Пример #1
0
def extract_spec2():
    infile = workdir + '/maps/standards/HD221246_K3III.fits'
    specInfo, hdr = pyfits.getdata(infile, header=True)
    wave = specInfo[0,:] * 1e3  # in nm
    spec = specInfo[1,:]
    print wave[0:10]
    print wave[-10:]
    print spec

    crpix1 = 1
    crval1 = wave[0]
    cdelt1 = wave[1] - wave[0]
    cunit1 = 'nm'

    tmp = np.arange(len(spec), dtype=float)
    tmp = tmp*cdelt1 + crval1
    print tmp[0:10]
    print tmp[-10:]


    hdr.update('CRPIX1', crpix1)
    hdr.update('CRVAL1', crval1)
    hdr.update('CDELT1', cdelt1)
    hdr.update('CUNIT1', cunit1)

    fitsFile = workdir + 'maps/test_spec_standard.fits'
    ir.imdelete(fitsFile)
    pyfits.writeto(fitsFile, spec, header=hdr)
Пример #2
0
    def calibFlux(self, inIm, **kwargs):

        print "\nCALIBRATING FLUX IN " + inIm

        # determine which extinction file to use
        hdu = fits.open(inIm)
        if hdu[0].header["OBSERVAT"] == "Gemini-North":
            self.extDat = "gmos$calib/mkoextinct.dat"
        else:
            self.extDat = "onedstds$ctioextinct.dat"

        # determine which sensitivity function to use
        centWave = str(int(hdu[0].header["CENTWAVE"]))
        sFunc = self.sFunc.replace("X", centWave)
        hdu.close()

        # delete previous flux calibrated spectra and generate new one
        iraf.imdelete("c" + inIm)
        iraf.gscalibrate(inIm,
                         sfunction=sFunc,
                         extinction=self.extDat,
                         **kwargs)

        # view the result
        print "Displaying calibrated data cube"
        self.viewCube("c" + inIm, version="1")

        return
Пример #3
0
def extract_spec2():
    infile = workdir + '/maps/standards/HD221246_K3III.fits'
    specInfo, hdr = pyfits.getdata(infile, header=True)
    wave = specInfo[0,:] * 1e3  # in nm
    spec = specInfo[1,:]
    print wave[0:10]
    print wave[-10:]
    print spec

    crpix1 = 1
    crval1 = wave[0]
    cdelt1 = wave[1] - wave[0]
    cunit1 = 'nm'

    tmp = np.arange(len(spec), dtype=float)
    tmp = tmp*cdelt1 + crval1
    print tmp[0:10]
    print tmp[-10:]


    hdr.update('CRPIX1', crpix1)
    hdr.update('CRVAL1', crval1)
    hdr.update('CDELT1', cdelt1)
    hdr.update('CUNIT1', cunit1)

    fitsFile = workdir + 'maps/test_spec_standard.fits'
    ir.imdelete(fitsFile)
    pyfits.writeto(fitsFile, spec, header=hdr)
Пример #4
0
    def subScatLgt(self, inIm, mask, **kwargs):

        print "\nSUBTRACTING SCATTERED LIGHT FROM", inIm

        pref = kwargs["prefix"]

        # allow user to iterate over orders used to model scattered light
        while True:
            fixScat = bool(
                input(
                    "\nDoes subtraction of scattered light need improvement? (True/False): "
                ))
            if fixScat:
                # request orders from user
                xOrders = raw_input("X orders (csv): ")
                yOrders = raw_input("Y orders (csv): ")

                # model and subtract the light, and view the result
                iraf.imdelete(pref + inIm)
                iraf.gfscatsub(inIm, mask, xorder=xOrders, yorder=yOrders, \
                 **kwargs)

                utils.examIm(pref + inIm + "[SCI]", frame=1)
            else:
                break

        return
Пример #5
0
    def viewCubeMov(self, inCube, step=10, **kwargs):

        print "\nSTEPPING THROUGH " + inCube

        # obtain number of wavelength samples in cube
        hdul = fits.open(inCube)
        nWave = hdul["SCI"].data.shape[0]

        # step through cube, summing images within each chunk
        cubeChunk = "chunk.fits"
        for i in range(0, nWave, step):
            iraf.imdelete(cubeChunk)

            if i + 9 > nWave - 1:
                lastFrame = str(nWave - 1)
            else:
                lastFrame = str(i + 9)

            iraf.imcombine(inCube + "[SCI][*,*," + str(i) + ":" + lastFrame + \
             "]", cubeChunk, project="yes", combine="sum", logfile="")
            print "Displaying chunk [" + str(i) + ":" + lastFrame + "]"
            iraf.display(cubeChunk, frame="1", contrast=0.)
            time.sleep(2)

        # delete the last wavelength chunk and close the cube
        iraf.imdelete(cubeChunk)
        hdul.close()

        return
Пример #6
0
def getMasks(filename):
  #Delete the old masks, if any exist.
  iraf.imdelete(filename+'_Handmask.fits')
  iraf.imdelete(filename+'_HaHandmask.fits')
  
  #Extract the mask from the masked R image, using a handmasked image if one exists otherwise using the masked image
  maskValue = 0.0
  try:
    maskedRImage = fits.getdata(filename+'_Handmasked.fits')
  except IOError:
    maskedRImage = fits.getdata(filename+'Masked.fits')
  manyZeros = np.zeros_like(maskedRImage)
  manyOnes = np.ones_like(maskedRImage)
  
  print 'Writing R mask'
  RmaskPixels = np.where((maskedRImage!=maskValue),manyZeros,manyOnes)
  
  hdu=fits.PrimaryHDU(RmaskPixels)
  hdulist = fits.HDUList([hdu])
  hdulist.writeto(filename+'_Handmask.fits')
  
  #Do the same for the Ha image
  print 'Writing Ha mask'
  try:
    maskedHaImage = fits.getdata(filename+'_HaHandmasked.fits')
  except IOError:
    maskedHaImage = fits.getdata(filename+'_Ha.fits')
  HaMaskPixels = np.where((maskedHaImage!=maskValue),manyZeros,manyOnes)
  
  hdu=fits.PrimaryHDU(HaMaskPixels)
  hdulist = fits.HDUList([hdu])
  hdulist.writeto(filename+'_HaHandmask.fits')
Пример #7
0
def quartz_divide(science_list,object_match):
    '''Divides science frames by user-selected quartz frames'''
    for obj in science_list:
        if len(object_match[obj]) > 1:
            qtzinpt = ''
            for qtz in object_match[obj]:
                qtzinpt += qtz +','
            iraf.imcombine(input=qtzinpt,output='tempquartz')
            iraf.imarith(operand1=obj,operand2='tempquartz',op='/',result='f'+obj)
            heditstr = 'Flat field images are '+qtzinpt[:-1]
            iraf.imdelete(images='tempquartz',go_ahead='yes',verify='no')
            if len(heditstr) > 65:
                nfields = int(len(heditstr)/65) #Declare int for py3 compatibility
                for ii in range(nfields+1):
                    writestr = heditstr[(ii*65):(ii+1)*65]
                    iraf.hedit(images='f'+obj,fields='flatcor'+str(ii),value=writestr,add='yes',verify='No')
            else:
                iraf.hedit(images='f'+obj,fields='flatcor',value=heditstr,add='yes',verify='No')
        else:
            iraf.imarith(operand1=obj,operand2=object_match[obj][0],op='/',result='f'+obj)
            heditstr = 'Flat field image is '+object_match[obj][0]
            if len(heditstr) > 65:
                nfields = int(len(heditstr)/65) #Declare int for py3 compatibility
                for ii in range(nfields+1):
                    writestr = heditstr[(ii*65):(ii+1)*65]
                    iraf.hedit(images='f'+obj,fields='flatcor'+str(ii),value=writestr,add='yes',verify='No')
            else:
                iraf.hedit(images='f'+obj,fields='flatcor',value=heditstr,add='yes',verify='No')
    return
Пример #8
0
    def extractSpec(self, inIm, **kwargs):

        # remove previous spectra and extract new ones
        iraf.imdelete("e" + inIm, verify="yes")
        iraf.gfextract(inIm, **kwargs)

        return
Пример #9
0
    def cleanCosRays(self, inIm, pref="x", **kwargs):

        print "\nCLEANING COSMIC RAYS FROM " + inIm

        iraf.imdelete(pref + inIm)
        iraf.gemcrspec(inIm, pref + inIm, **kwargs)

        return
Пример #10
0
def extract_spec():
    cubefits = pyfits.open(datadir + cuberoot + '.fits')
    cube = cubefits[0].data
    cubehdr = cubefits[0].header

    spec = cube[11, 47, :]

    fitsFile = workdir + 'maps/test_spec_11_47.fits'
    ir.imdelete(fitsFile)
    pyfits.writeto(fitsFile, spec, header=cubehdr)
Пример #11
0
def extract_spec():
    cubefits = pyfits.open(datadir + cuberoot + '.fits')
    cube = cubefits[0].data
    cubehdr = cubefits[0].header

    spec = cube[11, 47, :]

    fitsFile = workdir + 'maps/test_spec_11_47.fits'
    ir.imdelete(fitsFile)
    pyfits.writeto(fitsFile, spec, header=cubehdr)
Пример #12
0
    def correctQE(self, inIm, **kwargs):

        print "\nCORRECTING QE IN " + inIm

        # delete previous correction data and QE-corrected exposure
        iraf.imdelete("q" + inIm)
        iraf.imdelete("qecorr" + kwargs["refimages"])

        iraf.gqecorr(inIm, **kwargs)

        return
Пример #13
0
    def rectifySpec(self, inIm, **kwargs):

        # remove previous rectified spectra
        iraf.imdelete("t" + inIm)

        # transform the spectra and view the result
        iraf.gftransform(inIm, **kwargs)
        print "\nDisplaying 2D spectra"
        iraf.display("t" + inIm + "[SCI]")

        return
Пример #14
0
def create_coadd_img(qd,
                     targets,
                     dbFile,
                     data_dir,
                     prefix='mrg',
                     overwrite=True):
    '''
    despite the fact that it looks like this can be run from outside the
    raw directory, it can't be.
    
    Caveats:
    * It takes a lot of patience and trial-and-error tweaking of parameters 
        to get good results
    * There is little control over sky background
    * The output image is no bigger than the first (reference) image, 
        rather than the union of the image footprints
    
    '''
    ## Co-add the images, per position and filter.
    print(" -- Begin image co-addition --")
    cur_dir = os.getcwd()
    iraf.chdir(data_dir)

    # Use primarily the default task parameters.
    gemtools.imcoadd.unlearn()
    coaddFlags = {
        'fwhm': 3,
        'datamax': 6.e4,
        'geointer': 'nearest',
        'logfile': 'imcoaddLog.txt'
    }

    filters = ['Ha', 'HaC', 'SII', 'r', 'i']
    for f in filters:
        print "  - Co-addding science images in filter: {}".format(f)
        qd['Filter2'] = f + '_G%'
        for t in targets:
            qd['Object'] = t + '%'
            print "  - Co-addding science images for position: {}".format(t)
            outImage = t + '_' + f + '.fits'
            coAddFiles = fileSelect.fileListQuery(
                dbFile, fileSelect.createQuery('sciImg', qd), qd)
            if len(coAddFiles) > 1:
                gemtools.imcoadd(','.join(prefix + str(x) for x in coAddFiles),
                                 outimage=outImage,
                                 **coaddFlags)

    iraf.delete("*_trn*,*_pos,*_cen")
    iraf.imdelete("*badpix.pl,*_med.fits,*_mag.fits")
    #iraf.imdelete ("mrgS*.fits")

    print("=== Finished Calibration Processing ===")
    iraf.chdir(cur_dir)
Пример #15
0
    def sumFibers(self, inIm, **kwargs):

        print "\nSUMMING FIBERS FROM " + inIm

        # delete previous summed spectra
        # TODO: add attribute to class to turn imdelete verifications on/off
        iraf.imdelete("a" + inIm)

        # sum the fibers and view the final spectrum
        iraf.gfapsum(inIm, **kwargs)
        iraf.splot("a" + inIm + "[SCI,1]")

        return
Пример #16
0
    def extractSpec(self, inIm, **kwargs):

        print "\nEXTRACTING SPECTRA FROM", inIm

        # destroy previous extracted spectra
        iraf.imdelete("e" + inIm)

        # extract the spectra and view the result
        iraf.gfextract(inIm, **kwargs)
        self.viewCube("e" + inIm, frame=1, z1=0., z2=0., extname="SCI", \
         version="*")

        return
Пример #17
0
    def viewWhiteIm(self, inIm, **kwargs):

        print "\nDISPLAYING WHITE-LIGHT IMAGE"

        idx = inIm.find(".")
        #whiteIm = inIm[:idx] + "_2d.fits"
        whiteIm = "whiteIm_" + inIm

        iraf.imdelete(whiteIm)
        iraf.imcombine(inIm + "[SCI]", whiteIm, project="yes", combine="sum", \
         logfile="")

        iraf.display(whiteIm)

        return
Пример #18
0
    def subSky(self, inIm, **kwargs):

        print "\nSUBTRACTING SKY FROM " + inIm

        # delete previous sky-subtracted spectra
        iraf.imdelete("s" + inIm)

        # subtract the sky and view the result (as image and datacube)
        iraf.gfskysub(inIm, **kwargs)
        print "\nDisplaying 2D spectra"
        iraf.display("s" + inIm + "[SCI]")
        print "\nDisplaying data cube"
        self.viewCube("s" + inIm, extname="SCI", version="1")

        return
Пример #19
0
    def computeResp(self, inIm, **kwargs):

        print "\nCOMPUTING RESPONSE FUNCTION FOR", inIm

        # find endpoint of image prefix
        prefEnd = inIm.find(".") - 14

        # form title of output image and compute it with gfresponse
        outIm = inIm[prefEnd:inIm.find(".")] + '_resp'
        iraf.imdelete(outIm, verify="yes")

        # compute and view response function and view it
        iraf.gfresponse(inIm, outIm, **kwargs)
        self.viewCube(outIm)

        return
Пример #20
0
    def stackCubes(self, cubeList, **kwargs):

        outCube = self.target + "_finalCube.fits"

        # extract filenames of individual data cubes
        cubePaths = utils.getImPaths(cubeList)

        cubes = ", ".join(cubePaths)
        print "\nCOMBINING DATA CUBES: " + cubes

        # make work directory and copy images there
        cmd = "mkdir -v scratch/"
        os.system(cmd)

        for i, cube in enumerate(cubePaths):
            cmd = "cp -v " + cube + " scratch/"
            os.system(cmd)

            cubePaths[i] = "scratch/" + cube

        # update the WCS header cards of the cubes to their centroids
        # TODO: allow for lower pixel limit?
        # TODO: put calls to pyfalign and pyfmosaic into iterative loop?
        pyfu.pyfalign(cubePaths, method="centroid", llimit=0)

        # resample and align the cubes without stacking them
        # TODO: add line below to view alignment
        iraf.imdelete("scratch/separatedCubes.fits")
        pyfu.pyfmosaic(cubePaths,
                       "scratch/separatedCubes.fits",
                       separate="yes")

        # stack the aligned cubes and view the result
        # (both as white-light image and slow-paced movie)
        iraf.imdelete(outCube)
        pyfu.pyfmosaic(cubePaths, outCube, propvar="yes")
        self.viewWhiteIm(outCube)
        time.sleep(30)
        self.viewCubeMov(outCube)

        # remove work directory and its contents
        cmd = "rm scratch/*.fits"
        os.system(cmd)
        cmd = "rmdir scratch/"
        os.system(cmd)

        return
Пример #21
0
    def reduceIm(self, inIm, **kwargs):

        print "\nREDUCING", inIm

        # remove previously reduced exposures
        inPref = inIm[:inIm.find(".") - 14]
        if inPref == "":
            outPref = "g"
            images = outPref + inIm

            outPref = "r" + outPref
            images += "," + outPref + inIm
        else:
            outPref = ""
            images = ""

        if "fl_gscrrej" in kwargs.keys() and kwargs["fl_gscrrej"] == "yes":
            outPref = "x" + outPref
            images += "," + outPref + inIm
        else:
            pass

        if "fl_scatsub" in kwargs.keys() and kwargs["fl_scatsub"] == "yes":
            outPref = "b" + outPref
            images += "," + outPref + inIm
        else:
            pass

        if "fl_qecorr" in kwargs.keys() and kwargs["fl_qecorr"] == "yes":
            outPref = "q" + outPref
            images += "," + outPref + inIm
        else:
            pass

        if "fl_extract" in kwargs.keys() and kwargs["fl_extract"] == "no":
            pass
        else:
            outPref = "e" + outPref
            images += "," + outPref + inIm

        iraf.imdelete(images)

