Пример #1
0
 def set_shape(self, space, orig_array, new_shape):
     if len(self.get_shape()) < 2 or self.size == 0:
         # TODO: this code could be refactored into calc_strides
         # but then calc_strides would have to accept a stepping factor
         strides = []
         backstrides = []
         dtype = self.dtype
         try:
             s = self.get_strides()[0] // dtype.elsize
         except IndexError:
             s = 1
         if self.order == 'C':
             new_shape.reverse()
         for sh in new_shape:
             strides.append(s * dtype.elsize)
             backstrides.append(s * (sh - 1) * dtype.elsize)
             s *= max(1, sh)
         if self.order == 'C':
             strides.reverse()
             backstrides.reverse()
             new_shape.reverse()
         return self.__class__(self.start, strides, backstrides, new_shape,
                               self, orig_array)
     new_strides = calc_new_strides(new_shape, self.get_shape(),
                                    self.get_strides(), self.order)
     if new_strides is None or len(new_strides) != len(new_shape):
         raise oefmt(space.w_AttributeError,
                     "incompatible shape for a non-contiguous array")
     new_backstrides = [0] * len(new_shape)
     for nd in range(len(new_shape)):
         new_backstrides[nd] = (new_shape[nd] - 1) * new_strides[nd]
     return self.__class__(self.start, new_strides, new_backstrides,
                           new_shape, self, orig_array)
Пример #2
0
 def set_shape(self, space, orig_array, new_shape):
     if len(self.get_shape()) < 2 or self.size == 0:
         # TODO: this code could be refactored into calc_strides
         # but then calc_strides would have to accept a stepping factor
         strides = []
         backstrides = []
         dtype = self.dtype
         try:
             s = self.get_strides()[0] // dtype.elsize
         except IndexError:
             s = 1
         if self.order == 'C':
             new_shape.reverse()
         for sh in new_shape:
             strides.append(s * dtype.elsize)
             backstrides.append(s * (sh - 1) * dtype.elsize)
             s *= max(1, sh)
         if self.order == 'C':
             strides.reverse()
             backstrides.reverse()
             new_shape.reverse()
         return self.__class__(self.start, strides, backstrides, new_shape,
                           self, orig_array)
     new_strides = calc_new_strides(new_shape, self.get_shape(),
                                    self.get_strides(),
                                    self.order)
     if new_strides is None or len(new_strides) != len(new_shape):
         raise oefmt(space.w_AttributeError,
             "incompatible shape for a non-contiguous array")
     new_backstrides = [0] * len(new_shape)
     for nd in range(len(new_shape)):
         new_backstrides[nd] = (new_shape[nd] - 1) * new_strides[nd]
     return self.__class__(self.start, new_strides, new_backstrides, new_shape,
                       self, orig_array)
Пример #3
0
 def set_shape(self, space, orig_array, new_shape):
     if len(self.get_shape()) < 2 or self.size == 0:
         # TODO: this code could be refactored into calc_strides
         # but then calc_strides would have to accept a stepping factor
         strides = []
         backstrides = []
         dtype = self.dtype
         s = self.get_strides()[0] // dtype.get_size()
         if self.order == 'C':
             new_shape.reverse()
         for sh in new_shape:
             strides.append(s * dtype.get_size())
             backstrides.append(s * (sh - 1) * dtype.get_size())
             s *= max(1, sh)
         if self.order == 'C':
             strides.reverse()
             backstrides.reverse()
             new_shape.reverse()
         return SliceArray(self.start, strides, backstrides, new_shape,
                           self, orig_array)
     new_strides = calc_new_strides(new_shape, self.get_shape(),
                                    self.get_strides(), self.order)
     if new_strides is None:
         raise OperationError(
             space.w_AttributeError,
             space.wrap("incompatible shape for a non-contiguous array"))
     new_backstrides = [0] * len(new_shape)
     for nd in range(len(new_shape)):
         new_backstrides[nd] = (new_shape[nd] - 1) * new_strides[nd]
     return SliceArray(self.start, new_strides, new_backstrides, new_shape,
                       self, orig_array)
