Пример #1
0
def stokes2(k, meshevents, v, points):
    vortelts1 = pe.HcurlElements(k)
    vortelts2 = pe.HcurlElements(k)
    velelts1 = pe.HdivElements(k)
    velelts2 = pe.HdivElements(k)
    pressureelts1 = pe.L2Elements(k)
    
    quadrule = pu.pyramidquadrature(k+1)
    
    Asys = pa.SymmetricSystem(vortelts1, quadrule, meshevents, [])
#    Bsys = pa.AsymmetricSystem(velelts1, vortelts2, quadrule, meshevents, [bdytag], [])
    BsysT = pa.AsymmetricSystem(vortelts2, velelts1, quadrule, meshevents, [], [bdytag])
    Csys = pa.AsymmetricSystem(pressureelts1,velelts2, quadrule, meshevents, [], [bdytag])
    
    A = Asys.systemMatrix(False)
    BT = BsysT.systemMatrix(True, False)
    C = Csys.systemMatrix(False, True)
    
    vv = lambda x: np.tile(v,(len(x), 1))[:,np.newaxis,:]
    vn = lambda x,n: np.tensordot(n,v,([1],[1]))
#    vt = lambda x,n: (v - vn(x,n)*n)[:,np.newaxis,:]
    vc = lambda x,n: np.cross(v, n)[:, np.newaxis, :]
    
    BTI, BTE, BTGs = BsysT.processBoundary(BT, {bdytag:vv})
    CI, CE, CGs = Csys.processBoundary(C, {bdytag:vv})
    
    P = Csys.loadVector(lambda x: np.ones((len(x),1,1)))
#    print "P ",P
    
    Gt = Asys.boundaryLoad({bdytag: vc}, pu.squarequadrature(k+1), pu.trianglequadrature(k+1), False)

#    print "Gt ",Gt
    print A.shape, BT.shape, C.shape, BTI.shape, BTE[bdytag].shape, BTGs[bdytag].shape, CI.shape

    AL = Gt[bdytag] + BTE[bdytag] * BTGs[bdytag]
 #   print "AL ",AL
    CL = -CE[bdytag] * CGs[bdytag]
    
    nvort = A.get_shape()[0]
    nvel = BTI.get_shape()[1]
    
#    S = ss.bmat([[A, -BTI, None],[-BTI.transpose(), None, CI.transpose()],[None, CI, None]])
#    L = np.vstack((AL,np.zeros((nvel,1)), CL))
    S = ss.bmat([[A, -BTI, None, None],[-BTI.transpose(), None, CI.transpose(), None],[None, CI, None, P], [None,None,P.transpose(), None]])
    L = np.vstack((AL,np.zeros((nvel,1)), CL, np.zeros((1,1))))
    print "solving"
    X = ps.solve(S, L)
    U = X[nvort:(nvort + nvel)]
#    print "X",X
#    print "U", U
#    print "BTGs", BTGs
#    
    u = BsysT.evaluate(points, U, BTGs, False)
#    uu = Asys.evaluate(points, np.eye(nvort)[-2], {}, False)
#    uu = BsysT.evaluate(points, U, {}, False)
    uu = BsysT.evaluate(points, np.zeros_like(U), BTGs, False)
#    print np.hstack((points, u))
#    print u

    return u, uu
Пример #2
0
def mixedpoissondual(k,N, g, f, points):
    tag = "B1"
    hdiveltsA = HdivElements(k)
    hdiveltsB = HdivElements(k)
    hdiveltsBt = HdivElements(k)
    l2eltsB = L2Elements(k)
    l2eltsBt = L2Elements(k)
    quadrule = pyramidquadrature(k+1)
    meshevents = lambda m: buildcubemesh(N,m,tag)
    
    Asystem = SymmetricSystem(hdiveltsA, quadrule, meshevents, [])
    Bsystem = AsymmetricSystem(l2eltsB, hdiveltsB, quadrule, meshevents, [],[])
    Btsystem = AsymmetricSystem(hdiveltsBt, l2eltsBt, quadrule, meshevents, [],[])
    
    A = Asystem.systemMatrix(False)
#    Bt = Btsystem.systemMatrix(True, False)
    B = Bsystem.systemMatrix(False, True)
    print A.shape, B.shape
    
