Пример #1
0
def test_soft_update(env, policy: Policy):
    # Init param values
    target, source = deepcopy(policy), deepcopy(policy)
    target.param_values = to.zeros_like(target.param_values)
    source.param_values = to.ones_like(source.param_values)

    # Do one soft update
    SAC.soft_update(target, source, tau=0.8)
    assert to.allclose(target.param_values,
                       0.2 * to.ones_like(target.param_values))

    # Do a second soft update to see the exponential decay
    SAC.soft_update(target, source, tau=0.8)
    assert to.allclose(target.param_values,
                       0.36 * to.ones_like(target.param_values))
Пример #2
0
    # Algorithm
    algo_hparam = dict(
        max_iter=1000*env.max_steps,
        memory_size=100*env.max_steps,
        gamma=0.995,
        num_batch_updates=1,
        tau=0.995,
        ent_coeff_init=0.2,
        learn_ent_coeff=True,
        target_update_intvl=5,
        standardize_rew=False,
        min_steps=1,
        batch_size=256,
        num_workers=4,
        lr=3e-4,
    )
    algo = SAC(ex_dir, env, policy, qfcn_1, qfcn_2, **algo_hparam)

    # Save the hyper-parameters
    save_list_of_dicts_to_yaml([
        dict(env=env_hparams, seed=args.seed),
        dict(policy=policy_hparam),
        dict(qfcn=qfcn_hparam),
        dict(algo=algo_hparam, algo_name=algo.name)],
        ex_dir
    )

    # Jeeeha
    algo.train(seed=args.seed)
Пример #3
0
def train_and_eval(trial: optuna.Trial, study_dir: str, seed: int):
    """
    Objective function for the Optuna `Study` to maximize.

    .. note::
        Optuna expects only the `trial` argument, thus we use `functools.partial` to sneak in custom arguments.

    :param trial: Optuna Trial object for hyper-parameter optimization
    :param study_dir: the parent directory for all trials in this study
    :param seed: seed value for the random number generators, pass `None` for no seeding
    :return: objective function value
    """
    # Synchronize seeds between Optuna trials
    pyrado.set_seed(seed)

    # Environment
    env_hparams = dict(physicsEngine="Bullet", dt=1 / 100.0, max_steps=500)
    env = BallOnPlate2DSim(**env_hparams)
    env = ActNormWrapper(env)

    # Policy
    policy_hparam = dict(
        shared_hidden_sizes=trial.suggest_categorical(
            "shared_hidden_sizes_policy", [(16, 16), (32, 32), (64, 64),
                                           (16, 16, 16), (32, 32, 32)]),
        shared_hidden_nonlin=fcn_from_str(
            trial.suggest_categorical("shared_hidden_nonlin_policy",
                                      ["to_tanh", "to_relu"])),
    )
    policy = TwoHeadedFNNPolicy(spec=env.spec, **policy_hparam)

    # Critic
    qfcn_hparam = dict(
        hidden_sizes=trial.suggest_categorical("hidden_sizes_critic",
                                               [(16, 16), (32, 32), (64, 64),
                                                (16, 16, 16), (32, 32, 32)]),
        hidden_nonlin=fcn_from_str(
            trial.suggest_categorical("hidden_nonlin_critic",
                                      ["to_tanh", "to_relu"])),
    )
    obsact_space = BoxSpace.cat([env.obs_space, env.act_space])
    qfcn_1 = FNNPolicy(spec=EnvSpec(obsact_space, ValueFunctionSpace),
                       **qfcn_hparam)
    qfcn_2 = FNNPolicy(spec=EnvSpec(obsact_space, ValueFunctionSpace),
                       **qfcn_hparam)

    # Algorithm
    algo_hparam = dict(
        num_workers=1,  # parallelize via optuna n_jobs
        max_iter=100 * env.max_steps,
        min_steps=trial.suggest_categorical(
            "min_steps_algo", [1]),  # 10, env.max_steps, 10*env.max_steps
        memory_size=trial.suggest_loguniform("memory_size_algo",
                                             1e2 * env.max_steps,
                                             1e4 * env.max_steps),
        tau=trial.suggest_uniform("tau_algo", 0.99, 1.0),
        ent_coeff_init=trial.suggest_uniform("ent_coeff_init_algo", 0.1, 0.9),
        learn_ent_coeff=trial.suggest_categorical("learn_ent_coeff_algo",
                                                  [True, False]),
        standardize_rew=trial.suggest_categorical("standardize_rew_algo",
                                                  [False]),
        gamma=trial.suggest_uniform("gamma_algo", 0.99, 1.0),
        target_update_intvl=trial.suggest_categorical(
            "target_update_intvl_algo", [1, 5]),
        num_updates_per_step=trial.suggest_categorical(
            "num_batch_updates_algo", [1, 5]),
        batch_size=trial.suggest_categorical("batch_size_algo",
                                             [128, 256, 512]),
        lr=trial.suggest_loguniform("lr_algo", 1e-5, 1e-3),
    )
    csv_logger = create_csv_step_logger(
        osp.join(study_dir, f"trial_{trial.number}"))
    algo = SAC(study_dir,
               env,
               policy,
               qfcn_1,
               qfcn_2,
               **algo_hparam,
               logger=csv_logger)

    # Train without saving the results
    algo.train(snapshot_mode="latest", seed=seed)

    # Evaluate
    min_rollouts = 1000
    sampler = ParallelRolloutSampler(
        env, policy, num_workers=1,
        min_rollouts=min_rollouts)  # parallelize via optuna n_jobs
    ros = sampler.sample()
    mean_ret = sum([r.undiscounted_return() for r in ros]) / min_rollouts

    return mean_ret