Пример #1
0
def get_Jy_per_count(dir, psr_cal_file, fitAA, fitBB):

    file = dir + psr_cal_file

    ar = Archive(file, verbose=False)
    rfi = RFIMitigator(ar)
    ar.tscrunch()
    s_duty = ar.getValue("CAL_PHS")
    duty = ar.getValue("CAL_DCYC")
    nchan = ar.getNchan()
    npol = ar.getNpol()
    nbin = ar.getNbin()
    BW = ar.getBandwidth()
    data = ar.getData()
    CTR_FREQ = ar.getCenterFrequency(weighted=True)

    converted_data = IQUV_to_AABB(data, basis="cartesian")

    frequencies = chan_to_freq(CTR_FREQ, BW, nchan)
    psr_cal, high_psr, low_psr = np.zeros((2, nchan, nbin)), np.zeros(
        (2, nchan)), np.zeros((2, nchan))
    for i in np.arange(2):
        for j in np.arange(nchan):
            psr_cal[i][j], high_psr[i][j], low_psr[i][j] = prepare_cal_profile(
                converted_data[0][i][j], s_duty, duty)

    # Calculate jy_per_count{p, f}
    jy_per_count_factor = np.zeros_like(high_psr)
    # for i in np.arange( 2 ):
    for j in np.arange(nchan):
        jy_per_count_factor[0][j] = fitAA(frequencies[j]) / (
            high_psr[0][j] - low_psr[0][j])  # A has units Jy / count

    for j in np.arange(nchan):
        jy_per_count_factor[1][j] = fitBB(frequencies[j]) / (
            high_psr[1][j] - low_psr[1][j])  # A has units Jy / count

    return jy_per_count_factor
Пример #2
0
def get_AABB_Fcal(dir, continuum_on, continuum_off, args, G=10.0, T0=1.0):

    ON, OFF = dir + continuum_on, dir + continuum_off

    if args.freq_zap is not None:
        for i, arg in enumerate(args.freq_zap):
            args.freq_zap[i] = int(args.freq_zap[i])

    ar_on, ar_off = Archive(ON, verbose=False), Archive(OFF, verbose=False)
    rfi_on, rfi_off = RFIMitigator(ar_on), RFIMitigator(ar_off)
    s_duty_on, s_duty_off = ar_on.getValue("CAL_PHS"), ar_off.getValue(
        "CAL_PHS")
    duty_on, duty_off = ar_on.getValue("CAL_DCYC"), ar_off.getValue("CAL_DCYC")
    nchan_on, nchan_off = ar_on.getNchan(), ar_off.getNchan()
    npol_on, npol_off = ar_on.getNpol(), ar_off.getNpol()
    nbin_on, nbin_off = ar_on.getNbin(), ar_off.getNbin()
    BW_on, BW_off = ar_on.getBandwidth(), ar_off.getBandwidth()
    CTR_FREQ_on, CTR_FREQ_off = ar_on.getCenterFrequency(
        weighted=True), ar_off.getCenterFrequency(weighted=True)
    ar_on.tscrunch()
    ar_off.tscrunch()

    if args.freq_zap is not None:
        if len(args.freq_zap) == 1:
            if args.channel_space:
                rfi_on.zap_channels(args.freq_zap)
                rfi_off.zap_channels(args.freq_zap)
            else:
                print(
                    "No zapping occurred (tried to zap channels in frequency space). Carrying on with calibration..."
                )
        elif len(args.freq_zap) == 2 and not args.channel_space:
            rfi_on.zap_frequency_range(args.freq_zap[0], args.freq_zap[1])
            rfi_off.zap_frequency_range(args.freq_zap[0], args.freq_zap[1])
        else:
            rfi_on.zap_channels(args.freq_zap)
            rfi_off.zap_channels(args.freq_zap)

    data_on, data_off = ar_on.getData(squeeze=True), ar_off.getData(
        squeeze=True)

    converted_data_on = IQUV_to_AABB(data_on, basis="cartesian")
    converted_data_off = IQUV_to_AABB(data_off, basis="cartesian")

    # Initialize the continuum data. SUBINT, POL,
    continuum_on_source, high_on_mean, low_on_mean = np.zeros(
        (2, nchan_on, nbin_on)), np.zeros((2, nchan_on)), np.zeros(
            (2, nchan_on))
    continuum_off_source, high_off_mean, low_off_mean = np.zeros(
        (2, nchan_off, nbin_off)), np.zeros((2, nchan_off)), np.zeros(
            (2, nchan_off))
    f_on, f_off, C0 = np.zeros_like(high_on_mean), np.zeros_like(
        high_off_mean), np.zeros_like(high_off_mean)
    T_sys = np.zeros_like(C0)
    F_cal = np.zeros_like(T_sys)

    # Load the continuum data
    for i in np.arange(2):
        for j in np.arange(nchan_on):

            continuum_on_source[i][j], high_on_mean[i][j], low_on_mean[i][
                j] = prepare_cal_profile(converted_data_on[0][i][j], s_duty_on,
                                         duty_on)
            continuum_off_source[i][j], high_off_mean[i][j], low_off_mean[i][
                j] = prepare_cal_profile(converted_data_off[0][i][j],
                                         s_duty_off, duty_off)

            f_on[i][j] = (high_on_mean[i][j] / low_on_mean[i][j]) - 1
            f_off[i][j] = (high_off_mean[i][j] / low_off_mean[i][j]) - 1

            if np.isnan(f_on[i][j]):
                f_on[i][j] = 1
            if np.isnan(f_on[i][j]):
                f_off[i][j] = 1

            C0[i][j] = T0 / ((1 / f_on[i][j]) - (1 / f_off[i][j]))
            T_sys[i][j] = C0[i][j] / f_off[i][j]
            F_cal[i][j] = (T_sys[i][j] *
                           f_off[i][j]) / G  # F_cal has units Jy / cal

            if np.isnan(F_cal[i][j]):
                F_cal[i][j] = 0

    frequencies_on_off = chan_to_freq(CTR_FREQ_on, BW_on, nchan_on)

    f1, f2 = interp1d(frequencies_on_off,
                      F_cal[0],
                      kind='cubic',
                      fill_value='extrapolate'), interp1d(
                          frequencies_on_off,
                          F_cal[1],
                          kind='cubic',
                          fill_value='extrapolate')

    return f1, f2