        # reduce the image
        iraf.gfreduce(inIm, **kwargs)

        return
Пример #22
0
    def reduceBias(self, imList, outIm, **kwargs):

        print "\nREDUCING BIASES"

        # append prefix to file list
        imList = "@" + imList

        # remove previous master bias
        iraf.imdelete(outIm)

        iraf.gbias(imList, outIm, **kwargs)

        # remove prepared images
        junk = "g" + imList
        iraf.imdelete(junk)

        return
Пример #23
0
def diffDarOnOff(cleanDir1, cleanDir2):
    files1tmp = glob.glob(cleanDir1 + '/c????.fits')
    files2tmp = glob.glob(cleanDir2 + '/c????.fits')

    for f1 in files1tmp:
        cname1 = f1.split('/')[-1]

        for f2 in files2tmp:
            cname2 = f2.split('/')[-1]

            if (cname1 == cname2):
                outname = cname1.replace('c', 'diff')

                print 'IMARITH: %s - %s = %s' % (cname1, cname2, outname)
                if (os.path.exists(outname)):
                    iraf.imdelete(outname)
                iraf.imarith(f1, '-', f2, outname)
Пример #24
0
def map_snr(waveLo=2.160, waveHi=2.175, datadir=datadir):
    """
    Make SNR maps for the combo and sub-maps.
    """

    fitsfiles = [datadir + cuberoot,
                 datadir + cuberoot + '_1', 
                 datadir + cuberoot + '_2',
                 datadir + cuberoot + '_3']
    
    for ff in range(len(fitsfiles)):
        # Read in cube and cube image. 
        #   -  cube is indexed as [y, x, lambda]
        #   -  cube iamge is indexed as [x, y]
        cubefits = pyfits.open(fitsfiles[ff] + '.fits')
        cube = cubefits[0].data
        hdr = cubefits[0].header

        cubeimg, imghdr = pyfits.getdata(fitsfiles[ff] + '_img.fits', 
                                         header=True) 

        # Calculate the SNR for the OSIRIS data between 2.160 and 2.175 microns.
        # Get the wavelength solution so we can specify range:
        w0 = hdr['CRVAL1']
        dw = hdr['CDELT1']
        wavelength = w0 + dw * np.arange(cube.shape[2], dtype=float)
        wavelength /= 1000.0   # Convert to microns
        
        # We need to remove the continuum first before we calculate the SNR.
        widx = np.where((wavelength > 2.160) & (wavelength < 2.175))
        waveCrop = wavelength[widx]

        snrMap = np.zeros(cubeimg.shape, dtype=float)

        # Loop through each spaxel and determine the SNR:
        for xx in range(cubeimg.shape[0]):
            for yy in range(cubeimg.shape[1]):
                specCrop = cube[yy, xx, widx].flatten()
                coeffs = scipy.polyfit(waveCrop, specCrop, 1)
                residuals = specCrop / scipy.polyval(coeffs, waveCrop)
                snrMap[xx, yy] = residuals.mean() / residuals.std()

        snrFile = fitsfiles[ff] + '_snr.fits'
        ir.imdelete(snrFile)
        pyfits.writeto(snrFile, snrMap, header=imghdr)
Пример #25
0
def map_snr(waveLo=2.160, waveHi=2.175, datadir=datadir):
    """
    Make SNR maps for the combo and sub-maps.
    """

    fitsfiles = [datadir + cuberoot,
                 datadir + cuberoot + '_1', 
                 datadir + cuberoot + '_2',
                 datadir + cuberoot + '_3']
    
    for ff in range(len(fitsfiles)):
        # Read in cube and cube image. 
        #   -  cube is indexed as [y, x, lambda]
        #   -  cube iamge is indexed as [x, y]
        cubefits = pyfits.open(fitsfiles[ff] + '.fits')
        cube = cubefits[0].data
        hdr = cubefits[0].header

        cubeimg, imghdr = pyfits.getdata(fitsfiles[ff] + '_img.fits', 
                                         header=True) 

        # Calculate the SNR for the OSIRIS data between 2.160 and 2.175 microns.
        # Get the wavelength solution so we can specify range:
        w0 = hdr['CRVAL1']
        dw = hdr['CDELT1']
        wavelength = w0 + dw * np.arange(cube.shape[2], dtype=float)
        wavelength /= 1000.0   # Convert to microns
        
        # We need to remove the continuum first before we calculate the SNR.
        widx = np.where((wavelength > 2.160) & (wavelength < 2.175))
        waveCrop = wavelength[widx]

        snrMap = np.zeros(cubeimg.shape, dtype=float)

        # Loop through each spaxel and determine the SNR:
        for xx in range(cubeimg.shape[0]):
            for yy in range(cubeimg.shape[1]):
                specCrop = cube[yy, xx, widx].flatten()
                coeffs = scipy.polyfit(waveCrop, specCrop, 1)
                residuals = specCrop / scipy.polyval(coeffs, waveCrop)
                snrMap[xx, yy] = residuals.mean() / residuals.std()

        snrFile = fitsfiles[ff] + '_snr.fits'
        ir.imdelete(snrFile)
        pyfits.writeto(snrFile, snrMap, header=imghdr)
def main():
    parser = argparse.ArgumentParser(description="Convolve a higher resolution image to a lower resolution")
    parser.add_argument("lopsf", type=str, help="Filename of lower res psf")
    parser.add_argument("hipsf", type=str, help="Filename of higher res psf")
    parser.add_argument("outker", type=str, help="Name of kernel to be created by psfmatch for convolution")
    parser.add_argument(
        "threshold",
        type=float,
        help='Low freq threshold in frac of total input image spectrum power for filtering option "replace"',
    )
    parser.add_argument("highresimg", type=str, help="Filename of image to be convolved")
    parser.add_argument("outname", type=str, help="Filename of output, convolved image")
    args = parser.parse_args()
    lopsf = args.lopsf
    hipsf = args.hipsf
    outker = args.outker
    threshold = args.threshold
    highresimg = args.highresimg
    outname = args.outname

    padpsf = "padpsf"

    if os.path.exists(padpsf + ".fits"):
        imdelete(padpsf)
    if os.path.exists(outker + ".fits"):
        imdelete(outker)

    # check that psfs are the same size
    lnx, lny = fits.getheader(lopsf)["NAXIS1"], fits.getheader(lopsf)["NAXIS2"]
    hnx, hny = fits.getheader(hipsf)["NAXIS1"], fits.getheader(hipsf)["NAXIS2"]
    # the psfs should be square
    if (lnx != lny) | (hnx != hny):
        print "\npsfs not square."
        exit()
    if lnx != hnx:
        # find which is smaller
        print "\npsfs not equal size. Need to pad one with zeros."
        print "Not implemented yet. ..."
        exit()
    else:
        convolve(lopsf, hipsf, outker, threshold, highresimg, outname)
Пример #27
0
    def mkIrafIm(self):
        """ make the detection image.  This method creates the detection 
        Image using the CHI^2 algorithm.
        """

        self.logfile.write('Generating detection Image...')

        cwd = os.getcwd()
        os.chdir(self.obsFits)  # cd to the observations Images dir
        self.logfile.write('cd to observation Images dir ' + self.obsFits)

        for i in range(len(self.statsList)):
            image, background, noise = self.statsList[i]
            expr = "((a - %s)/%s)**2" % (background, noise)
            self.logfile.write(
                'Generating background subtracted, squared image: ' +
                'subtracted_' + image)
            iraf.imexpr(expr, 'subtracted_' + image, a=image)

        inputString = string.join(
            map(lambda x: 'subtracted_' + x, self.sciImageList), ',')

        iraf.unlearn(iraf.imsum)
        iraf.imsum(input=inputString, output='dummy.fits', option='sum')
        iraf.unlearn(iraf.imexpr)

        self.logfile.write('Generating detectionImage.fits for observation...')
        iraf.imexpr('sqrt(a)', self.detImName, a="dummy.fits")

        self.logfile.write('Removing dummy image...')
        iraf.imdelete('dummy.fits', verify='no')
        self.logfile.write('Removing subtraction images...')
        iraf.imdelete(inputString, verify='no')

        # the header of the image produced by iraf is junk. fix it up

        self._fixIrafHeader()
        os.chdir(cwd)  # return to orig dir.
        return
Пример #28
0
    def resampCube(self, inIm, **kwargs):

        print "\nRESAMPLING DATA CUBE IN " + inIm

        # determine name of output and delete previous version (if present)
        if "outimage" in kwargs.keys():
            outIm = kwargs["outimage"]
        elif "outprefix" in kwargs.keys():
            outIm = kwargs["outprefix"] + inIm
        else:
            outIm = "d" + inIm
        iraf.imdelete(outIm)

        # resample the data cube
        iraf.gfcube(inIm, **kwargs)

        # view white-light image
        self.viewWhiteIm(outIm, **kwargs)

        # view cube as movie in wavelength
        self.viewCubeMov(outIm)

        return
Пример #29
0
    def clean_path(path, ext_list):
        """
        Clean up files from path. If the path does not exist, it will be created. It's not recursive, so it
        will not clean up a sub-folder within the path.

        Args:
            path (string): path to be cleaned.
            ext_list (list): list of strings containing the extension of files to be deleted.

        """
        path = str(os.path.join(path, ''))

        if not os.path.exists(path):

            log.info('Provided path does not exist, but it was created!')
            os.makedirs(path)

        elif os.path.exists(path):
            log.info('Cleaning up ' + path + '.')
            iraf.imdelete('*tmp*', verify='no')
            for ext in ext_list:
                for _file in glob.glob(os.path.join(path, '*.' + str(ext))):
                    os.remove(_file)
Пример #30
0
        def interp_single_spec(i, lines):
            filename = lines[i].strip()

            #get wavelength solution for this file
            disp_new = ns.getdisp(_wldat + '/ec' + filename)
            w_new = ns.dispeval(disp_new[0],
                                disp_new[1],
                                disp_new[2],
                                shift=disp_new[3])
            w_new = w_new[::-1]

            # label wavelength and save to file
            # upsample data if that option is passed
            ns.interp_spec(filename,
                           w_new,
                           w_interp,
                           interp=upsampleData,
                           k=3.0,
                           suffix=interp_suffix,
                           badval=badval,
                           clobber=True,
                           verbose=False)
            if saveUnInterpolated == False:
                ir.imdelete(filename)
Пример #31
0
def call_lacos(args, science, Nslits=0, longslit=False):
    outfile = '{0}_lacos.fits'.format(science)
    #if os.path.isfile(outfile):
        #os.remove(outfile)
    if utils.skip(args, 'lacos', outfile):
        return outfile[:-5]
    print()
    print('-' * 30)
    print()
    print('Removing cosmic rays with LACos ...')
    to = time()
    head = pyfits.getheader(science + '.fits')
    gain = head['GAIN']
    rdnoise = head['RDNOISE']
    #utils.delete(outfile)
    if os.path.isfile(outfile):
        iraf.imdelete(outfile)
    os.system('cp  -p ' + science + '.fits ' +  outfile)
    utils.removedir('slits')
    utils.makedir('slits')
    iraf.imcopy.unlearn()
    if longslit:
        slit = '{0}[sci,1]'.format(science)
        outslit = os.path.join('slits' '{0}_long'.format(science))
        outmask = os.path.join('slits' '{0}_longmask'.format(science))
        iraf.lacos_spec(slit, outslit, outmask, gain=gain, readn=rdnoise)
        iraf.imcopy(outslit, '{0}[SCI,1,overwrite]'.format(outfile[:-5]),
                    verbose='no')
    else:
        for i in xrange(1, Nslits+1):
            slit = '{0}[sci,{1}]'.format(science, i)
            print('slit =', slit)
            outslit = os.path.join('slits', '{0}_{1}'.format(science, i))
            outmask = os.path.join('slits', '{0}_mask{1}'.format(science, i))
            if os.path.isfile(outslit):
                iraf.imdelete(outslit)
            if os.path.isfile(outmask):
                iraf.imdelete(outmask)
            iraf.lacos_spec(slit, outslit, outmask, gain=gain, readn=rdnoise)
            iraf.imcopy(
                outslit, '{0}[SCI,{1},overwrite]'.format(outfile[:-5], i),
                verbose='yes')
    utils.delete('lacos*')
    utils.removedir('slits')
    print(outfile[:-5])
    print('Done in {0:.2f}'.format((time()-to)/60))
    print()
    print('-' * 30)
    print()
    return outfile[:-5]
Пример #32
0
  hdulist.writeto(filename+'_Handmask.fits')
  
  #Do the same for the Ha image
  print 'Writing Ha mask'
  try:
    maskedHaImage = fits.getdata(filename+'_HaHandmasked.fits')
  except IOError:
    maskedHaImage = fits.getdata(filename+'_Ha.fits')
  HaMaskPixels = np.where((maskedHaImage!=maskValue),manyZeros,manyOnes)
  
  hdu=fits.PrimaryHDU(HaMaskPixels)
  hdulist = fits.HDUList([hdu])
  hdulist.writeto(filename+'_HaHandmask.fits')

######################
filename = sys.argv[1]
maskReversed=False
try:
  with open(filename+'MaskReversed.fits'):maskReversed=True
except IOError:
  print 'Reversing input mask'

if(not maskReversed):
  reverseMask(filename)

maskImages(filename)
getMasks(filename)
print('Removing superfluous files...')
iraf.imdelete(filename+'MaskReversed.fits')
print('Done!')
Пример #33
0
 def cleanup(self):
     if not self.failed:
         iraf.imdelete(self.testfile, verify=iraf.no)
Пример #34
0
    def solveField(fullfilename, findstarmethod="astrometry.net"):
        """
        @param: fullfilename entire path to image
        @type: str

        @param: findstarmethod (astrometry.net, sex)
        @type: str

        Does astrometry to image=fullfilename
        Uses either astrometry.net or sex(tractor) as its star finder
        """

        pathname, filename = os.path.split(fullfilename)
        pathname = pathname + "/"
        basefilename, file_xtn = os.path.splitext(filename)
        # *** enforce .fits extension
        if (file_xtn != ".fits"):
            raise ValueError(
                "File extension must be .fits it was = %s\n" % file_xtn)

        # *** check whether the file exists or not
        if (os.path.exists(fullfilename) == False):
            raise IOError(
                "You selected image %s  It does not exist\n" % fullfilename)

        # version 0.23 changed behavior of --overwrite
        # I need to specify an output filename with -o
        outfilename = basefilename + "-out"

        image = Image.fromFile(fullfilename)
        try:
            ra = image["CRVAL1"]    # expects to see this in image
        except:
            raise AstrometryNetException(
                "Need CRVAL1 and CRVAL2 and CD1_1 on header")
        try:
            dec = image["CRVAL2"]
        except:
            raise AstrometryNetException(
                "Need CRVAL1 and CRVAL2 and CD1_1 on header")
        width = image["NAXIS1"]
        height = image["NAXIS2"]
        radius = 5.0 * abs(image["CD1_1"]) * width

        if findstarmethod == "astrometry.net":
            line = "solve-field %s -d 10,20,30,40,50,60,70,80,90,100 --overwrite -o %s --ra %f --dec %f --radius %f" % (
                fullfilename, outfilename, ra, dec, radius)
        elif findstarmethod == "sex":
            sexoutfilename = pathname + outfilename + ".xyls"
            line = "solve-field %s  -d 10,20,30,40,50,60,70,80,90,100 --overwrite -o %s --x-column X_IMAGE --y-column Y_IMAGE --sort-column MAG_ISO --sort-ascending --width %d --height %d --ra %f --dec %f --radius %f" % (
                sexoutfilename, outfilename, width, height, ra, dec, radius)
            # line = "solve-field %s --overwrite -o %s --x-column X_IMAGE --y-column Y_IMAGE --sort-column MAG_ISO --sort-ascending --width %d --height %d"  %(sexoutfilename, outfilename,width, height)
            # could use --guess-scale for unreliable mounts:
            # line = "solve-field %s --overwrite -o %s --x-column X_IMAGE --y-column Y_IMAGE --sort-column MAG_ISO --sort-ascending --width %d --height %d --guess-scale"  %(sexoutfilename, outfilename, width, height)

            sex = SExtractor()
            sex.config['BACK_TYPE'] = "AUTO"
            sex.config['DETECT_THRESH'] = 3.0
            sex.config['DETECT_MINAREA'] = 18.0
            sex.config['VERBOSE_TYPE'] = "QUIET"
            sex.config['CATALOG_TYPE'] = "FITS_1.0"
            #sex.config['CATALOG_TYPE'] = "ASCII"
            sex.config['CATALOG_NAME'] = sexoutfilename
            sex.config['PARAMETERS_LIST'] = ["X_IMAGE", "Y_IMAGE", "MAG_ISO"]
            sex.run(fullfilename)

        else:
            log.error("Unknown option used in astrometry.net")