Пример #4
0
 def set_shape(self, space, orig_array, new_shape):
     if len(self.get_shape()) < 2 or self.size == 0:
         # TODO: this code could be refactored into calc_strides
         # but then calc_strides would have to accept a stepping factor
         strides = []
         backstrides = []
         dtype = self.dtype
         s = self.get_strides()[0] // dtype.get_size()
         if self.order == 'C':
             new_shape.reverse()
         for sh in new_shape:
             strides.append(s * dtype.get_size())
             backstrides.append(s * (sh - 1) * dtype.get_size())
             s *= max(1, sh)
         if self.order == 'C':
             strides.reverse()
             backstrides.reverse()
             new_shape.reverse()
         return SliceArray(self.start, strides, backstrides, new_shape,
                           self, orig_array)
     new_strides = calc_new_strides(new_shape, self.get_shape(),
                                    self.get_strides(),
                                    self.order)
     if new_strides is None:
         raise OperationError(space.w_AttributeError, space.wrap(
                       "incompatible shape for a non-contiguous array"))
     new_backstrides = [0] * len(new_shape)
     for nd in range(len(new_shape)):
         new_backstrides[nd] = (new_shape[nd] - 1) * new_strides[nd]
     return SliceArray(self.start, new_strides, new_backstrides, new_shape,
                       self, orig_array)
Пример #5
0
 def reshape(self, orig_array, new_shape):
     # Since we got to here, prod(new_shape) == self.size
     new_strides = None
     if self.size == 0:
         new_strides, _ = calc_strides(new_shape, self.dtype, self.order)
     else:
         if len(self.get_shape()) == 0:
             new_strides = [self.dtype.elsize] * len(new_shape)
         else:
             new_strides = calc_new_strides(new_shape, self.get_shape(),
                                            self.get_strides(), self.order)
     if new_strides is not None:
         # We can create a view, strides somehow match up.
         new_backstrides = calc_backstrides(new_strides, new_shape)
         assert isinstance(orig_array, W_NDimArray) or orig_array is None
         return SliceArray(self.start, new_strides, new_backstrides,
                           new_shape, self, orig_array)
Пример #6
0
 def reshape(self, space, orig_array, new_shape):
     # Since we got to here, prod(new_shape) == self.size
     new_strides = None
     if self.size > 0:
         new_strides = calc_new_strides(new_shape, self.get_shape(),
                                        self.get_strides(), self.order)
     if new_strides:
         # We can create a view, strides somehow match up.
         ndims = len(new_shape)
         new_backstrides = [0] * ndims
         for nd in range(ndims):
             new_backstrides[nd] = (new_shape[nd] - 1) * new_strides[nd]
         assert isinstance(orig_array, W_NDimArray) or orig_array is None
         return SliceArray(self.start, new_strides, new_backstrides,
                           new_shape, self, orig_array)
     else:
         return None
Пример #7
0
 def reshape(self, space, orig_array, new_shape):
     # Since we got to here, prod(new_shape) == self.size
     new_strides = None
     if self.size > 0:
         new_strides = calc_new_strides(new_shape, self.get_shape(),
                                        self.get_strides(), self.order)
     if new_strides:
         # We can create a view, strides somehow match up.
         ndims = len(new_shape)
         new_backstrides = [0] * ndims
         for nd in range(ndims):
             new_backstrides[nd] = (new_shape[nd] - 1) * new_strides[nd]
         assert isinstance(orig_array, W_NDimArray) or orig_array is None
         return SliceArray(self.start, new_strides, new_backstrides,
                           new_shape, self, orig_array)
     else:
         return None
Пример #8
0
 def reshape(self, orig_array, new_shape):
     # Since we got to here, prod(new_shape) == self.size
     new_strides = None
     if self.size == 0:
         new_strides, _ = calc_strides(new_shape, self.dtype, self.order)
     else:
         if len(self.get_shape()) == 0:
             new_strides = [self.dtype.elsize] * len(new_shape)
         else:
             new_strides = calc_new_strides(new_shape, self.get_shape(),
                                            self.get_strides(), self.order)
     if new_strides is not None:
         # We can create a view, strides somehow match up.
         new_backstrides = calc_backstrides(new_strides, new_shape)
         assert isinstance(orig_array, W_NDimArray) or orig_array is None
         return SliceArray(self.start, new_strides, new_backstrides,
                           new_shape, self, orig_array)
Пример #9
0
 def set_shape(self, space, orig_array, new_shape):
     if len(new_shape) > NPY.MAXDIMS:
         raise oefmt(space.w_ValueError,
             "sequence too large; cannot be greater than %d", NPY.MAXDIMS)
     try:
         ovfcheck(support.product_check(new_shape) * self.dtype.elsize)
     except OverflowError as e:
         raise oefmt(space.w_ValueError, "array is too big.")
     if len(self.get_shape()) < 2 or self.size == 0:
         # TODO: this code could be refactored into calc_strides
         # but then calc_strides would have to accept a stepping factor
         strides = []
         backstrides = []
         dtype = self.dtype
         try:
             s = self.get_strides()[0] // dtype.elsize
         except IndexError:
             s = 1
         if self.order != NPY.FORTRANORDER:
             new_shape.reverse()
         for sh in new_shape:
             strides.append(s * dtype.elsize)
             backstrides.append(s * (sh - 1) * dtype.elsize)
             s *= max(1, sh)
         if self.order != NPY.FORTRANORDER:
             strides.reverse()
             backstrides.reverse()
             new_shape.reverse()
         return self.__class__(self.start, strides, backstrides, new_shape,
                           self, orig_array)
     new_strides = calc_new_strides(new_shape, self.get_shape(),
                                    self.get_strides(),
                                    self.order)
     if new_strides is None or len(new_strides) != len(new_shape):
         raise oefmt(space.w_AttributeError,
             "incompatible shape for a non-contiguous array")
     new_backstrides = [0] * len(new_shape)
     for nd in range(len(new_shape)):
         new_backstrides[nd] = (new_shape[nd] - 1) * new_strides[nd]
     return self.__class__(self.start, new_strides, new_backstrides, new_shape,
                       self, orig_array)
Пример #10
0
 def set_shape(self, space, orig_array, new_shape):
     if len(new_shape) > NPY.MAXDIMS:
         raise oefmt(space.w_ValueError,
             "sequence too large; cannot be greater than %d", NPY.MAXDIMS)
     try:
         ovfcheck(support.product_check(new_shape) * self.dtype.elsize)
     except OverflowError as e:
         raise oefmt(space.w_ValueError, "array is too big.")
     if len(self.get_shape()) < 2 or self.size == 0:
         # TODO: this code could be refactored into calc_strides
         # but then calc_strides would have to accept a stepping factor
         strides = []
         backstrides = []
         dtype = self.dtype
         try:
             s = self.get_strides()[0] // dtype.elsize
         except IndexError:
             s = 1
         if self.order != NPY.FORTRANORDER:
             new_shape.reverse()
         for sh in new_shape:
             strides.append(s * dtype.elsize)
             backstrides.append(s * (sh - 1) * dtype.elsize)
             s *= max(1, sh)
         if self.order != NPY.FORTRANORDER:
             strides.reverse()
             backstrides.reverse()
             new_shape.reverse()
         return self.__class__(self.start, strides, backstrides, new_shape,
                           self, orig_array)
     new_strides = calc_new_strides(new_shape, self.get_shape(),
                                    self.get_strides(),
                                    self.order)
     if new_strides is None or len(new_strides) != len(new_shape):
         raise oefmt(space.w_AttributeError,
             "incompatible shape for a non-contiguous array")
     new_backstrides = [0] * len(new_shape)
     for nd in range(len(new_shape)):
         new_backstrides[nd] = (new_shape[nd] - 1) * new_strides[nd]
     return self.__class__(self.start, new_strides, new_backstrides, new_shape,
                       self, orig_array)