fun_to_test = [ {"times":100,"name":"hfd", "is_original":True,"fun": lambda x: pyeeg.hfd(x,2**3)}, {"times":100,"name":"hfd", "is_original":False,"fun": lambda x: univ.hfd(x,2**3)}, {"times":100,"name":"hjorth", "is_original":True,"fun": lambda x: pyeeg.hjorth(x)}, {"times":100,"name":"hjorth", "is_original":False,"fun": lambda x: univ.hjorth(x)}, {"times":100,"name":"pfd", "is_original":True, "fun":lambda x: pyeeg.pfd(x)}, {"times":100,"name":"pfd", "is_original":False, "fun":lambda x: pyeeg.pfd(x)}, {"times":2,"name":"samp_ent", "is_original":True, "fun":lambda x: pyeeg.samp_entropy(x,2,1.5)}, {"times":10,"name":"samp_ent", "is_original":False, "fun":lambda x: univ.samp_entropy(x,2,1.5,relative_r=False)}, {"times":2,"name":"ap_ent", "is_original":True, "fun":lambda x: pyeeg.ap_entropy(x,2,1.5)}, {"times":10,"name":"ap_ent", "is_original":False, "fun":lambda x: univ.ap_entropy(x,2,1.5)}, {"times":10,"name":"svd_ent", "is_original":True, "fun":lambda x: pyeeg.svd_entropy(x,2,3)}, {"times":100,"name":"svd_ent", "is_original":False, "fun":lambda x: univ.svd_entropy(x,2,3)}, {"times":10,"name":"fisher_info", "is_original":True, "fun":lambda x: pyeeg.fisher_info(x,2,3)}, {"times":100, "name":"fisher_info", "is_original":False, "fun":lambda x: univ.fisher_info(x,2,3)}, {"times":100,"name":"spectral_entropy", "is_original":True, "fun":lambda x: pyeeg.spectral_entropy(x,SPECT_ENT_BANDS,256)}, {"times":100, "name":"spectral_entropy", "is_original":False, "fun":lambda x: univ.spectral_entropy(x,256, SPECT_ENT_BANDS)}, ] def make_one_rep(): ldfs = [] for n in range(MIN_EPOCH_N, MAX_EPOCH_N + 1, EPOCH_STEP): a = numpy.random.normal(size=n) for fun in fun_to_test: f = lambda : fun["fun"](a) t=Timer(f) numb = fun["times"] dt = t.timeit(number=numb)
"times": 100, "name": "svd_ent", "is_original": False, "fun": lambda x: univ.svd_entropy(x, 2, 3) }, { "times": 10, "name": "fisher_info", "is_original": True, "fun": lambda x: pyeeg.fisher_info(x, 2, 3) }, { "times": 100, "name": "fisher_info", "is_original": False, "fun": lambda x: univ.fisher_info(x, 2, 3) }, { "times": 100, "name": "spectral_entropy", "is_original": True, "fun": lambda x: pyeeg.spectral_entropy(x, SPECT_ENT_BANDS, 256) }, { "times": 100, "name": "spectral_entropy", "is_original": False, "fun": lambda x: univ.spectral_entropy(x, 256, SPECT_ENT_BANDS) }, ]
def test_fisher_information(self): ref = 0.0002986254447524082 ans = univariate.fisher_info(white_noise, 10, 10) self.assertAlmostEqual(ref, ans)
def test_fisher_information(self): ref = 0.0002986254447524082 ans = univariate.fisher_info(white_noise,10,10) self.assertAlmostEqual(ref, ans)