def plot_3d_trajectory(ground_truth,
                       feat_time=None,
                       qzetas=None,
                       depths=None,
                       ids=None,
                       p_b_c=np.zeros((3, 1)),
                       q_b_c=Quaternion.Identity(),
                       fighandle=None):
    pos_time = ground_truth[:, 0]
    position = ground_truth[:, 1:4]
    orientation = ground_truth[:, 4:8]
    if fighandle is not None:
        ax = fighandle
    else:
        plt.figure(2, figsize=(14, 10))
        ax = plt.subplot(111, projection='3d')
    plt.plot(position[:1, 0], position[:1, 1], position[:1, 2], 'kx')
    plt.plot(position[:, 0], position[:, 1], position[:, 2], 'c-')
    ax.set_xlabel('X axis')
    ax.set_ylabel('Y axis')
    ax.set_zlabel('Z axis')
    e_x = 0.1 * np.array([[1., 0, 0]]).T
    e_y = 0.1 * np.array([[0, 1., 0]]).T
    e_z = 0.1 * np.array([[0, 0, 1.]]).T
    if qzetas is not None:
        id_indices = np.unique(np.hstack(ids))
        colors = get_colors(len(id_indices), plt.cm.jet)
    for i in range(len(position) / 25):
        j = i * 25
        q_i_b = Quaternion(orientation[j, :, None])
        body_pos = position[j, :, None]
        x_end = body_pos + q_i_b.rot(e_x)
        y_end = body_pos + q_i_b.rot(e_y)
        z_end = body_pos + q_i_b.rot(e_z)
        plt.plot([body_pos[0, 0], x_end[0, 0]], [body_pos[1, 0], x_end[1, 0]],
                 [body_pos[2, 0], x_end[2, 0]], 'r-')
        plt.plot([body_pos[0, 0], y_end[0, 0]], [body_pos[1, 0], y_end[1, 0]],
                 [body_pos[2, 0], y_end[2, 0]], 'g-')
        plt.plot([body_pos[0, 0], z_end[0, 0]], [body_pos[1, 0], z_end[1, 0]],
                 [body_pos[2, 0], z_end[2, 0]], 'b-')
        if feat_time is not None:
            feat_idx = np.argmin(feat_time < pos_time[j])
            camera_pos = body_pos + q_i_b.invrot(p_b_c)
            for qz, d, id in zip(qzetas[feat_idx], depths[feat_idx],
                                 ids[feat_idx]):
                if np.isfinite(qz).all() and np.isfinite(d):
                    q_c_z = Quaternion(qz[:, None])
                    zeta_end = camera_pos + q_i_b.rot(
                        q_b_c.rot(q_c_z.rot(10. * e_z * d)))
                    plt.plot([camera_pos[0, 0], zeta_end[0, 0]],
                             [camera_pos[1, 0], zeta_end[1, 0]],
                             [camera_pos[2, 0], zeta_end[2, 0]],
                             '--',
                             color=colors[np.where(id_indices == id)[0][0]],
                             lineWidth='1.0')
def generate_data():
    dt = 0.0033
    t = np.arange(dt, 120.1, dt)

    g = np.array([[0, 0, 9.80665]]).T

    q0 = Quaternion(np.array([[1, 0.0, 0, 0]]).T)
    q0.normalize()

    q = np.zeros((len(t), 4))
    q[0, :, None] = q0.elements

    frequencies = np.array([[1.0, 1.5, -1.0]]).T
    amplitudes = np.array([[1.0, 1.0, 1.0]]).T

    omega = amplitudes * np.sin(frequencies * t)

    acc = np.zeros([3, len(t)])

    for i in tqdm(range(len(t))):
        if i == 0.0:
            continue
        quat = Quaternion(q[i - 1, :, None])

        q[i, :, None] = (quat + omega[:, i, None] * dt).elements

        acc[:, i, None] = -quat.rot(g)

    data = dict()
    data['truth_NED'] = dict()
    data['truth_NED']['pos'] = np.zeros((len(t), 3))
    data['truth_NED']['vel'] = np.zeros((len(t), 3))
    data['truth_NED']['att'] = q
    data['truth_NED']['t'] = t

    data['imu_data'] = dict()
    data['imu_data']['t'] = t
    data['imu_data']['acc'] = acc.T
    data['imu_data']['gyro'] = omega.T

    landmarks = np.array([[0, 0, 1], [0, 0, 1], [1, 0, 1], [1, 1, 1]])

    landmarks = np.random.uniform(-25, 25, (2, 3))
    #[0, 9, 1],
    #[2, 3, 5]

    data['features'] = dict()
    data['features']['t'] = data['truth_NED']['t']
    data['features']['zeta'], data['features']['depth'] = add_landmark(
        data['truth_NED']['pos'], data['truth_NED']['att'], landmarks)

