Пример #1
0
def plot_tri_res(fname=None,
                 work_dir=None,
                 inv_data=None,
                 plt_opts={},
                 nheader=0,
                 mesh_dict=None,
                 inv_col=3,
                 keep_log=False,
                 xylims=[None, None, None, None]):
    '''Plot inversion results on triangular mesh.'''
    if inv_data is None:  # load data
        if fname is None and work_dir is not None:
            inv_data = load_inv_output(work_dir=work_dir, nheader=nheader)
        elif os.path.dirname(fname) in ['']:
            inv_data = load_inv_output(fname=os.path.join(work_dir, fname),
                                       nheader=nheader)
        else:
            inv_data = load_inv_output(fname=fname, nheader=nheader)

    print(inv_data.shape)
    tri_dict = {
        'mesh_dict': mesh_dict,
        'inv_data': inv_data,
        'inv_col': inv_col,
        'plt_dict': plt_opts,
        'keep_log': keep_log
    }
    fig, ax, tri_obj = plot_tri_mesh(**tri_dict)
    if xylims[0] is not None:
        ax.set_xlim(xylims[:2])
        ax.set_ylim(xylims[2:])

    return fig, ax
Пример #2
0
def plot_outnodes(fname=None,work_dir=None,fwd_transfer_bool=False):
    '''Plot model nodes.'''
    if fwd_transfer_bool==True:
        nheader=1
    else:
        nheader=0
    
    if fname is None and work_dir is not None:
        inv_data = load_inv_output(work_dir=work_dir,nheader=nheader)    
    elif os.path.dirname(fname) in ['']:
        inv_data = load_inv_output(fname=os.path.join(work_dir,fname),nheader=nheader)
    else:
        inv_data = load_inv_output(fname=fname,nheader=nheader)
    
    fig,ax = plt.subplots()
#    ax.plot(inv_data[:,0],inv_data[:,1],'.')
    ax.scatter(inv_data[:,0],inv_data[:,1],c=inv_data[:,3],edgecolor='none')
    ax.set_xlabel('Distance')
    ax.set_ylabel('Depth or Elevation')
Пример #3
0
def plot_final_res(fname=None,
                   work_dir=None,
                   region_xyz=None,
                   topo_xyz=None,
                   method='constant',
                   nxny=[1e2, 1e2],
                   inv_col=3,
                   plt_opts={},
                   miny=None,
                   plt_opts2={},
                   region_plot=False,
                   plot_buffer=1.,
                   cmap=plt.cm.inferno_r,
                   save_dict=None,
                   fwd_transfer_bool=False,
                   invert_y=False):

    if fwd_transfer_bool == True:
        nheader = 1
    else:
        nheader = 0

    if isinstance(cmap, str):
        cmap = plt.get_cmap(cmap)

    if fname is None and work_dir is not None:
        inv_data = load_inv_output(work_dir=work_dir, nheader=nheader)
    elif os.path.dirname(fname) in ['']:
        inv_data = load_inv_output(fname=os.path.join(work_dir, fname),
                                   nheader=nheader)
    else:
        inv_data = load_inv_output(fname=fname, nheader=nheader)

    # Make regular grid for plotting surface
    x = np.linspace(np.min(inv_data[:, 0]), np.max(inv_data[:, 0]), nxny[0])
    if miny is None:
        miny = np.min(inv_data[:, 1])
    y = np.linspace(0., miny, nxny[1])
    X, Y = np.meshgrid(x, y)

    if 'vmin' in plt_opts.keys():
        vmin = 10.**plt_opts['vmin']
        _ = plt_opts.pop('vmin', None)
    else:
        vmin = 10.