    F = Bsystem.loadVector(f, False)
    gn = lambda x,n: g(x).reshape(-1,1,1) * n.reshape(-1,1,3)
    G = Btsystem.boundaryLoad({tag:gn}, squarequadrature(k+1), trianglequadrature(k+1), False)
    u,p = ps.directsolve(A, B, G[tag], F)    
    um,pm = ps.mixedcg(A, B, G[tag], F)
#    print numpy.hstack((UU[:len(u)], u))
    print math.sqrt(numpy.sum((u - um)**2)/len(u))
    print math.sqrt(numpy.sum((p - pm)**2)/len(p))
    
    return Btsystem.evaluate(points, p, {}, False)    
Пример #3
0
def poissonneumann(k,N,g,f, points):
    tag = "B1"
    elements = H1Elements(k)
    quadrule = pyramidquadrature(k+1)
    system = SymmetricSystem(elements, quadrule, lambda m: buildcubemesh(N,m,tag), [])
    SM = system.systemMatrix(True)
    S = SM[1:,:][:,1:] # the first basis fn is guaranteed to be associated with an external degree, so is a linear comb of all the others 
    F = 0 if f is None else system.loadVector(f)
    G = 0 if g is None else system.boundaryLoad({tag:g}, squarequadrature(k+1), trianglequadrature(k+1), False)    
    U = numpy.concatenate((numpy.array([0]), spsolve(S, G[tag][1:]-F[1:])))[:,numpy.newaxis]
    return system.evaluate(points, U, {}, False)    
Пример #4
0
 def testSymmetry(self):
     tag = "B1"
     for k in range(1,3):
         quadrule = pyramidquadrature(k+1)
         for N in range(1,3):
             for elements in [H1Elements(k), HcurlElements(k), HdivElements(k)]:
                 system = SymmetricSystem(elements, quadrule, lambda m: buildcubemesh(N, m, tag), [tag])
                 for deriv in [False, True]:
                     SM = system.systemMatrix(deriv)
                     g = lambda x: np.zeros((len(x),1))
                     S, SIBs, Gs = system.processBoundary(SM, {tag:g})  
                     np.testing.assert_array_almost_equal(SM.todense(), SM.transpose().todense())  
                     np.testing.assert_array_almost_equal(S.todense(), S.transpose().todense())
Пример #5
0
def laplacedirichlet(k, N, g, points):    
    tag = "B1"
    elements = H1Elements(k)
    quadrule = pyramidquadrature(k+1)
    system = SymmetricSystem(elements, quadrule, lambda m: buildcubemesh(N, m, tag), [tag])

    SM = system.systemMatrix(True)
    S, SIBs, Gs = system.processBoundary(SM, {tag:g})

    
    SG = SIBs[tag] * Gs[tag]
    print S.shape
    U = spsolve(S, -SG)[:,numpy.newaxis]

    return system.evaluate(points, U, Gs, False)
Пример #6
0
 def testSymmetry(self):
     tag = "B1"        
     for k in range(1,3):
         quadrule = pyramidquadrature(k+1)            
         for N in range(1,3):
             hdivelt1 = HdivElements(k)
             l2elt1 = L2Elements(k)
             hdivelt2 = HdivElements(k)
             l2elt2 = L2Elements(k)
             system = AsymmetricSystem(hdivelt1, l2elt1, quadrule, lambda m:buildcubemesh(N,m,tag), [], [])
             systemt = AsymmetricSystem(l2elt2, hdivelt2, quadrule, lambda m:buildcubemesh(N,m,tag), [], [])
             SM = system.systemMatrix(True, False)
             StM = system.transpose().systemMatrix(False, True)
             SMt = systemt.systemMatrix(False, True)
             np.testing.assert_array_almost_equal(SM.todense(), SMt.transpose().todense())  
             np.testing.assert_array_almost_equal(StM.todense(), SMt.todense())  
Пример #7
0
def laplaceeigs(k,N,n):
    import scipy.linalg as sl
    tag = "B1"
    elements = H1Elements(k)
    quadrule = pyramidquadrature(k+1)
    system = SymmetricSystem(elements, quadrule, lambda m: buildcubemesh(N, m, tag), [tag])

    SM = system.systemMatrix(True)
    S, SIBs, Gs = system.processBoundary(SM, {tag:lambda p: numpy.zeros((len(p),1))})
    print S.shape
    MM = system.systemMatrix(False)
    M, _, _ = system.processBoundary(MM, {tag:lambda p: numpy.zeros((len(p),1))})
    