    cPickle.dump(data, open('generated_data.pkl', 'wb'))
Пример #3
0
def calculate_velocity_from_position(t, position, orientation):
    # Calculate body-fixed velocity by differentiating position and rotating
    # into the body frame
    b, a = scipy.signal.butter(8, 0.03)  # Create a Butterworth Filter
    # differentiate Position
    delta_x = np.diff(position, axis=0)
    delta_t = np.diff(t)
    unfiltered_inertial_velocity = np.vstack((np.zeros((1, 3)), delta_x / delta_t[:, None]))
    # Filter
    v_inertial = scipy.signal.filtfilt(b, a, unfiltered_inertial_velocity, axis=0)
    # Rotate into Body Frame
    vel_data = []
    for i in range(len(t)):
        q_I_b = Quaternion(orientation[i, :, None])
        vel_data.append(q_I_b.rot(v_inertial[i, None].T).T)

    vel_data = np.array(vel_data).squeeze()
    return vel_data
Пример #4
0
    def h_feat(self, x, **kwargs):
        # assert x.shape == (xZ + 5 * self.len_features, 1) and isinstance(i, int)
        i = self.global_to_local_feature_id[kwargs['i']]
        dxZETA_i = dxZ + i * 3
        q_zeta = Quaternion(x[xZ + i * 5:xZ + i * 5 + 4])

        zeta = q_zeta.rot(self.khat)
        sk_zeta = skew(zeta)
        ezT_zeta = (self.khat.T.dot(zeta)).squeeze()
        T_z = T_zeta(q_zeta)

        h = self.cam_F.dot(zeta) / ezT_zeta + self.cam_center

        dhdx = np.zeros((2, dxZ + 3 * self.len_features))
        dhdx[:, dxZETA_i:dxZETA_i +
             2] = -self.cam_F.dot((sk_zeta.dot(T_z)) / ezT_zeta -
                                  zeta.dot(self.khat.T).dot(sk_zeta).dot(T_z) /
                                  (ezT_zeta * ezT_zeta))

        return h, dhdx
Пример #5
0
    def h_pixel_vel(self, x, i, u):
        # assert x.shape == (xZ + 5 * self.len_features, 1) and isinstance(i, int) and u.shape == (6, 1)

        vel = x[xVEL:xVEL + 3]
        omega = u[uG:uG + 3] - x[xB_G:xB_G + 3]

        # Camera Dynamics
        vel_c_i = self.q_b_c.invrot(vel + skew(omega).dot(self.p_b_c))
        omega_c_i = self.q_b_c.invrot(omega)

        q_c_z = Quaternion(x[xZ + i * 5:xZ + i * 5 + 4])
        rho = x[xZ + i * 5 + 4]
        zeta = q_c_z.rot(self.khat)

        sk_vel = skew(vel_c_i)
        sk_ez = skew(self.khat)
        sk_zeta = skew(zeta)
        R_b_c = self.q_b_c.R

        # TODO: Need to convert to camera dynamics

        h = -self.focal_len * I_2x3.dot(sk_ez).dot(rho *
                                                   (sk_zeta.dot(vel_c_i)) +
                                                   omega_c_i)

        ZETA_i = dxZ + 3 * i
        RHO_i = dxZ + 3 * i + 2
        dhdx = np.zeros((2, dxZ + 3 * self.len_features))
        dhdx[:, dxVEL:dxVEL +
             3] = -self.focal_len * rho * I_2x3.dot(sk_ez).dot(sk_zeta)
        dhdx[:, ZETA_i:ZETA_i + 2] = -self.focal_len * rho * I_2x3.dot(
            sk_ez).dot(sk_vel).dot(sk_zeta).dot(T_zeta(q_c_z))
        dhdx[:, RHO_i, None] = -self.focal_len * I_2x3.dot(sk_ez).dot(
            sk_zeta).dot(vel_c_i)
        dhdx[:, dxB_G:dxB_G + 3] = self.focal_len * I_2x3.dot(sk_ez).dot(
            R_b_c - rho * sk_zeta.dot(R_b_c).dot(skew(self.p_b_c)))
        # dhdx[:, dxB_G:dxB_G + 3] = self.focal_len * I_2x3.dot(sk_ez).dot(I_zz)

        return h, dhdx
Пример #6
0
    def dynamics(self, x, u):
        # assert x.shape == (xZ+5*self.len_features, 1) and u.shape == (6,1)

        # Reset Matrix Workspace
        self.dx.fill(0.0)
        self.A.fill(0.0)
        self.G.fill(0.0)

        vel = x[xVEL:xVEL + 3]
        q_I_b = Quaternion(x[xATT:xATT + 4])

        omega = u[uG:uG + 3] - x[xB_G:xB_G + 3]
        acc = u[uA:uA + 3] - x[xB_A:xB_A + 3]
        acc_z = np.array([[0, 0, acc[2, 0]]]).T
        mu = x[xMU, 0]

        gravity_B = q_I_b.invrot(self.gravity)
        vel_I = q_I_b.invrot(vel)
        vel_xy = I_2x3.T.dot(I_2x3).dot(vel)