        # when there is a solution astrometry.net creates a file with .solved
        # added as extension.
        is_solved = pathname + outfilename + ".solved"
        # if it is already there, make sure to delete it
        if (os.path.exists(is_solved)):
            os.remove(is_solved)
        print "SOLVE", line
        # *** it would be nice to add a test here to check
        # whether astrometrynet is running OK, if not raise a new exception
        # like AstrometryNetInstallProblem
        solve = Popen(line.split())  # ,env=os.environ)
        solve.wait()
        # if solution failed, there will be no file .solved
        if (os.path.exists(is_solved) == False):
            raise NoSolutionAstrometryNetException(
                "Astrometry.net could not find a solution for image: %s %s" % (fullfilename, is_solved))

        # wcs_imgname will be the old fits file with the new header
        # wcs_solution is the solve-field solution file
        wcs_imgname = pathname + outfilename + "-wcs" + ".fits"
        wcs_solution = pathname + outfilename + ".wcs"
        shutil.copyfile(wcs_solution, wcs_solution + ".fits")
        if (os.path.exists(wcs_imgname) == True):
            iraf.imdelete(wcs_imgname)

        # create a separate image with new header
        iraf.artdata()
        iraf.imcopy(fullfilename, wcs_imgname)
        iraf.hedit(wcs_imgname, "CD1_1,CD1_2,CD2_1,CD2_2,CRPIX1,CRPIX2,CRVAL1,CRVAL2,RA,DEC,ALT,AZ",
                   add="no", addonly="no", delete="yes",
                   verify="no", show="no", update="yes")
        iraf.mkheader(images=wcs_imgname, headers=wcs_solution + ".fits",
                      append="yes", verbose="no", mode="al")
        return(wcs_imgname)
Пример #35
0
#!/usr/bin/env python

import sys,os,string
import pyraf
from pyraf import iraf
from iraf import images,tv,sleep,imutil,imgeom,blkrep,imcopy,imdelete

imagen=sys.argv[1]

iraf.imcopy(input=imagen+'[1]',output="test.fits")
iraf.blkrep(input="test.fits",output=imagen+'_GMOS',b1=12,b2=1)

for i in range (1,13):
#    print i
   if i < 2:
#        print i
       iraf.imcopy(input=imagen+'['+str(i)+']',output=imagen+'_GMOS.fits[1:'+str(288)+',*]')
       #    if i>1 and i<12:
   else:
#        print i,i
       iraf.imcopy(input=imagen+'['+str(i)+']',output=imagen+'_GMOS.fits['+str((i-1)*288)+':'+str((i)*288)+',*]')
#    if i>12:    
#        iraf.imcopy(input=imagen+'['+str(i)+']',output=imagen+'_GMOS.fits['+str(i*288)+':'+str((i+1)*288)+',*]')

iraf.imdelete("test.fits")
Пример #36
0
 def cleanup(self):
     if not self.failed:
         iraf.imdelete(self.testfile, verify=iraf.no)
Пример #37
0
def osiris_performance(cubefile, rootdir=datadir, plotdir=workdir):
    """
    Determine the spatial resolution of an OSIRIS data cube image by
    comparing with a NIRC2 image. The NIRC2 image is convolved with a
    gaussian, rebinned to the OSIRIS plate scale and differenced until
    the optimal gaussian width is determined. 
    """
    # Read in the cube... assume it is K-band
    cube, cubehdr = pyfits.getdata(rootdir + cubefile, header=True)

    cubeimg = make_cube_image(cubefile, rootdir=rootdir)
    if cubeimg == None:
        print 'Opening previosly existing cube image.'
        cubeimg = pyfits.getdata(rootdir + cubefile.replace(".fits", '_img.fits'))

    ### Register the NIRC2 image to the OSIRIS image.
    # Read in the NIRC2 image (scale = 10 mas/pixel)
    nirc2file = '/u/jlu/data/m31/05jul/combo/m31_05jul_kp.fits'
    img, imghdr = pyfits.getdata(nirc2file, header=True)

    # Get the PA of the OSIRIS spectrograph image
    specPA = cubehdr['PA_SPEC']
    
    # Get the PA of the NIRC2 image
    imagPA = imghdr['ROTPOSN'] - imghdr['INSTANGL']

    # Rotate the NIRC2 image
    angle = specPA - imagPA
    imgrot = scipy.misc.imrotate(img, angle, interp='bicubic')

    # Get the shifts constructed manually
    xshift = 0
    yshift = 0
    shiftsTable = asciidata.open(rootdir + 'shifts.txt')
    for rr in range(shiftsTable.nrows):
        if rr == 0:
            xshift0 = float(shiftsTable[1][rr])
            yshift0 = float(shiftsTable[2][rr])

        if shiftsTable[0][rr] == cubefile:
            xshift = float(shiftsTable[1][rr])
            yshift = float(shiftsTable[2][rr])
            print 'Shifting image: '
            print shiftsTable[0][rr], shiftsTable[1][rr], shiftsTable[2][rr]
            print ''
            break

    # Calculate the SNR for the OSIRIS data between 2.160 and 2.175 microns.
    # This is done for the same position in each of the combo + subset mosaics.
    # We need to remove the continuum first before we calculate the SNR.
    xpixSNR = 11 + (xshift - xshift0)
    ypixSNR = 47 + (yshift - yshift0)

    # if (xpixSNR < 0 or xpixSNR >= cube.shape[0] or
    #     ypixSNR < 0 or ypixSNR >= cube.shape[1]):
    tmp = np.unravel_index(cubeimg.argmax(), cubeimg.shape)
    xpixSNR = tmp[1]
    ypixSNR = tmp[0]
    
    # Get the wavelength solution so we can specify range:
    w0 = cubehdr['CRVAL1']
    dw = cubehdr['CDELT1']
    wavelength = w0 + dw * np.arange(cube.shape[2], dtype=float)
    wavelength /= 1000.0   # Convert to microns

    widx = np.where((wavelength > 2.160) & (wavelength < 2.175))
    waveCrop = wavelength[widx]
    specCrop = cube[xpixSNR, ypixSNR, widx].flatten()
    coeffs = scipy.polyfit(waveCrop, specCrop, 1)
    residuals = specCrop / scipy.polyval(coeffs, waveCrop)
    specSNR = (residuals.mean() / residuals.std())

    print 'OSIRIS Signal-to-Noise:'
    print '   X = %d  Y = %d' % (xpixSNR, ypixSNR)
    print '   wavelength = [%5.3f - %5.3f]' % (2.160, 2.175)
    print '   SNR = %f' % specSNR

    # Trim down the NIRC2 image to the same size as the OSIRIS image.
    # Still bigger than OSIRIS FOV
    ycent = int(round((img.shape[0] / 2.0) + (yshift*5.0)))
    xcent = int(round((img.shape[1] / 2.0) - (xshift*5.0)))
    print ''
    print 'Comparing OSIRIS with NIRC2 Image:'
    print '  NIRC2 xcent = ', xcent, '  ycent = ', ycent

    yhalf = int(cubeimg.shape[0] / 2) * 5 # Make the image the same size
    xhalf = int(cubeimg.shape[1] / 2) * 5 # as the OSIRIS cube image.

    img = imgrot[ycent-yhalf:ycent+yhalf, xcent-xhalf:xcent+xhalf]

    # Rebin the NIRC2 image to the same 50 mas plate scale as the
    # OSIRIS image.
    img = scipy.misc.imresize(img, 0.2) # rebin to 50 mas/pixel.

    # Save the modified NIRC2 image.
    nirc2_file = rootdir + 'nirc2_ref.fits'
    ir.imdelete(nirc2_file)
    pyfits.writeto(nirc2_file, img, header=imghdr, output_verify='silentfix')

    # Clean up the cube image to get rid of very very low flux values 
    # (on the edges).
    cidx = np.where(cubeimg < cubeimg.max()*0.05)
    cubeimg[cidx] = 0

    def fitfunction(params, plot=False, verbose=False):
        amp1 = abs(params[0])
        amp2 = abs(params[1])
        sigma1 = abs(params[2])
        sigma2 = abs(params[3])

        # Actually amp1 should be fixed to 1.0
        amp1 = 1.0
        sigma2 = 8.0

        # Convolve the NIRC2 image with a gaussian
        boxsize = min(cubeimg.shape) / 2
        psf = twogauss_kernel(sigma1, sigma2, amp1, amp2, half_box=50)
        newimg = signal.convolve(img, psf, mode='full')
        
        xlo = (psf.shape[1] / 2)
        xhi = xlo + cubeimg.shape[1]
        ylo = (psf.shape[0] / 2)
        yhi = ylo + cubeimg.shape[0]

        newimg = newimg[ylo:yhi, xlo:xhi]

        if verbose:
            print 'fitfunc shapes:',
            print ' cubeimg = ', cubeimg.shape, 
            print ' psf = ', psf.shape,
            print ' newimg = ', newimg.shape

        newimg[cidx] = 0
        
        cubeimg_norm = cubeimg / cubeimg.sum()
        newimg_norm = newimg / newimg.sum()
        
        residuals = (cubeimg_norm - newimg_norm) / np.sqrt(cubeimg_norm)
        residuals[cidx] = 0

        if verbose:
            print 'Parameters: sig1 = %5.2f  sig2 = %5.2f ' % (sigma1, sigma2),
            print ' amp1 = %9.2e  amp2 = %9.2e' % (amp1, amp2)
            print 'Residuals:  ', math.sqrt((residuals*residuals).sum())
            print '' 

        if plot:
            py.figure(1)
            py.clf()
            py.subplots_adjust(left=0.05, right=0.95, bottom=0.05, top=0.95)
            
            py.subplot(1, 3, 1)
            py.imshow(cubeimg)
            py.title('OSIRIS')
            
            py.subplot(1, 3, 2)
            py.imshow(newimg)
            py.title('NIRC2+')
            
            py.subplot(1, 3, 3)
            py.imshow(residuals)
            py.title('Residuals')

            py.savefig(plotdir + 'osir_perf_' + 
                       cubefile.replace('.fits', '.png'))
            py.show()
            
        return residuals.flatten()

    params = np.zeros(4, dtype=float)
    params[0] = 1.0 # amp1
    params[1] = 0.000001 # amp2
    params[2] = 0.9 # sigma1 (near-diffraction-limit)
    params[3] = 6.0 # sigma2 (seeing halo)

    print 'Fitting PSF: '
    print ''
    print 'Initial: '
    fitfunction(params, plot=True, verbose=True)

    p, cov, infodict, errmsg, success = scipy.optimize.leastsq(fitfunction, 
                                                               params, 
                                                               full_output=1,
                                                               maxfev=100)
    print ''
    print 'Results:'
    residuals = fitfunction(p, plot=True, verbose=True)

    amp1 = abs(p[0])
    amp2 = abs(p[1])
    sigma1 = abs(p[2])
    sigma2 = abs(p[3])

    _out = open(plotdir + 'osir_perf_' + cubefile.replace('.fits', '_params.txt'), 'w')
    _out.write('sig1: %5.2f  sig2: %5.2f  amp1: %9.2e  amp2: %9.2e  res: %7.5f  ' %
               (sigma1, sigma2, amp1, amp2, math.sqrt((residuals**2).sum())))
    _out.write('xpixSNR: %2d  ypixSNR: %2d  SNR: %5.1f\n' % (xpixSNR, ypixSNR, specSNR))
    _out.close()
Пример #38
0
def execute():

    ################NGC1023####################################################
    ## use GALFIT to fit and to create a model disk vs bulge##
    ##galfit.feedme##

    iraf.images()

    # path to fits files:
    total = config.iraf_input_dir+config.totalfits
    bulge = config.iraf_input_dir+config.bulgefits
    fraction = config.iraf_tmp_dir+config.fractionfits

    input_dir = config.iraf_input_dir
    tmp_dir = config.iraf_tmp_dir
    if not os.path.exists(tmp_dir):
        os.mkdir(tmp_dir)

    if os.path.exists(fraction):
         iraf.imdelete(fraction)

    print fraction
    print bulge

    # Makes the fraction image by dividing the bulge by the total:
    iraf.imarith(bulge, "/", total, fraction)

    """ LLT: I don't think we need this anymore:

    if os.path.exists(tmp_dir+"snb.fits"):
        iraf.module.imdelete(tmp_dir+"snb.fits")
    if os.path.exists(tmp_dir+"tnb.fits"):
        iraf.module.imdelete(tmp_dir+"tnb.fits")

    iraf.module.imcopy(bulge, tmp_dir+"snb.fits")
    iraf.module.imcopy(total, tmp_dir+"tnb.fits")
    """

    ##########################################################################
    ##Note: the coordinate in pixel as obtained from RA and Dec differ from the
    ##pixels one because of distorsion corrections as done with astrometry==>

    ##RA and Dec coordinate in arcsec are the correct one and don't need do be
    ##transfer in pixels

    ############################################################################
    ##Consistency check

    #displ(image="../fits_inputs/galaxy.fits",frame=1) 
    #tvmark(frame=1,coords="Kall.dat",color=205,lab-,num+)

    #displ(image="f.fits",zrange=no,zscale=no,ztrans="linear",z1=0,z2=1,frame=3) 
    #tvmark(frame=3,coords="Kall.dat",color=201,mark="rectangle",lengths="6",lab-,num-)

    ###########################################################################
    ##Use program overplot.sm to create both Kall.dat & compagna.dat
    ##in the RA & Dec of PNS there is a rotation of 90deg respect to the pixel
    ## x-->-x 
    ##after long reflexion I decide the right PA is 90-47.11=42.89 (just turning the PNe as observed on the R image)

    ##########################################################################
    ############################################################################

    ## to measure the relative flux use phot (daophot) ##with centerpars=none!!!###

    ##I used sigma=stdv(skys)=0  ===> no bg 
    ##fwhmpsf=2.27 as in galfit psf2.fits (imexam A enclosed)
    ##skyvalue=0 ===> no bg

    ##no centerpars
    ##apertures=3.0 pixels (=1.8 arcsec)

    ##zmag=25

    ##snb.fits & tnb.fits without bg (when I made the model)

    # filenames

    silentremove(config.bulgemag)
    silentremove(config.bulgetxt)
    silentremove(config.totalmag)
    silentremove(config.totaltxt)
    silentremove(config.fractionmag)
    silentremove(config.fractiontxt)

    iraf.noao(_doprint=False)
    iraf.digiphot(_doprint=False)
    iraf.daophot(_doprint=False)

    iraf.phot(bulge,config.position_file, config.bulgemag, skyfile="", datapars="",scale=1.,fwhmpsf=2.27,emissio="yes",sigma=0.0,datamin=-100, datamax=1e5,noise="poisson", centerpars="",calgorithm="none",cbox=0,cthreshold=0.,minsnratio=1., cmaxiter=0,maxshift=0,clean="no",rclean=0.,rclip=0.,kclean=0., mkcenter="no", fitskypars="",salgorithm="constant",annulus=10,dannulus=10,skyvalue=0., smaxiter=10,sloclip=0.,shiclip=0.,snreject=50,sloreject=3., shireject=3.,khist=3.,binsize=0.1,smooth="no",rgrow=0., mksky="no", photpars="",weighting="constant",apertures=3,zmag=0.,mkapert="no", interactive="no",radplots="no",verify="no",update="no",verbose="no", graphics="stdgraph",display="stdimage",icommands="",gcommands="")