    MLU = ssl.splu(M)
    L = A = ssl.LinearOperator( M.shape, matvec=lambda x: MLU.solve(S* x), dtype=float)
    
    return ssl.eigen(L, k=n, which='SM', return_eigenvectors=False)
Пример #8
0
def poissondirichlet(k,N,g,f, points):
    tag = "B1"
    elements = H1Elements(k)
    quadrule = pyramidquadrature(k+1)
    system = SymmetricSystem(elements, quadrule, lambda m: buildcubemesh(N, m, tag), [tag])
    
    SM = system.systemMatrix(True)
    S, SIBs, Gs = system.processBoundary(SM, {tag:g})    
    SG = SIBs[tag] * Gs[tag]
    if f: 
        F = system.loadVector(f)
    else: F = 0
    
    print SM.shape, S.shape, SIBs[tag].shape, Gs[tag].shape, F.shape, SG.shape
    
    t = Timer().start()
    U = spsolve(S, -F-SG)[:,numpy.newaxis]
    t.split("spsolve").show()
    
    return system.evaluate(points, U, Gs, False)
Пример #9
0
def stokespressure(k, meshevents, pressures, points, countdofs = False, avpressure = False):
    vortelts1 = pe.HcurlElements(k)
    vortelts2 = pe.HcurlElements(k)
    velelts1 = pe.HdivElements(k)
    velelts2 = pe.HdivElements(k)
    pressureelts1 = pe.L2Elements(k)
    
    quadrule = pu.pyramidquadrature(k+1)
    
    Asys = pa.SymmetricSystem(vortelts1, quadrule, meshevents, [])
#    Bsys = pa.AsymmetricSystem(velelts1, vortelts2, quadrule, meshevents, [bdytag], [])
    BsysT = pa.AsymmetricSystem(vortelts2, velelts1, quadrule, meshevents, [], [closedbdytag])
    Csys = pa.AsymmetricSystem(pressureelts1,velelts2, quadrule, meshevents, [], [closedbdytag])
    
    A = Asys.systemMatrix(False)
    BT = BsysT.systemMatrix(True, False)
    C = Csys.systemMatrix(False, True)
    
    v0 = lambda x: np.zeros_like(x)[:,np.newaxis,:]
    vt = lambda x,n: np.zeros_like(x)[:,np.newaxis,:]
    
    BTI, BTE, BTGs = BsysT.processBoundary(BT, {closedbdytag:v0})
    CI, CE, CGs = Csys.processBoundary(C, {closedbdytag:v0})
    
    Pav = Csys.loadVector(lambda x: np.ones((len(x),1,1)))
#    print "P ",P
    alltags = pressures.keys() + [closedbdytag]
    
    Gt = Asys.boundaryLoad(dict([(tag,vt) for tag in alltags]), pu.squarequadrature(k+1), pu.trianglequadrature(k+1), False)
    Pv = Csys.transpose().boundaryLoad(pressures, pu.squarequadrature(k+1), pu.trianglequadrature(k+1), False)

#    print "Gt ",Gt
    print A.shape, BT.shape, C.shape, BTI.shape, map(np.shape, BTE.values()), map(np.shape, BTGs.values()), map(np.shape, Gt.values()), map(np.shape, Pv.values()), CI.shape

    AL = sum(Gt.values()) + BTE[closedbdytag] * BTGs[closedbdytag]
    BL = sum(Pv.values())
 #   print "AL ",AL
    CL = -CE[closedbdytag] * CGs[closedbdytag]
    
    nvort = A.get_shape()[0]
    nvel = BTI.get_shape()[1]
    npress = C.get_shape()[0]
    print nvel
    
    if avpressure:
        S = ss.bmat([[A, -BTI, None, None],[-BTI.transpose(), None, CI.transpose(), None],[None, CI, None, Pav], [None,None,Pav.transpose(), None]])
        L = np.vstack((AL,BL, CL, np.zeros((1,1))))
    else:
        S = ss.bmat([[A, -BTI, None],[-BTI.transpose(), None, CI.transpose()],[None, CI, None]])
        L = np.vstack((AL,BL, CL))
    X = ps.solve(S, L)
    U = X[nvort:(nvort + nvel)]
    P = X[(nvort+nvel):(nvort+nvel+npress)]
#    print "X",X
#    print "U", U
#    print "BTGs", BTGs
#    
    u = BsysT.evaluate(points, U, BTGs, False)
#    uu = Asys.evaluate(points, np.eye(nvort)[-2], {}, False)
#    uu = BsysT.evaluate(points, U, {}, False)
    p = Csys.transpose().evaluate(points, P, {}, False)
#    print np.hstack((points, u))
#    print u
    if countdofs:
        return u, len(X)
    return u, p