        # CALCULATE STATE DYNAMICS
        self.dx[dxPOS:dxPOS + 3] = vel_I
        if self.use_drag_term:
            self.dx[dxVEL:dxVEL + 3] = acc_z + gravity_B - mu * vel_xy
        else:
            self.dx[dxVEL:dxVEL + 3] = acc + gravity_B
        self.dx[dxATT:dxATT + 3] = omega

        ###################################
        # STATE JACOBIAN
        self.A[dxPOS:dxPOS + 3, dxVEL:dxVEL + 3] = q_I_b.R
        self.A[dxPOS:dxPOS + 3, dxATT:dxATT + 3] = skew(vel_I)
        if self.use_drag_term:
            self.A[dxVEL:dxVEL + 3, dxVEL:dxVEL + 3] = -mu * I_2x3.T.dot(I_2x3)
            self.A[dxVEL:dxVEL + 3,
                   dxB_A:dxB_A + 3] = -self.khat.dot(self.khat.T)
            self.A[dxVEL:dxVEL + 3, dxMU, None] = -vel_xy
        else:
            self.A[dxVEL:dxVEL + 3, dxB_A:dxB_A + 3] = -I_3x3
        self.A[dxVEL:dxVEL + 3, dxATT:dxATT + 3] = skew(gravity_B)
        self.A[dxATT:dxATT + 3, dxB_G:dxB_G + 3] = -I_3x3

        #################################
        ## INPUT JACOBIAN
        if self.use_drag_term:
            self.G[dxVEL:dxVEL + 3, uA:uA + 3] = self.khat.dot(self.khat.T)
        else:
            self.G[dxVEL:dxVEL + 3, uA:uA + 3] = I_3x3
        self.G[dxATT:dxATT + 3, uG:uG + 3] = I_3x3

        # Camera Dynamics
        omega_c_i = self.q_b_c.invrot(omega)
        vel_c_i = self.q_b_c.invrot(vel - skew(omega).dot(self.p_b_c))

        for i in range(self.len_features):
            xZETA_i = xZ + i * 5
            xRHO_i = xZ + 5 * i + 4
            dxZETA_i = dxZ + i * 3
            dxRHO_i = dxZ + i * 3 + 2

            q_zeta = Quaternion(x[xZETA_i:xZETA_i + 4, :])
            rho = x[xRHO_i, 0]
            zeta = q_zeta.rot(self.khat)
            T_z = T_zeta(q_zeta)
            skew_zeta = skew(zeta)
            skew_vel_c = skew(vel_c_i)
            skew_p_b_c = skew(self.p_b_c)
            R_b_c = self.q_b_c.R
            rho2 = rho * rho

            #################################
            ## FEATURE DYNAMICS
            self.dx[dxZETA_i:dxZETA_i +
                    2, :] = -T_z.T.dot(omega_c_i +
                                       rho * skew_zeta.dot(vel_c_i))
            self.dx[dxRHO_i, :] = rho2 * zeta.T.dot(vel_c_i)

            #################################
            ## FEATURE STATE JACOBIAN
            self.A[dxZETA_i:dxZETA_i + 2,
                   dxVEL:dxVEL + 3] = -rho * T_z.T.dot(skew_zeta).dot(R_b_c)
            self.A[dxZETA_i:dxZETA_i + 2, dxB_G:dxB_G +
                   3] = T_z.T.dot(rho * skew_zeta.dot(R_b_c).dot(skew_p_b_c) +
                                  R_b_c)
            self.A[dxZETA_i:dxZETA_i + 2, dxZETA_i:dxZETA_i + 2] = -T_z.T.dot(
                skew(rho * skew_zeta.dot(vel_c_i) + omega_c_i) +
                (rho * skew_vel_c.dot(skew_zeta))).dot(T_z)
            self.A[dxZETA_i:dxZETA_i + 2, dxRHO_i,
                   None] = -T_z.T.dot(skew_zeta).dot(vel_c_i)
            self.A[dxRHO_i, dxVEL:dxVEL + 3] = rho2 * zeta.T.dot(R_b_c)
            self.A[dxRHO_i,
                   dxB_G:dxB_G + 3] = -rho2 * zeta.T.dot(R_b_c).dot(skew_p_b_c)
            self.A[dxRHO_i, dxZETA_i:dxZETA_i +
                   2] = -rho2 * vel_c_i.T.dot(skew_zeta).dot(T_z)
            self.A[dxRHO_i, dxRHO_i] = 2 * rho * zeta.T.dot(vel_c_i).squeeze()

            #################################
            ## FEATURE INPUT JACOBIAN
            self.G[dxZETA_i:dxZETA_i + 2, uG:uG +
                   3] = -T_z.T.dot(R_b_c +
                                   rho * skew_zeta.dot(R_b_c).dot(skew_p_b_c))
            self.G[dxRHO_i, uG:] = rho2 * zeta.T.dot(R_b_c).dot(skew_p_b_c)

        return self.dx, self.A, self.G