    # LLT: Corrected to pyraf, use stdout = instead of >>
    iraf.txdump(config.bulgemag, "XCENTER,YCENTER,STDEV,FLUX,SUM,AREA,ID", "yes", headers="no",paramet="no", Stdout=config.bulgetxt)

    iraf.phot(total, config.position_file, config.totalmag, skyfile="", datapars="",scale=1.,fwhmpsf=2.27,emissio="yes",sigma=0.0,datamin=-100, datamax=1e5,noise="poisson", centerpars="",calgorithm="none",cbox=0,cthreshold=0.,minsnratio=1., cmaxiter=0,maxshift=0.,clean="no",rclean=0.,rclip=0.,kclean=0., mkcenter="no", fitskypars="",salgorithm="constant",annulus=10,dannulus=10,skyvalue=0., smaxiter=10,sloclip=0.,shiclip=0.,snreject=50,sloreject=3., shireject=3.,khist=3.,binsize=0.1,smooth="no",rgrow=0., mksky="no", photpars="",weighting="constant",apertures=3,zmag=25.,mkapert="no", interactive="no",radplots="no",verify="no",update="no",verbose="no", graphics="stdgraph",display="stdimage",icommands="",gcommands="")

    iraf.txdump(config.totalmag, "XCENTER,YCENTER,STDEV,FLUX,SUM,AREA,ID", "yes", headers="no",paramet="no", Stdout=config.totaltxt)

    iraf.phot(fraction,config.position_file, config.fractionmag, skyfile="", datapars="", scale=1., fwhmpsf=2.27, emissio="no", sigma=0.0, datamin=-100, datamax=1e5, noise="poisson", centerpars="", calgorithm="none", cbox=0, cthreshold=0., minsnratio=1., cmaxiter=0, maxshift=0., clean="no", rclean=0., rclip=0., kclean=0., mkcenter="no", fitskypars="", salgorithm="constant", annulus=10, dannulus=10, skyvalue=0., smaxiter=10, sloclip=0., shiclip=0., snreject=50, sloreject=3., shireject=3., khist=3., binsize=0.1, smooth="no", rgrow=0., mksky="no", photpars="", weighting="constant", apertures=3, zmag=25., mkapert="no", interactive="no", radplots="no", verify="no", update="no", verbose="no", graphics="stdgraph", display="stdimage", icommands="", gcommands="")

    iraf.txdump(config.fractionmag, "XCENTER,YCENTER,STDEV,FLUX,SUM,AREA,ID", "yes", headers="no",paramet="no", Stdout=config.fractiontxt)
Пример #39
0
# Set detector properties:
gain = 4.0  # photons (i.e., electrons) per data unit
readnoise = 10.0  # photons (i.e., electrons)
ir.imcombine.gain = gain
ir.imcombine.rdnoise = readnoise
ir.apall.gain = gain
ir.apall.readnoise = readnoise
ir.apnormalize.gain = gain
ir.apnormalize.readnoise = readnoise

ir.set(observatory=observ)

# Combine dark frames into a single dark frame:
if makeDark:
    ir.imdelete(_sdark)
    ir.imdelete(_sdarks)

    print "rawdark file list>>" + rawdark
    ir.imcombine("@" + rawdark,
                 output=_sdark,
                 combine="average",
                 reject="avsigclip",
                 sigmas=_sdarks,
                 scale="none",
                 weight="none",
                 bpmasks="")

    ns.write_exptime(_sdark, itime=itime)

if makeFlat:  # 2008-06-04 09:21 IJC: dark-correct flats; then create super-flat
Пример #40
0
def makesky_fromsci(files, nite, wave):
    """Make short wavelength (not L-band or longer) skies."""

    # Start out in something like '06maylgs1/reduce/kp/'
    waveDir = os.getcwd() + '/'
    redDir = util.trimdir(os.path.abspath(waveDir + '../') + '/')
    rootDir = util.trimdir(os.path.abspath(redDir + '../') + '/')
    skyDir = waveDir + 'sky_' + nite + '/'
    rawDir = rootDir + 'raw/'

    util.mkdir(skyDir)
    print 'sky dir: ',skyDir
    print 'wave dir: ',waveDir

    skylist = skyDir + 'skies_to_combine.lis'
    output = skyDir + 'sky_' + wave + '.fits'

    util.rmall([skylist, output])

    nn = [skyDir + 'n' + str(i).zfill(4) for i in files]
    nsc = [skyDir + 'scale' + str(i).zfill(4) for i in files]
    skies = [rawDir + 'n' + str(i).zfill(4) for i in files]

    for ii in range(len(nn)):
        ir.imdelete(nn[ii])
        ir.imdelete(nsc[ii])
        ir.imcopy(skies[ii], nn[ii], verbose="no")

    # Make list for combinng. Reset the skyDir to an IRAF variable.
    ir.set(skydir=skyDir)
    f_on = open(skylist, 'w')
    for ii in range(len(nn)):
        nn_new = nn[ii].replace(skyDir, "skydir$")
        f_on.write(nn_new + '\n')
    f_on.close()

    # Calculate some sky statistics, but reject high (star-like) pixels
    sky_mean = np.zeros([len(skies)], dtype=float)
    sky_std = np.zeros([len(skies)], dtype=float)

    text = ir.imstat("@" + skylist, fields='midpt,stddev', nclip=10, 
                     lsigma=10, usigma=3, format=0, Stdout=1)

    for ii in range(len(nn)):
        fields = text[ii].split()
        sky_mean[ii] = float(fields[0])
        sky_std[ii] = float(fields[1])

    sky_mean_all = sky_mean.mean()
    sky_std_all = sky_std.mean()

    # Upper threshold above which we will ignore pixels when combining.
    hthreshold = sky_mean_all + 3.0 * sky_std_all

    ir.imdelete(output)
    ir.unlearn('imcombine')
    ir.imcombine.combine = 'median'
    ir.imcombine.reject = 'sigclip'
    ir.imcombine.mclip = 'yes'
    ir.imcombine.hsigma = 2
    ir.imcombine.lsigma = 10
    ir.imcombine.hthreshold = hthreshold

    ir.imcombine('@' + skylist, output)
Пример #41
0
def map_co_eqw():
    # Read in cube and cube image. 
    #   -  cube is indexed as [y, x, lambda]
    #   -  cube iamge is indexed as [x, y]
    cubefits = pyfits.open(datadir + cuberoot + '.fits')
    cube = cubefits[0].data
    cubehdr = cubefits[0].header
    cubeNoise = cubefits[1].data

    img, imghdr = pyfits.getdata(datadir + cuberoot + '_img.fits', header=True)

    # Get the wavelength solution.
    w0 = cubehdr['CRVAL1']
    dw = cubehdr['CDELT1']
    wave = w0 + dw * np.arange(cube.shape[2], dtype=float)
    wave /= 1000.0   # Convert to microns
        
    ##########
    # Using the CO index from Marmol-Queralto et al. 2008.
    # Wiki Notes:
    #   http://131.215.103.243/groups/jlu/wiki/65bbf/M31__Line_Maps.html
    ##########
    # Define the wavelength regions for continuum #1, continuum #2, absorption
    waveReg = np.array([[2.2460, 2.2550], 
                        [2.2710, 2.2770], 
                        [2.2880, 2.3010]])

    # Redshift the regions for M31's systemic velocity
    m31rv = -300.99   # km/s
    waveReg *= (1.0 + m31rv / 2.99792e5)

    # Continuum region #1
    idxC1 = np.where((wave >= waveReg[0,0]) & (wave <= waveReg[0,1]))[0]
    waveC1 = wave[idxC1]

    # Continuum region #2
    idxC2 = np.where((wave >= waveReg[1,0]) & (wave <= waveReg[1,1]))[0]
    waveC2 = wave[idxC2]

    # CO region
    idxA1 = np.where((wave >= waveReg[2,0]) & (wave <= waveReg[2,1]))[0]
    waveA1 = wave[idxA1]

    # Loop through each pixel and calculate the CO index.
    coMap = np.zeros(img.shape, dtype=float)
    coMapErr = np.zeros(img.shape, dtype=float)

    contMap = np.zeros(img.shape, dtype=float)

    py.clf()
    for yy in range(img.shape[0]):
        for xx in range(img.shape[1]):
            fluxC1 = cube[xx, yy, idxC1].sum()
            fluxC2 = cube[xx, yy, idxC2].sum()
            fluxA1 = cube[xx, yy, idxA1].sum()

            if yy == 46 and xx == 10:
                py.plot(waveC1, cube[xx, yy, idxC1], 'b-')
                py.plot(waveC2, cube[xx, yy, idxC2], 'b-')
                py.semilogy(waveA1, cube[xx, yy, idxA1], 'b-')
                py.title('xx=10, yy=46')
            if yy == 35 and xx == 15:
                py.plot(waveC1, cube[xx, yy, idxC1], 'g-')
                py.plot(waveC2, cube[xx, yy, idxC2], 'g-')
                py.plot(waveA1, cube[xx, yy, idxA1], 'g-')
                py.title('xx=15, yy=35')

            # Need to filter out bad pixel issues in noise map... 
            # just use the median error instead.
            #varC1 = (cube[xx, yy, idxC1].std())**2
            varC1 = np.median(cubeNoise[xx, yy, idxC1])**2
            varC1 *= float(len(idxC1))

            #varC2 = (cube[xx, yy, idxC2].std())**2
            varC2 = np.median(cubeNoise[xx, yy, idxC2])**2 
            varC2 *= float(len(idxC2))

            #varA1 = (cube[xx, yy, idxC2].std())**2  # note same as C2
            varA1 = np.median(cubeNoise[xx, yy, idxA1])**2 
            varA1 *= float(len(idxA1))

            dwaveC1 = waveReg[0,1] - waveReg[0,0]
            dwaveC2 = waveReg[1,1] - waveReg[1,0]
            dwaveA1 = waveReg[2,1] - waveReg[2,0]

            contFlux = (fluxC1 + fluxC2) / ( dwaveC1 + dwaveC2)
            absoFlux = fluxA1 / dwaveA1

            contFluxVar = (varC1 + varC2) / (dwaveC1 + dwaveC2)**2
            absoFluxVar = varA1 / dwaveA1**2

            coMap[yy, xx] = contFlux / absoFlux
            coMapErr[yy, xx] = math.sqrt(((contFlux**2 * absoFluxVar) + 
                                          (absoFlux**2 * contFluxVar)) 
                                         / absoFlux**4)

            contMap[yy, xx] = (fluxC1 / dwaveC1) / (fluxC2 / dwaveC2)
    py.show()

    coFile = workdir + 'maps/co_map.fits'
    coErrFile = workdir + 'maps/co_err_map.fits'
    contFile = workdir + 'maps/cont_ratio_map.fits'

    ir.imdelete(coFile)
    ir.imdelete(coErrFile)
    ir.imdelete(contFile)

    pyfits.writeto(coFile, coMap, header=imghdr)
    pyfits.writeto(coErrFile, coMapErr, header=imghdr)
    pyfits.writeto(contFile, contMap, header=imghdr)

    # Lets plot the CO index in various ways
    x1d = np.arange(img.shape[1])
    y1d = np.arange(img.shape[0])

    y2d, x2d = scipy.mgrid[0:img.shape[0], 0:img.shape[1]]

    py.clf()
    py.errorbar(x2d.flatten(), coMap.flatten(), yerr=coMapErr.flatten(), 
                fmt='.')
    #py.show()

    py.clf()
    py.errorbar(y2d.flatten(), coMap.flatten(), yerr=coMapErr.flatten(),
                fmt='.')
    #py.show()

    # Calculate the mean CO index for the whole map. Then make
    # a map of the significance of the excess CO at each pixel
    idx = np.where(coMap > 0) # good pixels

    coAvg = coMap[idx[0],idx[1]].mean()
    coSigma = (coMap - coAvg) / coMapErr

    coSigmaMasked = np.ma.masked_invalid(coSigma)

    coSigFile = workdir + 'maps/co_sigma_map.fits'
    ir.imdelete(coSigFile)
    pyfits.writeto(coSigFile, coSigma, header=imghdr)

    py.clf()
    py.imshow(coSigmaMasked)
    py.colorbar(orientation='vertical')
    py.show()
Пример #42
0
        'fl_paste':'no','fl_fixpix':'no','fl_clean':'yes','geointer':'nearest',
        'logfile':'gmosaicLog.txt','fl_vardq':'yes','fl_fulldq':'yes','verbose':'no'
        }
    # Reduce the science images, then mosaic the extensions in a loop
    for f in filters:
        print "    Processing science images for: %s" % (f)
        qd['Filter2'] = f + '_G%'
        flatFile = 'MCflat_' + f + '.fits'
        sciFiles = fs.fileListQuery(dbFile, fs.createQuery('sciImg', qd), qd)
        if len(sciFiles) > 0:
            gmos.gireduce (','.join(str(x) for x in sciFiles), bias='MCbias', 
                           flat1=flatFile, **sciFlags)
            for file in sciFiles:
                gmos.gmosaic (prefix+file, **mosaicFlags)

    iraf.imdelete('gS2006*.fits,rgS2006*.fits')

    ## Co-add the images, per position and filter.
    print (" -- Begin image co-addition --")

    # Use primarily the default task parameters.
    gemtools.imcoadd.unlearn()
    coaddFlags = {
        'fwhm':3,'datamax':6.e4,'geointer':'nearest','logfile':'imcoaddLog.txt'
        }
    targets = ['M8-1', 'M8-2', 'M8-3']
    prefix = 'mrg'
    for f in filters:
        print "  - Co-addding science images in filter: %s" % (f)
        qd['Filter2'] = f + '_G%'
        for t in targets:
Пример #43
0
def makeResolutionMapCO():
    """
    Use a specially created M31 mosaic where the sky lines have not been
    removed. Determine the spectral resolution at each spaxal from 3
    sky lines around 2.2 microns. This should be the same resolution
    for all wavelengths > 2.2 microns based on some figures in the OSIRIS
    manual.
    """
    # Here are the 3 OH sky lines we will be using. Wavelengths were 
    # extractged from the ohlines.dat file included with IRAF:
    # /Applications/scisoft/all/Packages/iraf/iraf/noao/lib/linelists/
    lines = np.array([2.19556, 2.21255, 2.23127])

    # Old 2008 analysis
    #cubefile = datadir + '../noss/' + cuberoot + '.fits'
    # New 2010 analysis
    cubefile = datadir2010 + '../100829/SPEC/reduce/sky/sky_900s_cube_nodrk_tlc.fits'

    # Read in the cube... assume it is K-band
    cube, cubehdr = pyfits.getdata(cubefile, header=True)

    # Get the wavelength solution so we can specify range:
    w0 = cubehdr['CRVAL1']
    dw = cubehdr['CDELT1']
    wavelength = w0 + dw * np.arange(cube.shape[2], dtype=float)
    wavelength /= 1000.0   # Convert to microns

    # Gaussian line fits
    halfWindow = dw * 7.0 / 1000.0

    def gaussian(p, x):
        amp, sigma, center, constant = p
        y = amp * np.exp(-(x-center)**2 / (2*sigma**2))
        y += constant
        return y
        
    def fitfunc(p, wavelength, flux, line):
        #p[2] = line
        model = gaussian(p, wavelength)
        residuals = flux - model
        return residuals

    # Recall that the images are transposed relative to the cubes.
    resolutionMap = np.zeros((cube.shape[1], cube.shape[0]), dtype=float)
    ampAll = np.zeros((cube.shape[1], cube.shape[0], 3), dtype=float)
    resAll = np.zeros((cube.shape[1], cube.shape[0], 3), dtype=float)
    constAll = np.zeros((cube.shape[1], cube.shape[0], 3), dtype=float)
    centAll = np.zeros((cube.shape[1], cube.shape[0], 3), dtype=float)

    # Loop through spatial pixels and fit lines
    for xx in range(cube.shape[0]):
        for yy in range(cube.shape[1]):
            lineCount = 0.0

            for ii in range(len(lines)):
                # Get spectrum right around each line
                idx = np.where((wavelength > lines[ii]-halfWindow) &
                               (wavelength < lines[ii]+halfWindow))[0]
                spec = cube[xx, yy, idx]
                wave = wavelength[idx]

                pinit = np.zeros(4, dtype=float)
                pinit[0] = spec.max() - spec.min()
                pinit[1] = dw * 1.25 / 1000.0
                pinit[2] = wave[spec.argmax()]
                pinit[3] = spec.min()

                out = scipy.optimize.leastsq(fitfunc, pinit, 
                                             args=(wave, spec, lines[ii]))
                amp, sigma, center, constant = out[0]

                # if xx == 2 and yy == 3:
                #     pdb.set_trace()

                if (sigma > 0.0008):
                    print 'Invalid for xx = %2d, yy = %2d, niter = %d' % \
                        (xx, yy, out[1])
                    print '    ', out[0]
                    continue
                
                lineCount += 1.0
                resolutionMap[yy, xx] += lines[ii] / (2.35 * sigma)

                ampAll[yy, xx, ii] = amp
                resAll[yy, xx, ii] = lines[ii] / (2.35 * sigma)
                centAll[yy, xx, ii] = center
                constAll[yy, xx, ii] = constant

            resolutionMap[yy, xx] /= lineCount

    idx1 = np.where(centAll[:,:,0] != 0)
    idx2 = np.where(centAll[:,:,1] != 0)
    idx3 = np.where(centAll[:,:,2] != 0)

    print 'Line Information: '
    print '      Center:  %8.5f  %8.5f  %8.5f' % \
        (centAll[idx1[0],idx1[1],0].mean(), 
         centAll[idx2[0],idx2[1],1].mean(), 
         centAll[idx3[0],idx3[1],2].mean())
    print '            :  %8.5f  %8.5f  %8.5f' % \
        (centAll[idx1[0],idx1[1],0].std(), 
         centAll[idx2[0],idx2[1],1].std(), 
         centAll[idx3[0],idx3[1],2].std())
    print '  Amplitudes:  %8.2e  %8.2e  %8.2e' % \
        (ampAll[idx1[0],idx1[1],0].mean(), 
         ampAll[idx2[0],idx2[1],1].mean(), 
         ampAll[idx3[0],idx3[1],2].mean())
    print '            :  %8.2e  %8.2e  %8.2e' % \
        (ampAll[idx1[0],idx1[1],0].std(), 
         ampAll[idx2[0],idx2[1],1].std(), 
         ampAll[idx3[0],idx3[1],2].std())
    print '  Resolution:  %8d  %8d  %8d' % \
        (resAll[idx1[0],idx1[1],0].mean(), 
         resAll[idx2[0],idx2[1],1].mean(), 
         resAll[idx3[0],idx3[1],2].mean())
    print '            :  %8d  %8d  %8d' % \
        (resAll[idx1[0],idx1[1],0].std(), 
         resAll[idx2[0],idx2[1],1].std(), 
         resAll[idx3[0],idx3[1],2].std())
    print '    Constant:  %8.2e  %8.2e  %8.2e' % \
        (constAll[idx1[0],idx1[1],0].mean(), 
         constAll[idx2[0],idx2[1],1].mean(), 
         constAll[idx3[0],idx3[1],2].mean())
    print '            :  %8.2e  %8.2e  %8.2e' % \
        (constAll[idx1[0],idx1[1],0].std(), 
         constAll[idx2[0],idx2[1],1].std(), 
         constAll[idx3[0],idx3[1],2].std())

    py.clf()
    py.subplot(1, 2, 1)
    py.imshow(cube.sum(axis=2).transpose())
    py.title('Flux')
            
    py.subplot(1, 2, 2)
    py.imshow(resolutionMap)
    py.colorbar()
    py.title('Resolution')

    py.savefig(workdir + 'plots/map_resolution.png')

    # Save the resolution map to a file
    mapfile = workdir + 'maps/resolution_map.fits'
    ir.imdelete(mapfile)
    pyfits.writeto(mapfile, resolutionMap, header=cubehdr)
Пример #44
0
def makesky(files, nite, wave, skyscale=1):
    """Make short wavelength (not L-band or longer) skies."""