    if 'vmax' in plt_opts.keys():
        vmax = 10.**plt_opts['vmax']
        _ = plt_opts.pop('vmax', None)
    else:
        vmax = 1e3

    if 'cmap' not in plt_opts.keys():
        plt_opts['cmap'] = cmap

    formatter = LogFormatter(10, labelOnlyBase=False)
    ticks = log_steps([vmin, vmax])

    if region_xyz is not None and topo_xyz is not None and region_plot:
        # Use region data to separate plotting zones
        # 1) Find elevation of divider (originally depth)
        div_y = extrap(region_xyz[:, 0], topo_xyz[:, 0], topo_xyz[:, 2],
                       method) + region_xyz[:, 1]
        # 2) Find y locations above region divider
        div_y_all = extrap(X, region_xyz[:, 0], div_y, method)
        # 3) Find y shift for topography
        yshift = extrap(X, topo_xyz[:, 0], topo_xyz[:, 2], method)
        Y = Y + yshift
        lower_mask = (Y > div_y_all) | ((X > region_xyz[:, 0].max()) |
                                        (X < region_xyz[:, 0].min()))
        upper_mask = (Y < div_y_all) | ((X > region_xyz[:, 0].max()) |
                                        (X < region_xyz[:, 0].min()))
        all_ER = griddata(inv_data[:, :2],
                          inv_data[:, inv_col], (X, Y),
                          method='linear')
        if inv_col == 3:
            # Log transform already applied, change to untransformed
            all_ER = 10.**(all_ER)

        upper_ER = np.ma.masked_array(all_ER, mask=upper_mask)
        fig, ax = plt.subplots()

        s1 = ax.pcolormesh(X,
                           Y,
                           upper_ER,
                           norm=LogNorm(vmin, vmax),
                           **plt_opts)
        #        ax.plot(X,Y,'g.')
        ax.plot(topo_xyz[:, 0], topo_xyz[:, 2], 'k-')
        ax.plot(region_xyz[:, 0], div_y, '-o', color='lightgrey')
        ax.set_xlim([
            region_xyz[:, 0].min() - plot_buffer,
            region_xyz[:, 0].max() + plot_buffer
        ])
        ax.set_ylim([miny - plot_buffer, np.max(Y) + plot_buffer])
        plt.colorbar(s1, ax=ax, ticks=ticks, extend='both', format=formatter)

        ax2 = ax.twinx()
        lower_ER = np.ma.masked_array(all_ER, mask=lower_mask)
        s2 = ax.pcolormesh(X,
                           Y,
                           lower_ER,
                           norm=LogNorm(vmin, vmax),
                           **plt_opts2)
        ax2.set_xlim([
            region_xyz[:, 0].min() - plot_buffer,
            region_xyz[:, 0].max() + plot_buffer
        ])
        ax2.set_ylim([miny - plot_buffer, np.max(Y) + plot_buffer])
        plt.colorbar(s2, ax=ax2, ticks=ticks, extend='both', format=formatter)
    elif topo_xyz is not None and region_xyz is not None:
        # 1) Find elevation of divider (originally depth)
        div_y = extrap(region_xyz[:, 0], topo_xyz[:, 0], topo_xyz[:, 2],
                       method) + region_xyz[:, 1]
        # Find y shift for topography
        yshift = extrap(X, topo_xyz[:, 0], topo_xyz[:, 2], method)
        Y = Y + yshift
        upper_mask = (X > topo_xyz[:, 0].max()) | (X < topo_xyz[:, 0].min())
        all_ER = griddata(inv_data[:, :2],
                          inv_data[:, inv_col], (X, Y),
                          method='linear')
        if inv_col == 3:
            # Log transform already applied, change to untransformed
            all_ER = 10.**(all_ER)

