bus"][:, VA] = results["bus"][:, VA]
    
    # Build Ybus matrix
    ppc_int = ext2int(ppc)
    baseMVA, bus, branch = ppc_int["baseMVA"], ppc_int["bus"], ppc_int["branch"]
    Ybus, Yf, Yt = makeYbus(baseMVA, bus, branch)
    
    # Build modified Ybus matrix
    Ybus = mod_Ybus(Ybus, elements, bus, ppc_int['gen'], baseMVA)
    
    # Calculate initial voltage phasors
    v0 = bus[:, VM] * (np.cos(np.radians(bus[:, VA])) + 1j * np.sin(np.radians(bus[:, VA])))
    
    # Initialise sources from load flow
    for source in sources:
        if source.__module__ in ['pydyn.asym_1cage', 'pydyn.asym_2cage']:
            # Asynchronous machine
            source_bus = ppc_int['bus'][source.bus_no,0]
            v_source = v0[source_bus]
            source.initialise(v_source,0)
        else:
            # Generator or VSC
            source_bus = ppc_int['gen'][source.gen_no,0]
            S_source = np.complex(results["gen"][source.gen_no, 1] / baseMVA, results["gen"][source.gen_no, 2] / baseMVA)
            v_source = v0[source_bus]
            source.initialise(v_source,S_source)
    
    # Interface controllers and machines (for initialisation)
    for intf in interfaces:
        int_type = intf[0]
        var_name = intf[1]
        if int_type == 'OUTPUT':
            # If an output, interface in the reverse direction for initialisation
            intf[2].signals[var_name] = intf[3].signals[var_name]
        else:
            # Inputs are interfaced in normal direction during initialisation
            intf[3].signals[var_name] = intf[2].signals[var_name]
    
    # Initialise controllers
    for controller in controllers:
        controller.initialise()
    
    #############
    # MAIN LOOP #
    #############
    
    if events == None:
        print('Warning: no events!')
    
    # Factorise Ybus matrix
    Ybus_inv = splu(Ybus)
    
    y1 = []
    v_prev = v0
    print('Simulating...')
    for t in range(int(t_sim / h) + 1):
        if np.mod(t,1/h) == 0:
            print('t=' + str(t*h) + 's')
            
        # Interface controllers and machines
        for intf in interfaces:
            var_name = intf[1]
            intf[3].signals[var_name] = intf[2].signals[var_name]
        
        # Solve differential equations
        for j in range(4):
            # Solve step of differential equations
            for element in elements.values():
                element.solve_step(h,j) 
            
            # Interface with network equations
            v_prev = solve_network(sources, v_prev, Ybus_inv, ppc_int, len(bus), max_err, max_iter)
        
        if recorder != None:
            # Record signals or states
            recorder.record_variables(t*h, elements)
        
        if events != None:
            # Check event stack
            ppc, refactorise = events.handle_events(np.round(t*h,5), elements, ppc, baseMVA)
            
            if refactorise == True:
                # Rebuild Ybus from new ppc_int
                ppc_int = ext2int(ppc)
                baseMVA, bus, branch = ppc_int["baseMVA"], ppc_int["bus"], ppc_int["branch"]
                Ybus, Yf, Yt = makeYbus(baseMVA, bus, branch)
                
                # Rebuild modified Ybus
                Ybus = mod_Ybus(Ybus, elements, bus, ppc_int['gen'], baseMVA)
                
                # Refactorise Ybus
                Ybus_inv = splu(Ybus)
                
                # Solve network equations
                v_prev = solve_network(sources, v_prev, Ybus_inv, ppc_int, len(bus), max_err, max_iter)
                
    return recorder