    # Start out in something like '06maylgs1/reduce/kp/'
    waveDir = os.getcwd() + '/'
    redDir = util.trimdir(os.path.abspath(waveDir + '../') + '/')
    rootDir = util.trimdir(os.path.abspath(redDir + '../') + '/')
    skyDir = waveDir + 'sky_' + nite + '/'
    rawDir = rootDir + 'raw/'

    util.mkdir(skyDir)
    print 'sky dir: ',skyDir
    print 'wave dir: ',waveDir

    skylist = skyDir + 'skies_to_combine.lis'
    output = skyDir + 'sky_' + wave + '.fits'

    util.rmall([skylist, output])

    nn = [skyDir + 'n' + str(i).zfill(4) for i in files]
    nsc = [skyDir + 'scale' + str(i).zfill(4) for i in files]
    skies = [rawDir + 'n' + str(i).zfill(4) for i in files]

    for ii in range(len(nn)):
        ir.imdelete(nn[ii])
        ir.imdelete(nsc[ii])
        ir.imcopy(skies[ii], nn[ii], verbose="no")


    # scale skies to common median
    if skyscale:
        _skylog = skyDir + 'sky_scale.log'
        util.rmall([_skylog])
        f_skylog = open(_skylog, 'w')

        sky_mean = np.zeros([len(skies)], dtype=float)

        for i in range(len(skies)):
            text = ir.imstat(nn[i], fields='mean', nclip=4, 
                         lsigma=10, usigma=10, format=0, Stdout=1)
            sky_mean[i] = float(text[0])

        sky_all = sky_mean.mean()
        sky_scale = sky_all/sky_mean

        for i in range(len(skies)):
            ir.imarith(nn[i], '*', sky_scale[i], nsc[i])

	    skyf = nn[i].split('/')
	    print('%s   skymean=%10.2f   skyscale=%10.2f' % 
	          (skyf[len(skyf)-1], sky_mean[i],sky_scale[i]))
            f_skylog.write('%s   %10.2f  %10.2f\n' % 
                           (nn[i], sky_mean[i], sky_scale[i]))

        # Make list for combinng
        f_on = open(skylist, 'w')
        f_on.write('\n'.join(nsc) + '\n')
        f_on.close()

        #skylist = skyDir + 'scale????.fits'
        f_skylog.close()
    else:
        # Make list for combinng
        f_on = open(skylist, 'w')
        f_on.write('\n'.join(nn) + '\n')
        f_on.close()

        #skylist = skyDir + 'n????.fits' 

    ir.imdelete(output)
    ir.unlearn('imcombine')
    ir.imcombine.combine = 'median'
    ir.imcombine.reject = 'none'
    ir.imcombine.nlow = 1
    ir.imcombine.nhigh = 1

    ir.imcombine('@' + skylist, output)
Пример #45
0
#############################
# Change this section if there is PWFS2 shadowing.
# avoid such area
#
# larger possible area "[300:1748,300:1748]" I.e OIWFS
##############################

iraf.niri.niflat.statsec = "[300:1300,300:1500]"


#
#Deleting old flat.fits and f2_bpm.pl and list files fflats.lis,fflatdarks.lis and fshortdarks.lis
#

if createcal=='yes':
    iraf.imdelete ("flat.fits,f2_bpm.pl", verify='no')
    iraf.delete ("fflats.lis,fflatdarks.lis,fshortdarks.lis", verify='no')
else:
    print "Using calibrations already created\n"
    print "Using flat.fits"


##
#
#  redirect the outpot of the screen to a file!
#
# PLEASE KEEP temp=sys.stdout  , and at the end of the screen-to-file, sys.stdout=temp  
# this small class does in iraf: sections "*****@*****.**" > "fsky.lis" 
#
##
Пример #46
0
def gmos_img_proc2(dbFile="./raw/obsLog.sqlite3", qd={'use_me': 1,'Instrument': 'GMOS-S', 'CcdBin': '2 2', 'RoI': 'Full', 'Object': 'M8-%', 'DateObs': '2006-09-01:2006-10-30'},
                   bias_dateobs="2006-09-01:2006-10-30",
                   biasFlags={'logfile': 'biasLog.txt', 'rawpath': './raw/', 'fl_vardq': 'yes', 'verbose': 'yes'},
                   flat_dateobs='2006-09-10:2006-10-10',
                   flatFlags = {'fl_scale': 'yes', 'sctype': 'mean', 'fl_vardq': 'yes','rawpath': './raw/', 'logfile': 'giflatLog.txt', 'verbose': 'yes'},
                   filters = ['Ha', 'HaC', 'SII', 'r', 'i'],
                   sciFlags={'fl_over': 'yes', 'fl_trim': 'yes', 'fl_bias':'yes', 'fl_dark': 'no','fl_flat': 'yes', 'logfile':'gireduceLog.txt', 'rawpath': './raw/','fl_vardq': 'yes','bpm':bpm_gmos, 'verbose': 'yes'},
                   mosaicFlags = {'fl_paste': 'no', 'fl_fixpix': 'no', 'fl_clean': 'yes', 'geointer': 'nearest', 'logfile': 'gmosaicLog.txt', 'fl_vardq': 'yes', 'fl_fulldq': 'yes', 'verbose': 'yes'},
                   coaddFlags = {'fwhm': 3, 'datamax': 6.e4, 'geointer': 'nearest', 'logfile': 'imcoaddLog.txt'},
                   targets = ['M8-1', 'M8-2', 'M8-3'],
                   clean_files = False
                   ):
    """
    Parameters
    ----------
    dbFile : str
        Filename containing the SQL sqlite3 database created by obslog.py
        It must be placed in the ./raw/ directory
        Default is `./raw/obsLog.sqlite3`
    qd : dictionary
        Query Dictionary of essential parameter=value pairs.
        Select bias exposures within ~2 months of the target observations
        e.g.
         qd= {'use_me': 1,
          'Instrument': 'GMOS-S', 'CcdBin': '2 2', 'RoI': 'Full', 'Object': 'M8-%',
          'DateObs': '2006-09-01:2006-10-30'
          }
    bias_dateobs : str
        String representing the bias search Obsdate
        e.g. bias_dateobs = `2006-09-01:2006-10-30`

    biasFlags : dict
        Dictionary for the keyword flags of gmos.gbias() function

    flat_dateobs : str
        String representing the flat search Obsdate
        e.g. flat_dateobs = `2006-09-10:2006-10-10`

    flatFlags : dict
        Dictionary for the keyword flags of gmos.giflat() function
        e.g. flatFlags = {'fl_scale': 'yes', 'sctype': 'mean', 'fl_vardq': 'yes','rawpath': './raw/',
                         'logfile': 'giflatLog.txt', 'verbose': 'yes'}
    filters : list
        List of filter names to perform reduction
        e.g. filters=['Ha', 'HaC', 'SII', 'r', 'i']

    sciFlags : dict
        Dictionary for the keyword flags of gmos.gireduce() function

    mosaicFlags : dict
        Dictionary for the keyword flags of gmos.gimosaic() function

    coaddFlags : dict
        Dictionary for the keyword flags of gemtools.imcoadd() function

    targets : list
        List of names of target observations for the co-addition
        e.g.  targets = ['M8-1', 'M8-2', 'M8-3']

    clean_files : bool
        Whether to clean intermediate files from reduction process

    Returns
    -------
    Reduce GMOS imaging based on tutorial example.


    """
    print ("### Begin Processing GMOS/MOS Images ###")
    print ("###")
    print ("=== Creating MasterCals ===")

    # From the work_directory:
    # Create the query dictionary of essential parameter=value pairs.
    # Select bias exposures within ~2 months of the target observations:

    print (" --Creating Bias MasterCal--")
    qd.update({'DateObs': bias_dateobs})

    # Set the task parameters.
    gmos.gbias.unlearn()
    # The following SQL generates the list of files to process.
    SQL = fs.createQuery('bias', qd)
    biasFiles = fs.fileListQuery(dbFile, SQL, qd)

    # The str.join() function is needed to transform a python list into a string
    # filelist that IRAF can understand.
    if len(biasFiles) > 1:
        files_all = ','.join(str(x) for x in biasFiles)
        # import pdb; pdb.set_trace()
        gmos.gbias(files_all, 'MCbias.fits', **biasFlags)

    # Clean up
    year_obs = qd['DateObs'].split('-')[0]
    if clean_files:
        iraf.imdel('gS{}*.fits'.format(year_obs))

    ask_user("MC Bias done. Would you like to continue to proceed with Master Flats? (y/n): ",['y','yes'])

    print (" --Creating Twilight Imaging Flat-Field MasterCal--")
    # Select flats obtained contemporaneously with the observations.
    qd.update({'DateObs': flat_dateobs})

    # Set the task parameters.
    gmos.giflat.unlearn()

    #filters = ['Ha', 'HaC', 'SII', 'r', 'i']
    for f in filters:
        print "  Building twilight flat MasterCal for filter: %s" % (f)

        # Select filter name using a substring of the official designation.
        qd['Filter2'] = f + '_G%'
        mcName = 'MCflat_%s.fits' % (f)
        flatFiles = fs.fileListQuery(dbFile, fs.createQuery('twiFlat', qd), qd)
        if len(flatFiles) > 0:
            files_all = ','.join(str(x) for x in flatFiles)
            # import pdb; pdb.set_trace()
            gmos.giflat(files_all, mcName, bias='MCbias', **flatFlags)

    if clean_files:
        iraf.imdel('gS{}*.fits,rgS{}*.fits'.format(year_obs, year_obs))

    ask_user("MC Flats done. Would you like to continue to proceed with processing Science Images? (y/n): ", ['yes','y'])

    print ("=== Processing Science Images ===")
    # Remove restriction on date range
    qd['DateObs'] = '*'
    prefix = 'rg'

    gmos.gireduce.unlearn()
    gemtools.gemextn.unlearn()  # disarms a bug in gmosaic
    gmos.gmosaic.unlearn()
    # Reduce the science images, then mosaic the extensions in a loop
    for f in filters:
        print "    Processing science images for filter: %s" % (f)
        qd['Filter2'] = f + '_G%'
        flatFile = 'MCflat_' + f + '.fits'
        SQL = fs.createQuery('sciImg', qd)
        sciFiles = fs.fileListQuery(dbFile, SQL, qd)
        if len(sciFiles) > 0:
            # Make sure BPM table is in sciFlags for employing the imaging Static BPM for this set of detectors.
            # import pdb; pdb.set_trace()
            all_files = ','.join(str(x) for x in sciFiles)
            gmos.gireduce(all_files, bias='MCbias', flat1=flatFile, **sciFlags)
            for file in sciFiles:
                gmos.gmosaic(prefix + file, **mosaicFlags)
        else:
            print("No Science images found for filter {}. Check database.".format(f))
            import pdb; pdb.set_trace()

    if clean_files:
        iraf.imdelete('gS{}*.fits,rgS{}*.fits'.format(year_obs,year_obs))

    ask_user("Science Images done. Would you like to continue to proceed with image co-addition? (y/n): ", ['y','yes'])

    ## Co-add the images, per position and filter.
    print (" -- Begin image co-addition --")

    # Use primarily the default task parameters.
    gemtools.imcoadd.unlearn()
    prefix = 'mrg'
    for f in filters:
        print "  - Co-addding science images in filter: %s" % (f)
        qd['Filter2'] = f + '_G%'
        for t in targets:
            qd['Object'] = t + '%'
            print "  - Co-addding science images for position: %s" % (t)
            outImage = t + '_' + f + '.fits'
            coAddFiles = fs.fileListQuery(dbFile, fs.createQuery('sciImg', qd), qd)
            all_files = ','.join(prefix + str(x) for x in coAddFiles)
            if all_files == '':
                print('No files available for co-addition. Check that the target names are written correctly.')
                import pdb; pdb.set_trace()
            gemtools.imcoadd(all_files, outimage=outImage, **coaddFlags)

    ask_user("Co-addition done. Would you like to clean the latest intermediate reduction files? (y/n): ", ['y','yes'])

    if clean_files:
        iraf.delete("*_trn*,*_pos,*_cen")
        iraf.imdelete("*badpix.pl,*_med.fits,*_mag.fits")
        # iraf.imdelete ("mrgS*.fits")

    print ("=== Finished Calibration Processing ===")
Пример #47
0
current_dir = os.getcwd()
os.chdir(ic.dir_iraf)

from pyraf import iraf
from pyraf.iraf import gemini, gmos

os.chdir(current_dir)
iraf.chdir(current_dir)

iraf.unlearn('gfreduce')
iraf.unlearn('gfscatsub')

# ---------- Pre-processing of the science frames ---------- #

# MDF, bias, and overscan
iraf.imdelete('g@' + ic.lst_std)
iraf.imdelete('rg@' + ic.lst_std)

iraf.gfreduce('@' + ic.lst_std,
              rawpath=ic.rawdir,
              fl_extract='no',
              bias=ic.caldir + ic.procbias,
              fl_over='yes',
              fl_trim='yes',
              mdffile=ic.nmdf,
              mdfdir='./',
              slits=ic.cslit,
              line=pk_line,
              fl_fluxcal='no',
              fl_gscrrej='no',
              fl_wavtran='no',
Пример #48
0
def imalign(images, square=False):
    from astropy.wcs import WCS
    from astropy.io import fits

    img_cat = images[0] # arbitrarily pick the first image to get a catalog with

    # fetch a gaia catalog for the full image footprint
    outputg = img_cat.f+'.gaia'
    gaia_cat = odi.get_gaia_coords(images[0], ota='None', inst='podi', output=outputg)
    # print gaia_cat
    # convert the ra, dec to image coordinates in each image
    # first get the wcs for each image

    x0s, y0s, xsizes, ysizes = np.zeros_like(images), np.zeros_like(images), np.zeros_like(images), np.zeros_like(images)

    for j,img in enumerate(images):
        hdu_img = fits.open(img.f)
        img.naxis1 = hdu_img[0].header['NAXIS1']
        img.naxis2 = hdu_img[0].header['NAXIS2']
        w_img = WCS(hdu_img[0].header)
        img.x_img, img.y_img = w_img.all_world2pix(gaia_cat.ra, gaia_cat.dec, 1)
        x0s[j], y0s[j] = img.x_img[0], img.y_img[0]
        hdu_img.close()
    x_ref = np.argmin(x0s)
    y_ref = np.argmin(y0s)