        upper_ER = np.ma.masked_array(all_ER, mask=upper_mask)
        fig, ax = plt.subplots()
        s1 = ax.pcolormesh(X,
                           Y,
                           upper_ER,
                           norm=LogNorm(vmin, vmax),
                           **plt_opts)
        #        ax.plot(X,Y,'g.')
        ax.plot(topo_xyz[:, 0], topo_xyz[:, 2], 'k-')
        ax.plot(region_xyz[:, 0], div_y, '-o', color='lightgrey')
        ax.set_xlim([
            topo_xyz[:, 0].min() - plot_buffer,
            topo_xyz[:, 0].max() + plot_buffer
        ])
        ax.set_ylim([miny - plot_buffer, np.max(Y) + plot_buffer])
        plt.colorbar(s1, ax=ax, ticks=ticks, extend='both', format=formatter)
    else:
        if topo_xyz is None:  # Copy inv data output y coordinates
            topo_xyz = np.zeros_like(inv_data)
            topo_xyz[:, :2] = inv_data[:, :2]
        # Find y shift for topography
        yshift = extrap(X, topo_xyz[:, 0], topo_xyz[:, 2], method)
        Y = Y + yshift
        all_ER = griddata(inv_data[:, :2],
                          inv_data[:, inv_col], (X, Y),
                          method='linear')
        if inv_col == 3:
            # Log transform already applied, change to untransformed
            all_ER = 10.**(all_ER)

        upper_ER = np.ma.masked_invalid(all_ER)
        fig, ax = plt.subplots()
        s1 = ax.pcolormesh(X,
                           Y,
                           upper_ER,
                           norm=LogNorm(vmin, vmax),
                           **plt_opts)
        #        ax.plot(X,Y,'g.')
        ax.plot(topo_xyz[:, 0], topo_xyz[:, 2], 'k-')
        ax.set_xlim([
            topo_xyz[:, 0].min() - plot_buffer,
            topo_xyz[:, 0].max() + plot_buffer
        ])
        ax.set_ylim([miny - plot_buffer, np.max(Y) + plot_buffer])
        plt.colorbar(s1, ax=ax, ticks=ticks, extend='both', format=formatter)

    if invert_y:
        ax.set_ylim(ax.get_ylim()[::-1])

    # put back in dictionary
    plt_opts['vmin'] = np.log10(vmin)
    plt_opts['vmax'] = np.log10(vmax)
    if save_dict is not None:

        fig.savefig(save_dict['fig_fname'], **save_dict['fig_opts'])
        plt.close('all')
    else:
        return fig, ax
Пример #4
0
def plot_res(fname=None,
             work_dir=None,
             topog_xy=None,
             region_xyz=None,
             method='force_grid',
             nxny=[1e2, 1e2],
             inv_col=3,
             plt_opts={},
             miny=None,
             maxy=0,
             plot_buffer=1.,
             cmap=plt.cm.inferno_r,
             save_dict=None,
             fwd_transfer_bool=False,
             invert_y=False,
             interp='bicubic',
             aspect=1,
             keep_log=False,
             nticks=8):
    '''Simple inverse output plot.
    
    
    interp: str
        str defining interpolation method for imshow
        options: https://matplotlib.org/examples/images_contours_and_fields/interpolation_methods.html
    
    '''
    if fwd_transfer_bool == True:
        nheader = 1
    else:
        nheader = 0

    if isinstance(cmap, str):
        cmap = plt.get_cmap(cmap)

    if 'cmap' not in plt_opts.keys():
        plt_opts['cmap'] = cmap

    if 'aspect' not in plt_opts.keys() and topog_xy is None:
        plt_opts['aspect'] = aspect

    if fname is None and work_dir is not None:
        inv_data = load_inv_output(work_dir=work_dir, nheader=nheader)
    elif os.path.dirname(fname) in ['']:
        inv_data = load_inv_output(fname=os.path.join(work_dir, fname),
                                   nheader=nheader)
    else:
        inv_data = load_inv_output(fname=fname, nheader=nheader)

    if 'vmin' not in plt_opts.keys():
        plt_opts['vmin'] = np.min(inv_data[:, inv_col])

    if 'vmax' not in plt_opts.keys():
        plt_opts['vmax'] = np.max(inv_data[:, inv_col])

    # Make regular grid for plotting surface
    grid_dict = {
        'inv_data': inv_data,
        'nxny': nxny,
        'maxy': maxy,
        'miny': miny,
        'interp_method': method,
        'inv_col': inv_col
    }

    X, Y, all_ER = grid_inv_data(**grid_dict)

    minx, maxx = np.nanmin(X), np.nanmax(X)

    if topog_xy is not None:
        ydif = extrap(X[0, :], topog_xy[:, 0], topog_xy[:, 1]) - Y[0, :]
    else:
        ydif = 0

    if 'ticks' in list(plt_opts.keys()):
        ticks = plt_opts['ticks']
        _ = plt_opts.pop('ticks')
    elif inv_col == 3 and not keep_log:
        # Log transform already applied, change to untransformed

        ticks = log_steps([plt_opts['vmin'], plt_opts['vmax']])
    elif inv_col == 3 and keep_log:
        plt_opts['vmin'] = np.log10(plt_opts['vmin'])
        plt_opts['vmax'] = np.log10(plt_opts['vmax'])
        ticks = np.linspace(plt_opts['vmin'], plt_opts['vmax'], nticks)
    else:
        ticks = np.linspace(plt_opts['vmin'], plt_opts['vmax'], nticks)

    if not keep_log:
        all_ER = 10.**(all_ER)

    upper_ER = np.ma.masked_invalid(all_ER)
    if miny is None:
        miny = np.nanmin(Y)

    fig, ax = plt.subplots()
    if topog_xy is not None:
        Y = Y + ydif
        miny = np.nanmin(Y)
        maxy = np.nanmax(Y)
        im = ax.pcolormesh(X, Y, upper_ER, **plt_opts)

    else:
        im = ax.imshow(upper_ER,
                       interpolation=interp,
                       extent=(minx, maxx, miny, maxy),
                       **plt_opts)

    ax.set_ylabel('Elevation')
    ax.set_xlabel('Distance')
    ax.set_xlim(minx, maxx)
    ax.set_ylim(miny, maxy)
    if 'aspect' in plt_opts.keys():
        ax.set_title('Aspect = {}:1'.format(plt_opts['aspect']))
    plt.colorbar(im, ax=ax, ticks=ticks, extend='both', shrink=0.5)
    if invert_y:
        ax.set_ylim(ax.get_ylim()[::-1])
        ax.set_ylabel('Depth')

    if save_dict is not None:

        fig.savefig(save_dict['fig_fname'], **save_dict['fig_opts'])
        plt.close('all')

    else:
        return fig, ax, [X, Y, upper_ER]
Пример #5
0
     catch_warnings=[itemp.strip() for itemp in output if 'WARNING' in itemp]
     if len(catch_warnings)>0:
         iwarn = catch_warnings[-1]
     else:
         iwarn = None
         
     icatch_warnings.append(iwarn)
     
     rms1 = [float(i.split()[-1]) for i in output if 'Final RMS' in i][-1]
     convg_status = 1
     if iwarn is not None:
         if 'not converged' in iwarn:
             convg_status = -1
     
 # Post process runs
 inv_data = pyres_utils.load_inv_output(work_dir=inv_work_dir)
 X,Y,ER = pyres_utils.grid_inv_data(inv_data,inv_col=2) # use non-log-transformed data
 
 obs_array = main_res*np.ones_like(ER)
 
 topo_y = pyres_utils.extrap(txy[:,0],xx_mesh,topog)
 target_bool = (X>=txy[0,0]) & (X<=txy[1,0]) &\
               (Y<=(topo_y[0]-txy[0,1])) & (Y>=(topo_y[2]-txy[2,1]))
 obs_array[target_bool] = target_res
 
 err_array = errfunc(obs_array,ER)
 target_err = err_array[target_bool]
 # Integrate error over target weighted by areas
 # Use area weighting of errors, only for quad meshes
 x2,y2 = np.meshgrid(xx_mesh,yy_mesh)
 xdiff = np.hstack([np.diff(x2,axis=1),np.zeros((x2.shape[0],1))])