    # (pick the most positive image as a "reference")
    img_ref = images[x_ref]
    
    hdu_ref = fits.open(img_ref.f)
    naxis1_ref = hdu_ref[0].header['NAXIS1']
    naxis2_ref = hdu_ref[0].header['NAXIS2']
    w_ref = WCS(hdu_ref[0].header)
    x_ref, y_ref = w_ref.all_world2pix(gaia_cat.ra, gaia_cat.dec, 1)


    for j,img in enumerate(images):
        # compute the pair-wise integer pixel shifts between the image and the reference
        img.x_shift, img.y_shift = np.rint(np.median(x_ref-img.x_img)), np.rint(np.median(y_ref-img.y_img))
        img.x_std, img.y_std = np.rint(np.std(x_ref-img.x_img)), np.rint(np.std(y_ref-img.y_img))
        # figure out how wide the trimmed image is
        img.x_size = np.rint(img.naxis1 + img.x_shift)
        img.y_size = np.rint(img.naxis2 + img.y_shift)
        # keep track
        xsizes[j] = img.x_size
        ysizes[j] = img.y_size
        # shift the images so that they are aligned to the "reference"
        # use relative coordinates-- negative values are applied to the image, 
        # we will not change the 'reference' because we've already decided it shouldn't shift
        iraf.imcopy(img.f, 'temp{:1d}.fits'.format(j))
        if img.x_shift < 0.5:
            trim_img = 'temp{:1d}.fits[{:d}:{:d},*]'.format(j,int(abs(img.x_shift))+1, img.naxis1)
            iraf.imcopy(trim_img, 'temp{:1d}.fits'.format(j))
        else:
            raise Exception

        if img.y_shift < 0.5:
            trim_img = 'temp{:1d}.fits[*,{:d}:{:d}]'.format(j,int(abs(img.y_shift))+1, img.naxis2)
            iraf.imcopy(trim_img, 'temp{:1d}.fits'.format(j))
        else:
            raise Exception

    # figure out what the smallest image size is
    min_xsize = np.min(xsizes)
    min_ysize = np.min(ysizes)

    for j,img in enumerate(images):
        # then take any excess pixels off at the high end of the range in each dimension so that the images have identical dimensions
        new_img = img.f[:-5]+'_match.fits'
        trim_img = 'temp{:1d}.fits[1:{:d},1:{:d}]'.format(j,int(min_xsize)-1, int(min_ysize)-1) 
        # make the copy
        iraf.imcopy(trim_img, new_img)    
        # delete the temporary working images
        iraf.imdelete('temp{:1d}.fits'.format(j))
Пример #49
0

#######################################################################
#######################################################################
###   Star reduction                                                  #
#######################################################################
#######################################################################

#
#   Flat reduction
#


for m in range(len(star)):
    for i in ['g', 'rg', 'erg']:
        iraf.imdelete(i+'@flat'+str(m)+'.list')

    # (B) - 'fl_over=no';
    iraf.gfreduce('@flat'+str(m)+'.list', slits='header', 
        rawpath='rawdir$', fl_inter='no',
        fl_addmdf='yes', key_mdf='MDF', mdffile='default', weights='no',
        fl_over='no', fl_trim='yes', fl_bias='yes', trace='yes', t_order=4,
        fl_flux='no', fl_gscrrej='no', fl_extract='yes', fl_gsappwave='no',
        fl_wavtran='no', fl_novl='no', fl_skysub='no', reference='',
        recenter='yes', fl_vardq='yes', bias='caldir$'+bias[m][0])


#
#   Twilight reduction
#
for m in range(len(star)):
Пример #50
0
def mscimage(input=None, output=None, format='image', pixmask=no,verbose=')_.verbose',wcssource='image',reference='',ra=INDEF,dec=INDEF,scale=INDEF,rotation=INDEF,blank=0.0,interpolant='poly5',minterpolant='linear',boundary='reflect',constant=0.0,fluxconserve=no,ntrim=8,nxblock=INDEF,nyblock=INDEF,interactive=no,nx=10,ny=20,fitgeometry='general',xxorder=4,xyorder=4,xxterms='half',yxorder=4,yyorder=4,yxterms='half',fd_in='',fd_ext='',fd_coord='',mode='ql',DOLLARnargs=0,taskObj=None):

	Vars = IrafParList('mscimage')
	Vars.addParam(makeIrafPar(input, datatype='string', name='input', mode='a',prompt='List of input mosaic exposures'))
	Vars.addParam(makeIrafPar(output, datatype='string', name='output',mode='a',prompt='List of output images'))
	Vars.addParam(makeIrafPar(format, datatype='string', name='format',enum=['image', 'mef'],mode='h',prompt='Output format (image|mef)'))
	Vars.addParam(makeIrafPar(pixmask, datatype='bool', name='pixmask',mode='h',prompt='Create pixel mask?'))
	Vars.addParam(makeIrafPar(verbose, datatype='bool', name='verbose',mode='h',prompt='Verbose output?\n\n# Output WCS parameters'))
	Vars.addParam(makeIrafPar(wcssource, datatype='string', name='wcssource',enum=['image', 'parameters', 'match'],mode='h',prompt='Output WCS source (image|parameters|match)'))
	Vars.addParam(makeIrafPar(reference, datatype='file', name='reference',mode='h',prompt='Reference image'))
	Vars.addParam(makeIrafPar(ra, datatype='real', name='ra', max=24.0,min=0.0,mode='h',prompt='RA of tangent point (hours)'))
	Vars.addParam(makeIrafPar(dec, datatype='real', name='dec', max=90.0,min=-90.0,mode='h',prompt='DEC of tangent point (degrees)'))
	Vars.addParam(makeIrafPar(scale, datatype='real', name='scale', mode='h',prompt='Scale (arcsec/pixel)'))
	Vars.addParam(makeIrafPar(rotation, datatype='real', name='rotation',max=360.0,min=-360.0,mode='h',prompt='Rotation of DEC from N to E (degrees)\n\n# Resampling parmeters'))
	Vars.addParam(makeIrafPar(blank, datatype='real', name='blank', mode='h',prompt='Blank value'))
	Vars.addParam(makeIrafPar(interpolant, datatype='string',name='interpolant',mode='h',prompt='Interpolant for data'))
	Vars.addParam(makeIrafPar(minterpolant, datatype='string',name='minterpolant',mode='h',prompt='Interpolant for mask'))
	Vars.addParam(makeIrafPar(boundary, datatype='string', name='boundary',enum=['nearest', 'constant', 'reflect', 'wrap'],mode='h',prompt='Boundary extension'))
	Vars.addParam(makeIrafPar(constant, datatype='real', name='constant',mode='h',prompt='Constant boundary extension value'))
	Vars.addParam(makeIrafPar(fluxconserve, datatype='bool',name='fluxconserve',mode='h',prompt='Preserve flux per unit area?'))
	Vars.addParam(makeIrafPar(ntrim, datatype='int', name='ntrim', min=0,mode='h',prompt='Edge trim in each extension'))
	Vars.addParam(makeIrafPar(nxblock, datatype='int', name='nxblock',mode='h',prompt='X dimension of working block size in pixels'))
	Vars.addParam(makeIrafPar(nyblock, datatype='int', name='nyblock',mode='h',prompt='Y dimension of working block size in pixels\n\n# Geometric mapping parameters'))
	Vars.addParam(makeIrafPar(interactive, datatype='bool', name='interactive',mode='h',prompt='Fit mapping interactively?'))
	Vars.addParam(makeIrafPar(nx, datatype='int', name='nx', mode='h',prompt='Number of x grid points'))
	Vars.addParam(makeIrafPar(ny, datatype='int', name='ny', mode='h',prompt='Number of y grid points'))
	Vars.addParam(makeIrafPar(fitgeometry, datatype='string',name='fitgeometry',enum=['shift', 'xyscale', 'rotate', 'rscale', 'rxyscale', 'general'],mode='h',prompt='Fitting geometry'))
	Vars.addParam(makeIrafPar(xxorder, datatype='int', name='xxorder', min=2,mode='h',prompt='Order of x fit in x'))
	Vars.addParam(makeIrafPar(xyorder, datatype='int', name='xyorder', min=2,mode='h',prompt='Order of x fit in y'))
	Vars.addParam(makeIrafPar(xxterms, datatype='string', name='xxterms',mode='h',prompt='X fit cross terms type'))
	Vars.addParam(makeIrafPar(yxorder, datatype='int', name='yxorder', min=2,mode='h',prompt='Order of y fit in x'))
	Vars.addParam(makeIrafPar(yyorder, datatype='int', name='yyorder', min=2,mode='h',prompt='Order of y fit in y'))
	Vars.addParam(makeIrafPar(yxterms, datatype='string', name='yxterms',mode='h',prompt='Y fit cross terms type\n\n'))
	Vars.addParam(makeIrafPar(fd_in, datatype='struct', name='fd_in',list_flag=1,mode='h',prompt=''))
	Vars.addParam(makeIrafPar(fd_ext, datatype='struct', name='fd_ext',list_flag=1,mode='h',prompt=''))
	Vars.addParam(makeIrafPar(fd_coord, datatype='struct', name='fd_coord',list_flag=1,mode='h',prompt=''))
	Vars.addParam(makeIrafPar(mode, datatype='string', name='mode', mode='h',prompt=''))
	Vars.addParam(makeIrafPar(DOLLARnargs, datatype='int', name='$nargs',mode='h'))
	Vars.addParam(makeIrafPar(None, datatype='file', name='in', mode='u'))
	Vars.addParam(makeIrafPar(None, datatype='file', name='out', mode='u'))
	Vars.addParam(makeIrafPar(None, datatype='file', name='ref', mode='u'))
	Vars.addParam(makeIrafPar(None, datatype='file', name='pl', mode='u'))
	Vars.addParam(makeIrafPar(None, datatype='file', name='image', mode='u'))
	Vars.addParam(makeIrafPar(None, datatype='file', name='trimsec', mode='u'))
	Vars.addParam(makeIrafPar(None, datatype='file', name='outsec', mode='u'))
	Vars.addParam(makeIrafPar(None, datatype='file', name='plsec', mode='u'))
	Vars.addParam(makeIrafPar(None, datatype='file', name='inlists', mode='u'))
	Vars.addParam(makeIrafPar(None, datatype='file', name='extlist', mode='u'))
	Vars.addParam(makeIrafPar(None, datatype='file', name='pllist', mode='u'))
	Vars.addParam(makeIrafPar(None, datatype='file', name='coord', mode='u'))
	Vars.addParam(makeIrafPar(None, datatype='file', name='db', mode='u'))
	Vars.addParam(makeIrafPar(None, datatype='file', name='wcsref', mode='u'))
	Vars.addParam(makeIrafPar(None, datatype='file', name='outtemp', mode='u'))
	Vars.addParam(makeIrafPar(None, datatype='file', name='pltemp', mode='u'))
	Vars.addParam(makeIrafPar(None, datatype='int', name='nc', mode='u'))
	Vars.addParam(makeIrafPar(None, datatype='int', name='nl', mode='u'))
	Vars.addParam(makeIrafPar(None, datatype='int', name='ncref', mode='u'))
	Vars.addParam(makeIrafPar(None, datatype='int', name='nlref', mode='u'))
	Vars.addParam(makeIrafPar(None, datatype='int', name='cmin', mode='u'))
	Vars.addParam(makeIrafPar(None, datatype='int', name='cmax', mode='u'))
	Vars.addParam(makeIrafPar(None, datatype='int', name='lmin', mode='u'))
	Vars.addParam(makeIrafPar(None, datatype='int', name='lmax', mode='u'))
	Vars.addParam(makeIrafPar(None, datatype='int', name='nimage', mode='u'))
	Vars.addParam(makeIrafPar(None, datatype='int', name='nimages', mode='u'))
	Vars.addParam(makeIrafPar(None, datatype='int', name='nxblk', mode='u'))
	Vars.addParam(makeIrafPar(None, datatype='int', name='nyblk', mode='u'))
	Vars.addParam(makeIrafPar(None, datatype='real', name='x', mode='u'))
	Vars.addParam(makeIrafPar(None, datatype='real', name='y', mode='u'))
	Vars.addParam(makeIrafPar(None, datatype='real', name='rval', mode='u'))
	Vars.addParam(makeIrafPar(None, datatype='real', name='xmin', mode='u'))
	Vars.addParam(makeIrafPar(None, datatype='real', name='xmax', mode='u'))
	Vars.addParam(makeIrafPar(None, datatype='real', name='ymin', mode='u'))
	Vars.addParam(makeIrafPar(None, datatype='real', name='ymax', mode='u'))
	Vars.addParam(makeIrafPar(None, datatype='real', name='crpix1', mode='u'))
	Vars.addParam(makeIrafPar(None, datatype='real', name='crpix2', mode='u'))
	Vars.addParam(makeIrafPar(None, datatype='string', name='extname',mode='u'))
	Vars.addParam(makeIrafPar(None, datatype='string', name='str', mode='u'))

	iraf.cache('mscextensions', 'mscgmask')
	Vars.inlists = iraf.mktemp('tmp$iraf')
	Vars.extlist = iraf.mktemp('tmp$iraf')
	Vars.pllist = iraf.mktemp('tmp$iraf')
	Vars.coord = iraf.mktemp('tmp$iraf')
	Vars.db = iraf.mktemp('tmp$iraf')
	Vars.outtemp = iraf.mktemp('tmp')
	Vars.wcsref = iraf.mktemp('tmp')
	Vars.pltemp = iraf.mktemp('tmp')
	iraf.joinlists(Vars.input, Vars.output, output = Vars.inlists, delim = ' ',short=yes,type = 'image')
	Vars.fd_in = Vars.inlists
	while (iraf.fscan(locals(), 'Vars.fd_in', 'Vars.PYin', 'Vars.out') != EOF):
		if (iraf.imaccess(Vars.out)):
			iraf.printf('Warning: Image already exists (%s)\n', Vars.out)
			continue
		if (Vars.pixmask):
			Vars.pl = Vars.out
			Vars.nc = iraf.strlen(Vars.pl)
			if (Vars.nc > 5 and iraf.substr(Vars.pl, Vars.nc - 4, Vars.nc) == '.fits'):
				Vars.pl = iraf.substr(Vars.pl, 1, Vars.nc - 5)
			elif (Vars.nc > 4 and iraf.substr(Vars.out, Vars.nc - 3, Vars.nc) == '.imh'):
				Vars.pl = iraf.substr(Vars.pl, 1, Vars.nc - 4)
			Vars.pl = Vars.pl + '_bpm'
			if (Vars.format == 'image' and iraf.imaccess(Vars.pl)):
				iraf.printf('Warning: Mask already exists (%s)\n', Vars.pl)
				continue
		else:
			Vars.pl = ''
		iraf.mscextensions(Vars.PYin, output = 'file', index = '0-',extname = '',extver = '',lindex = no,lname = yes,lver = no,ikparams = '',Stdout=Vars.extlist)
		Vars.nimages = int(iraf.mscextensions.nimages)
		Vars.nimage = 0
		if (Vars.nimages < 1):
			iraf.printf("WARNING: No input image data found in `%s'.\
",Vars.PYin)
			iraf.delete(Vars.extlist, verify = no)
			continue
		if (not iraf.imaccess(Vars.wcsref)):
			Vars.ref = Vars.reference
			if (Vars.wcssource == 'match'):
				Vars.wcsref = Vars.ref
			else:
				iraf.mscwtemplate('@' + Vars.extlist, Vars.wcsref,wcssource = Vars.wcssource,reference = Vars.ref,ra = Vars.ra,dec = Vars.dec,scale = Vars.scale,rotation = Vars.rotation,projection = '',verbose = Vars.verbose)
		Vars.fd_ext = Vars.extlist
		while (iraf.fscan(locals(), 'Vars.fd_ext', 'Vars.image') != EOF):
			Vars.nimage = Vars.nimage + 1
			if (Vars.nimages > 1):
				Pipe1 = iraf.hselect(Vars.image, 'extname', yes, Stdout=1)
				iraf.scan(locals(), 'Vars.extname', Stdin=Pipe1)
				del Pipe1
				if (iraf.nscan() == 0):
					Vars.extname = 'im' + str(Vars.nimage)
				Pipe1 = iraf.printf('%s[%s,append]\n', Vars.outtemp,Vars.extname,Stdout=1)
				iraf.scan(locals(), 'Vars.outsec', Stdin=Pipe1)
				del Pipe1
				Pipe1 = iraf.printf('%s%s\n', Vars.pl, Vars.extname, Stdout=1)
				iraf.scan(locals(), 'Vars.plsec', Stdin=Pipe1)
				del Pipe1
			else:
				Vars.extname = ''
				Vars.outsec = Vars.outtemp
				Vars.plsec = Vars.pl
			if (Vars.pixmask and iraf.imaccess(Vars.plsec)):
				iraf.delete(Vars.coord, verify = no)
				iraf.delete(Vars.db, verify = no)
				iraf.printf('Warning: Mask already exists (%s)\n', Vars.plsec)
				continue
			if (Vars.verbose):
				iraf.printf('Resampling %s ...\n', Vars.image)
			Pipe1 = iraf.hselect(Vars.image, 'naxis1,naxis2', yes, Stdout=1)
			iraf.scan(locals(), 'Vars.nc', 'Vars.nl', Stdin=Pipe1)
			del Pipe1
			Vars.cmin = 1 + Vars.ntrim
			Vars.cmax = Vars.nc - Vars.ntrim
			Vars.lmin = 1 + Vars.ntrim
			Vars.lmax = Vars.nl - Vars.ntrim
			Pipe1 = iraf.printf('[%d:%d,%d:%d]\n', Vars.cmin, Vars.cmax,Vars.lmin,Vars.lmax,Stdout=1)
			iraf.scan(locals(), 'Vars.trimsec', Stdin=Pipe1)
			del Pipe1
			if (Vars.wcssource == 'match'):
				Pipe1 = iraf.hselect(Vars.ref, 'naxis1,naxis2', yes, Stdout=1)
				iraf.scan(locals(), 'Vars.ncref', 'Vars.nlref', Stdin=Pipe1)
				del Pipe1
				Vars.xmin = (Vars.ncref - 1.) / (Vars.nx - 1.)
				Vars.ymin = (Vars.nlref - 1.) / (Vars.ny - 1.)
				Vars.ymax = 1
				while (Vars.ymax <= Vars.nlref + 1):
					Vars.xmax = 1
					while (Vars.xmax <= Vars.ncref + 1):
						iraf.clPrint(Vars.xmax, Vars.ymax, Vars.xmax,Vars.ymax,StdoutAppend=Vars.coord)
						Vars.xmax = Vars.xmax + Vars.xmin
					Vars.ymax = Vars.ymax + Vars.ymin
				iraf.mscctran(Vars.coord, Vars.db, Vars.ref, 'logical','world',columns = '3 4',units = '',formats = '%.4H %.3h',min_sigdigit = 10,verbose = no)
				iraf.delete(Vars.coord, verify=no)
				iraf.wcsctran(Vars.db, Vars.coord, Vars.image + Vars.trimsec,inwcs = 'world',outwcs = 'logical',columns = '3 4',units = 'hours native',formats = '',min_sigdigit = 10,verbose = no)
				iraf.delete(Vars.db, verify=no)
			else:
				Vars.nc = Vars.cmax - Vars.cmin + 1
				Vars.nl = Vars.lmax - Vars.lmin + 1
				Vars.xmin = (Vars.nc - 1.) / (Vars.nx - 1.)
				Vars.ymin = (Vars.nl - 1.) / (Vars.ny - 1.)
				Vars.ymax = 1
				while (Vars.ymax <= Vars.nl + 1):
					Vars.xmax = 1
					while (Vars.xmax <= Vars.nc + 1):
						iraf.clPrint(Vars.xmax, Vars.ymax, Vars.xmax,Vars.ymax,StdoutAppend=Vars.coord)
						Vars.xmax = Vars.xmax + Vars.xmin
					Vars.ymax = Vars.ymax + Vars.ymin
				iraf.mscctran(Vars.coord, Vars.db, Vars.image + Vars.trimsec,'logical','world',columns = '1 2',units = '',formats = '%.4H %.3h',min_sigdigit = 10,verbose = no)
				iraf.delete(Vars.coord, verify=no)
				iraf.wcsctran(Vars.db, Vars.coord, Vars.wcsref,inwcs = 'world',outwcs = 'logical',columns = '1 2',units = 'hours native',formats = '',min_sigdigit = 10,verbose = no)
				iraf.delete(Vars.db, verify=no)
			Vars.xmax = 0.
			Vars.xmin = 1.
			Vars.ymax = 0.
			Vars.ymin = 1.
			Vars.fd_coord = Vars.coord
			while (iraf.fscan(locals(), 'Vars.fd_coord', 'Vars.x', 'Vars.y') != EOF):
				if (iraf.nscan() < 2):
					continue
				if (Vars.xmax < Vars.xmin):
					Vars.xmin = Vars.x
					Vars.xmax = Vars.x
					Vars.ymin = Vars.y
					Vars.ymax = Vars.y
				else:
					Vars.xmin = float(iraf.minimum(Vars.x, Vars.xmin))
					Vars.xmax = float(iraf.maximum(Vars.x, Vars.xmax))
					Vars.ymin = float(iraf.minimum(Vars.y, Vars.ymin))
					Vars.ymax = float(iraf.maximum(Vars.y, Vars.ymax))
			Vars.fd_coord = ''
			if (Vars.xmax <= Vars.xmin or Vars.ymax <= Vars.ymin):
				iraf.error(1, 'No overlap for matching reference')
			Vars.cmin = int(iraf.nint(Vars.xmin - 1.5))
			Vars.cmax = int(iraf.nint(Vars.xmax + 1.5))
			Vars.lmin = int(iraf.nint(Vars.ymin - 1.5))
			Vars.lmax = int(iraf.nint(Vars.ymax + 1.5))
			iraf.geomap(Vars.coord, Vars.db, Vars.cmin, Vars.cmax, Vars.lmin,Vars.lmax,transforms = '',results = '',fitgeometry = Vars.fitgeometry,function = 'chebyshev',xxorder = Vars.xxorder,xyorder = Vars.xyorder,xxterms = Vars.xxterms,yxorder = Vars.yxorder,yyorder = Vars.yyorder,yxterms = Vars.yxterms,reject = INDEF,calctype = 'double',verbose = no,interactive = Vars.interactive,graphics = 'stdgraph',cursor = '')
			if (Vars.wcssource == 'match'):
				Vars.cmin = 1
				Vars.lmin = 1
				Vars.cmax = Vars.ncref
				Vars.lmax = Vars.nlref
			if (Vars.nxblock == INDEF):
				Vars.nxblk = Vars.cmax - Vars.cmin + 3
			else:
				Vars.nxblk = Vars.nxblock
			if (Vars.nyblock == INDEF):
				Vars.nyblk = Vars.lmax - Vars.lmin + 3
			else:
				Vars.nyblk = Vars.nyblock
			iraf.geotran(Vars.image + Vars.trimsec, Vars.outsec, Vars.db,Vars.coord,geometry = 'geometric',xin = INDEF,yin = INDEF,xshift = INDEF,yshift = INDEF,xout = INDEF,yout = INDEF,xmag = INDEF,ymag = INDEF,xrotation = INDEF,yrotation = INDEF,xmin = Vars.cmin,xmax = Vars.cmax,ymin = Vars.lmin,ymax = Vars.lmax,xsample = 10.,ysample = 10.,xscale = 1.,yscale = 1.,ncols = INDEF,nlines = INDEF,interpolant = Vars.interpolant,boundary = 'constant',constant = Vars.constant,fluxconserve = Vars.fluxconserve,nxblock = Vars.nxblk,nyblock = Vars.nyblk,verbose = no)
			iraf.wcscopy(Vars.outsec, Vars.wcsref, verbose=no)
			Vars.xmin = 0.
			Vars.ymin = 0.
			Pipe1 = iraf.hselect(Vars.outsec, 'crpix1,crpix2', yes, Stdout=1)
			iraf.scan(locals(), 'Vars.xmin', 'Vars.ymin', Stdin=Pipe1)
			del Pipe1
			Vars.xmin = Vars.xmin - Vars.cmin + 1
			Vars.ymin = Vars.ymin - Vars.lmin + 1
			if (Vars.nimage == 1):
				Vars.crpix1 = Vars.xmin
				Vars.crpix2 = Vars.ymin
			else:
				Vars.crpix1 = float(iraf.maximum(Vars.crpix1, Vars.xmin))
				Vars.crpix2 = float(iraf.maximum(Vars.crpix2, Vars.ymin))
			iraf.hedit(Vars.outsec, 'crpix1', Vars.xmin, add=yes, verify=no,show=no,update=yes)
			iraf.hedit(Vars.outsec, 'crpix2', Vars.ymin, add=yes, verify=no,show=no,update=yes)
			if (Vars.pixmask):
				Pipe1 = iraf.printf('%s%s\n', Vars.pl, Vars.extname, Stdout=1)
				iraf.scan(locals(), 'Vars.plsec', Stdin=Pipe1)
				del Pipe1
				iraf.mscgmask(Vars.image + Vars.trimsec, Vars.pltemp + '.pl','BPM',mval = 10000)
				iraf.geotran(Vars.pltemp, Vars.plsec + '.fits', Vars.db,Vars.coord,geometry = 'geometric',xin = INDEF,yin = INDEF,xshift = INDEF,yshift = INDEF,xout = INDEF,yout = INDEF,xmag = INDEF,ymag = INDEF,xrotation = INDEF,yrotation = INDEF,xmin = Vars.cmin,xmax = Vars.cmax,ymin = Vars.lmin,ymax = Vars.lmax,xsample = 10.,ysample = 10.,interpolant = Vars.minterpolant,boundary = 'constant',constant = 20000.,fluxconserve = no,nxblock = Vars.nxblk,nyblock = Vars.nyblk,verbose = no)
				iraf.imdelete(Vars.pltemp, verify=no)
				iraf.mscpmask(Vars.plsec + '.fits', Vars.plsec + '.pl')
				iraf.imdelete(Vars.plsec + '.fits', verify=no)
				iraf.hedit(Vars.outsec, 'BPM', Vars.plsec + '.pl', add=yes,show=no,verify=no,update=yes)
				iraf.wcscopy(Vars.plsec, Vars.outsec, verbose=no)
				iraf.clPrint(Vars.plsec, StdoutAppend=Vars.pllist)
			else:
				iraf.hedit(Vars.outsec, 'BPM', PYdel=yes, add=no, addonly=no,show=no,verify=no,update=yes)
			iraf.delete(Vars.coord, verify = no)
			iraf.delete(Vars.db, verify = no)
		Vars.fd_ext = ''
		iraf.delete(Vars.extlist, verify = no)
		if (Vars.nimages > 1 and Vars.format == 'image'):
			if (Vars.verbose):
				iraf.printf('Creating image %s ...\n', Vars.out)
			iraf.mscextensions(Vars.outtemp, output = 'file', index = '',extname = '',extver = '',lindex = no,lname = yes,lver = no,ikparams = '',Stdout=Vars.extlist)
			if (Vars.pixmask):
				iraf.combine('@' + Vars.pllist, Vars.pltemp + '.pl',headers = '',bpmasks = Vars.pl,rejmasks = '',nrejmasks = '',expmasks = '',sigmas = '',imcmb = '',ccdtype = '',amps = no,subsets = no,delete = no,combine = 'average',reject = 'none',project = no,outtype = 'real',outlimits = '',offsets = 'wcs',masktype = 'none',maskvalue = '0',blank = 0.,scale = 'none',zero = 'none',weight = 'none',statsec = '',lthreshold = INDEF,hthreshold = 0.99,nlow = 1,nhigh = 1,nkeep = 1,mclip = yes,lsigma = 3.,hsigma = 3.,rdnoise = '0.',gain = '1.',snoise = '0.',sigscale = 0.1,pclip =  - 0.5,grow = 0.,Stdout='dev$null')
				iraf.imdelete(Vars.pltemp, verify=no)
				iraf.combine('@' + Vars.extlist, Vars.out, headers = '',bpmasks = '',rejmasks = '',nrejmasks = '',expmasks = '',sigmas = '',imcmb = '',ccdtype = '',amps = no,subsets = no,delete = no,combine = 'average',reject = 'none',project = no,outtype = 'real',outlimits = '',offsets = 'wcs',masktype = 'badvalue',maskvalue = '2',blank = 0.,scale = 'none',zero = 'none',weight = 'none',statsec = '',lthreshold = INDEF,hthreshold = INDEF,nlow = 1,nhigh = 1,nkeep = 1,mclip = yes,lsigma = 3.,hsigma = 3.,rdnoise = '0.',gain = '1.',snoise = '0.',sigscale = 0.1,pclip =  - 0.5,grow = 0.,Stdout='dev$null')
				iraf.hedit(Vars.out, 'BPM', Vars.pl, add=yes, verify=no,show=no,update=yes)
				iraf.hedit(Vars.pl, 'IMCMB???,PROCID??', add=no, addonly=no,PYdel=yes,update=yes,verify=no,show=no)
			else:
				iraf.combine('@' + Vars.extlist, Vars.out, headers = '',bpmasks = '',rejmasks = '',nrejmasks = '',expmasks = '',sigmas = '',imcmb = '',ccdtype = '',amps = no,subsets = no,delete = no,combine = 'average',reject = 'none',project = no,outtype = 'real',outlimits = '',offsets = 'wcs',masktype = 'none',maskvalue = '2',blank = 0.,scale = 'none',zero = 'none',weight = 'none',statsec = '',lthreshold = INDEF,hthreshold = INDEF,nlow = 1,nhigh = 1,nkeep = 1,mclip = yes,lsigma = 3.,hsigma = 3.,rdnoise = '0.',gain = '1.',snoise = '0.',sigscale = 0.1,pclip =  - 0.5,grow = 0.,Stdout='dev$null')
			Pipe2 = iraf.hselect('@' + Vars.extlist, 'gain', yes, Stdout=1)
			Pipe1 = iraf.average(data_value = 0., Stdin=Pipe2, Stdout=1)
			del Pipe2
			iraf.scan(locals(), 'Vars.rval', Stdin=Pipe1)
			del Pipe1
			iraf.hedit(Vars.out, 'gain', Vars.rval, add=yes, PYdel=no,update=yes,verify=no,show=no)
			Pipe2 = iraf.hselect('@' + Vars.extlist, 'rdnoise', yes, Stdout=1)
			Pipe1 = iraf.average(data_value = 0., Stdin=Pipe2, Stdout=1)
			del Pipe2
			iraf.scan(locals(), 'Vars.rval', Stdin=Pipe1)
			del Pipe1
			iraf.hedit(Vars.out, 'rdnoise', Vars.rval, add=yes, PYdel=no,update=yes,verify=no,show=no)
			iraf.hedit(Vars.out, 'IMCMB???,PROCID??', add=no, addonly=no,PYdel=yes,update=yes,verify=no,show=no)
			iraf.hedit(Vars.out,'NEXTEND,DETSEC,CCDSEC,AMPSEC,IMAGEID,DATASEC,TRIMSEC,BIASSEC',add=no,addonly=no,PYdel=yes,update=yes,verify=no,show=no)
			iraf.imdelete(Vars.outtemp, verify=no)
			if (iraf.access(Vars.pllist)):
				iraf.imdelete('@' + Vars.pllist, verify=no)
				iraf.delete(Vars.pllist, verify=no)
			iraf.delete(Vars.extlist, verify = no)
		elif (Vars.nimages > 1):
			iraf.imrename(Vars.outtemp, Vars.out, verbose=no)
			iraf.mscextensions(Vars.out, output = 'file', index = '',extname = '',extver = '',lindex = no,lname = yes,lver = no,ikparams = '',Stdout=Vars.extlist)
			Vars.fd_ext = Vars.extlist
			while (iraf.fscan(locals(), 'Vars.fd_ext', 'Vars.image') != EOF):
				Pipe1 = iraf.hselect(Vars.image, 'naxis1,naxis2,crpix1,crpix2',yes,Stdout=1)
				iraf.scan(locals(), 'Vars.nc', 'Vars.nl', 'Vars.xmin','Vars.ymin',Stdin=Pipe1)
				del Pipe1
				Vars.cmin = int(iraf.nint(Vars.crpix1 - Vars.xmin + 1))
				Vars.lmin = int(iraf.nint(Vars.crpix2 - Vars.ymin + 1))
				Vars.cmax = Vars.nc + Vars.cmin - 1
				Vars.lmax = Vars.nl + Vars.lmin - 1
				Pipe1 = iraf.printf('[%d:%d,%d:%d]\n', Vars.cmin, Vars.cmax,Vars.lmin,Vars.lmax,Stdout=1)
				iraf.scan(locals(), 'Vars.str', Stdin=Pipe1)
				del Pipe1
				iraf.hedit(Vars.image, 'DETSEC', Vars.str, add=yes, verify=no,show=no,update=yes)
				iraf.hedit(Vars.image, 'DTM1_1', 1., add=yes, verify=no,show=no,update=yes)
				iraf.hedit(Vars.image, 'DTM2_2', 1., add=yes, verify=no,show=no,update=yes)
				Vars.cmin = Vars.cmin - 1
				Vars.lmin = Vars.lmin - 1
				iraf.hedit(Vars.image, 'DTV1', Vars.cmin, add=yes, verify=no,show=no,update=yes)
				iraf.hedit(Vars.image, 'DTV2', Vars.lmin, add=yes, verify=no,show=no,update=yes)
				iraf.hedit(Vars.image,'CCDSUM,CCDSEC,AMPSEC,ATM1_1,ATM2_2,ATV1,ATV2',PYdel=yes,add=no,addonly=no,verify=no,show=no,update=yes)
			Vars.fd_ext = ''
			iraf.delete(Vars.extlist, verify=no)
		else:
			iraf.imrename(Vars.outsec, Vars.out, verbose=no)
		if (iraf.access(Vars.pllist)):
			iraf.delete(Vars.pllist, verify=no)
	Vars.fd_in = ''
	iraf.delete(Vars.inlists, verify = no)
	if (Vars.wcssource != 'match' and iraf.imaccess(Vars.wcsref)):
		iraf.imdelete(Vars.wcsref, verify=no)
Пример #51
0
def reduce_stdstar(rawdir, rundir, caldir, starobj, stdstar, flat,
    arc, twilight, starimg, bias, overscan, vardq):
    """
    Reduction pipeline for standard star.

    Parameters
    ----------
    rawdir: string
        Directory containing raw images.
    rundi: string
        Directory where processed files are saved.
    caldir: string
        Directory containing standard star calibration files.
    starobj: string
        Object keyword for the star image.
    stdstar: string
        Star name in calibration file.
    flat: list
        Names of the files containing flat field images.
    arc: list
        Arc images.
    twilight: list
        Twilight flat images.
    starimg: string
        Name of the file containing the image to be reduced.
    bias: list
        Bias images.
    
    """

    iraf.set(stdimage='imtgmos')
    
    iraf.gemini()
    iraf.gemtools()
    iraf.gmos()
    
    #iraf.unlearn('gemini')
    #iraf.unlearn('gmos')
    
    iraf.task(lacos_spec='/storage/work/gemini_pairs/lacos_spec.cl')
    
    tstart = time.time()
    
    #set directories
    iraf.set(caldir=rawdir)  # 
    iraf.set(rawdir=rawdir)  # raw files
    iraf.set(procdir=rundir)  # processed files
    
    iraf.gmos.logfile='logfile.log'
    
    iraf.cd('procdir')
    
    # building lists
    
    def range_string(l):
        return (len(l)*'{:4s},').format(*[i[-9:-5] for i in l])
    
    iraf.gemlist(range=range_string(flat), root=flat[0][:-9],
        Stdout='flat.list')
    iraf.gemlist(range=range_string(arc), root=arc[0][:-9],
        Stdout='arc.list')
    #iraf.gemlist(range=range_string(star), root=star[0][:-4],
    #    Stdout='star.list')
    iraf.gemlist(range=range_string(twilight),
        root=twilight[0][:-9], Stdout='twilight.list')
    
    iraf.gfreduce.bias = 'caldir$'+bias[0]
    
    #######################################################################
    #######################################################################
    ###   Star reduction                                                  #
    #######################################################################
    #######################################################################
    
    #
    #   Flat reduction
    #
    
    iraf.gfreduce(
        '@flat.list', slits='header', rawpath='rawdir$', fl_inter='no',
        fl_addmdf='yes', key_mdf='MDF', mdffile='default', weights='no',
        fl_over=overscan, fl_trim='yes', fl_bias='yes', trace='yes', t_order=4,
        fl_flux='no', fl_gscrrej='no', fl_extract='yes', fl_gsappwave='no',
        fl_wavtran='no', fl_novl='no', fl_skysub='no', reference='',
        recenter='yes', fl_vardq=vardq)
    
    iraf.gfreduce('@twilight.list', slits='header', rawpath='rawdir$',
        fl_inter='no', fl_addmdf='yes', key_mdf='MDF',
        mdffile='default', weights='no',
        fl_over=overscan, fl_trim='yes', fl_bias='yes', trace='yes',
        recenter='no',
        fl_flux='no', fl_gscrrej='no', fl_extract='yes', fl_gsappwave='no',
        fl_wavtran='no', fl_novl='no', fl_skysub='no',
        reference='erg'+flat[0], fl_vardq=vardq)
    #
    #   Response function
    #
    
    
    for i, j in enumerate(flat):

        j = j[:-5]
    
        iraf.imdelete(j+'_response')
        iraf.gfresponse('erg'+j+'.fits', out='erg'+j+'_response',
            skyimage='erg'+twilight[i], order=95, fl_inter='no',
            func='spline3',
            sample='*', verbose='yes')
    
    #   Arc reduction
    #
    
    iraf.gfreduce(
        '@arc.list', slits='header', rawpath='rawdir$', fl_inter='no',
        fl_addmdf='yes', key_mdf='MDF', mdffile='default', weights='no',
        fl_over=overscan, fl_trim='yes', fl_bias='yes', trace='no',
        recenter='no',
        fl_flux='no', fl_gscrrej='no', fl_extract='yes', fl_gsappwave='no',
        fl_wavtran='no', fl_novl='no', fl_skysub='no', reference='erg'+flat[0],
        fl_vardq=vardq)
    
    
    #   Finding wavelength solution
    #   Note: the automatic identification is very good
    #
    
    for i in arc:
        
        iraf.gswavelength('erg'+i, function='chebyshev', nsum=15, order=4,
            fl_inter='no', nlost=5, ntarget=20, aiddebug='s', threshold=5,
            section='middle line')
    
    #
    #   Apply wavelength solution to the lamp 2D spectra
    #
    
        iraf.gftransform('erg'+i, wavtran='erg'+i, outpref='t', fl_vardq=vardq)
    
    ##
    ##   Actually reduce star
    ##
    
    
    iraf.gfreduce(
        starimg, slits='header', rawpath='rawdir$', fl_inter='no',
        fl_addmdf='yes', key_mdf='MDF', mdffile='default', weights='no',
        fl_over=overscan, fl_trim='yes', fl_bias='yes', trace='no',
        recenter='no',
        fl_flux='no', fl_gscrrej='no', fl_extract='no', fl_gsappwave='no',
        fl_wavtran='no', fl_novl='yes', fl_skysub='no', fl_vardq=vardq)
    
    iraf.gemcrspec('rg{:s}'.format(starimg), out='lrg'+starimg, sigfrac=0.32, 
         niter=4, fl_vardq=vardq)
         
    iraf.gfreduce(
        'lrg'+starimg, slits='header', rawpath='./', fl_inter='no',
        fl_addmdf='no', key_mdf='MDF', mdffile='default',
        fl_over='no', fl_trim='no', fl_bias='no', trace='no',
        recenter='no',
        fl_flux='no', fl_gscrrej='no', fl_extract='yes',
        fl_gsappwave='yes',
        fl_wavtran='yes', fl_novl='no', fl_skysub='yes',
        reference='erg'+flat[0][:-5], weights='no',
        wavtraname='erg'+arc[0][:-5],
        response='erg'+flat[0][:-5]+'_response.fits',
        fl_vardq=vardq)
    #
    #   Apsumming the stellar spectra
    #
    iraf.gfapsum(
        'stexlrg'+starimg, fl_inter='no', lthreshold=400.,
        reject='avsigclip')
    #
    #   Building sensibility function
    #
    
    
    iraf.gsstandard(
        ('astexlrg{:s}').format(starimg), starname=stdstar,
        observatory='Gemini-South', sfile='std', sfunction='sens',
        caldir=caldir)
    #
    #   Apply flux calibration to galaxy
    #
    #
    ##iraf.imdelete('*****@*****.**')
    #
    ##iraf.gscalibrate('*****@*****.**',sfunction='sens.fits',fl_ext='yes',extinct='onedstds$ctioextinct.dat',observatory='Gemini-South',fluxsca=1)
    #
    ##
    ##   Create data cubes
    ##
    #
    #
    ##for i in objs:
    ##  iraf.imdelete('d0.1cstexlrg'+i+'.fits')
    ##  iraf.gfcube('cstexlrg'+i+'.fits',outpref='d0.1',ssample=0.1,fl_atmd='yes',fl_flux='yes')
    #
    ##
    ## Combine cubes
    ##
    #
    #
    ##iraf.imdelete('am2306-721r4_wcsoffsets.fits')
    ##iraf.imcombine('d0.1cstexlrgS20141113S00??.fits[1]',output='am2306-721r4_wcsoffsets.fits',combine='average',reject='sigclip',masktype='badvalue',lsigma=2,hsigma=2,offset='wcs',outlimits='2 67 2 48 100 1795')
    #
    
    tend = time.time()
    
    print('Elapsed time in reduction: {:.2f}'.format(tend - tstart))
Пример #52
0
def maskStars(imageName):
  #read in the fits data and header
  imageHeader = fits.open(imageName+".fits")[0]
  
  #Read in the skysigma, skyv, and seeing (fwhm) from the header and set up other relevant values
  sigma = imageHeader.header['SKYSIGMA']
  threshold = 3.0 * sigma
  
  skyv = imageHeader.header['SKY']
  
  fwhm = imageHeader.header['SEEING']
  aper = 3.0 * fwhm
  annul = 5 * fwhm
  
  #Read in the galcut file
  galcut = open("galcut.file")
  galcutString = file.read(galcut)
  galcut.close()
  
  #Parse the galcut file into its variables
  galList = galcutString.split(' ')
  xCenter = float(galList[0])
  yCenter = float(galList[1])
  a = float(galList[2]) #Semimajor Axis
  eccent = float(galList[3]) #Eccentricity
  posAngle = float(galList[4]) #Position angle
  
  posAngleRad = (posAngle+90)*3.14159/180 
  b = a * eccent #Semiminor Axis
  na = -1*a
  nb = -1*b
  
  #Create a version of the r image with the sky added back in for the daofind procedure
  iraf.imdelete("withsky")
  iraf.imarith(imageName,'+',skyv,"withsky")

  # Load daophot package
  iraf.digiphot()
  iraf.daophot()  

  print("A. Find stars using daofind")

#DAOFIND  searches  the  IRAF  images image for local density maxima,
#    with a  full-width  half-maxima  of  datapars.fwhmpsf,  and  a  peak
#    amplitude  greater  than  findpars.threshold  * datapars.sigma above
#    the local background, and writes a list of detected objects  in  the
#    file  output.  
# Here we set the fwhm and sigma equal to those listed in the header.
# We set the datamin to -3*sigma = -1*threshold defined above
# The findpars.threshold is set to 4.5*sigma by default. You may have
# to alter this value for images where too few/many stars are found.


  #Configure 'datapars', 'findpars', and 'daofind'
  iraf.datapars.fwhmpsf=fwhm
  iraf.datapars.sigma=sigma
  iraf.datapars.datamax='indef'
  iraf.datapars.datamin=(-1)*threshold
  iraf.datapars.ccdread='RDNOISE'
  iraf.datapars.gain="GAIN"
  iraf.datapars.exposure="EXPTIME"
  iraf.datapars.airmass="AIRMASS"
  iraf.datapars.filter="FILTER"
  iraf.datapars.obstime="TIME-OBS"

  iraf.findpars.threshold=4.5
  iraf.findpars.roundhi=3
  iraf.findpars.roundlo=-3

  iraf.daofind.verify='no'
  iraf.daofind.verbose='no'
  
  #create the variable for the coordinate file
  allStars = imageName+'.coo'
  
  #Remove a previous coordinate file if one exists
  silentDelete(imageName+'.coo')

  #Find the stars in the aligned R image
  iraf.daofind("withsky",allStars)
  print("The file containing the data of the stars in the aligned R-image is ",allStars)
  print(" ") 

  if os.path.getsize(allStars) > 2239 :

   print("B. Separate stars inside and outside galaxy")
  
   #Delete existing files
   for f in ("temp.file","maskfile","maskfile.sat"):
     silentDelete(f)
  
   #Extract the coordinates from the allStars file, redirecting stdout to do so
   sys.stdout=open("temp.file","w")
   iraf.pdump(allStars,"xcenter,ycenter",'yes')
   sys.stdout = sys.__stdout__
  


  #Read the file to get the xy coordinate pairs in a list
   coords = open("temp.file")
   coordList = list(coords)
   countout=0
  
  #Create strings of xy pairs to write to files
   outGalString = ""
   for pair in coordList:
     #for each entry in the list, parse it into xy value integer pairs
     values = pair.split("  ")
     x = float(values[0])
     y = float(values[1])
    
    #Determine if the star lies within the galaxy-centered ellipse
     inGalaxy = False
     deltaX = x - xCenter
     deltaY = y - yCenter
     cdx = abs(deltaX)
     cdy = abs(deltaY)
     if (cdx < a and cdy < a):
       xt=(deltaX*math.cos(posAngleRad))+(deltaY*math.sin(posAngleRad))
       yt=(deltaY*math.cos(posAngleRad))-(deltaX*math.sin(posAngleRad))
       if(xt <= a and xt >= na and yt <= b and yt >= nb):
         inGalaxy = True
      
     if (not inGalaxy):
       outGalString += str(x) + " " + str(y) + "\n"
       countout=countout+1
 
  #Write the coordinate list to a file
   mask = open("maskfile","w")
   mask.write(outGalString)
   mask.close()
   print('')
   print("  ",countout," stars found outside galaxy")
   print('')
   if countout!=0 :

    print("C. Do photometry to find saturated stars")
  
    for f in ("maskfile.mag","maskfile.satmag","maskfile.sat"):
     silentDelete(f)
  
  #Configure 'centerpars', 'fitskypars','photpars'
    iraf.datapars.datamax=150000
    iraf.datapars.datamin='indef'
    iraf.centerpars.calgorithm="none"

    iraf.fitskypars.salgorithm="mode"
    iraf.fitskypars.annulus=annul
    iraf.fitskypars.dannulus=10

    iraf.photpars.apertures=fwhm
    iraf.phot.verify='no'
    iraf.phot.verbose='no'
  
  #Call 'phot' to get the data of the stars 
    iraf.phot (imageName,"maskfile","maskfile.mag")

    boexpr="PIER==305"
    iraf.pselect("maskfile.mag","maskfile.satmag",boexpr)

    sys.stdout=open("maskfile.sat","w")
    iraf.pdump("maskfile.satmag","xcenter,ycenter","yes")
    sys.stdout = sys.__stdout__
  
    print("D. Make mask of stars outside galaxy")
  
  #Delete the rmask if one exists
    silentDelete("rmask.fits")
  
  #Configure 'imedit'
    iraf.imedit.cursor="maskfile"
    iraf.imedit.display='no'
    iraf.imedit.autodisplay='no'
    iraf.imedit.aperture="circular"
    iraf.imedit.value=-1000
    iraf.imedit.default="e"
  
  #Replace the pixel values near the star coordinates with value -1000 using imedit
    iraf.imedit(imageName,"redit",radius=aper)
 
    iraf.imcopy.verbose='no'
  #Do the same for the saturated stars, but with larger apertures
    satMaskSize = os.path.getsize("maskfile.sat")
    if satMaskSize < 1 : 
     print("   No saturated stars found")
    if (satMaskSize!=0):
     iraf.imedit.cursor="maskfile.sat"
     iraf.imedit.radius=2*aper
     iraf.imedit("redit","rmask")
    else:
     iraf.imcopy("redit","rmask")
  
  #Replace good pixels with value 0 in 'rmask'
    iraf.imreplace.lower=-999
    iraf.imreplace.upper='indef'
    iraf.imreplace("rmask",0)

  #Replace bad pixels with value 1 in 'rmask'
    iraf.imreplace.lower='indef'
    iraf.imreplace.upper=-1000
    iraf.imreplace("rmask",1)
  
   
  #Remove the mask file if one already exists
    silentDelete(imageName+"mask.fits")
    iraf.imcopy("rmask",imageName+"mask")

    print(" ")
    print("The mask image is ",imageName+"mask")
    print("The masked image is ",imageName+"Masked")
    print(" ")
 
   else :
    print("No stars found outside galaxy, no mask created.")

  if os.path.getsize(allStars) < 2314 :
   print("No stars found, no mask created.")



  #Delete intermediate images 
  for f in ("rmask.fits","redit.fits","maskimage.fits","maskfile.mag","maskfile.satmag","temp.file","withsky.fits","mask.fits"):
    silentDelete(f)