Пример #1
0
def test_ajdc_expl_var(rndstate):
    # Test get_src_expl_var
    n_subjects, n_conditions, n_channels, n_times = 2, 2, 3, 256
    X = rndstate.randn(n_subjects, n_conditions, n_channels, n_times)
    ajdc = AJDC().fit(X)
    n_matrices = 4
    X_new = rndstate.randn(n_matrices, n_channels, n_times)
    v = ajdc.get_src_expl_var(X_new)
    assert v.shape == (n_matrices, ajdc.n_sources_)
    with pytest.raises(ValueError):  # not 3 dims
        ajdc.get_src_expl_var(X_new[0])
    with pytest.raises(ValueError):  # unequal # of chans
        ajdc.get_src_expl_var(rndstate.randn(n_matrices, n_channels + 1, 1))
Пример #2
0
def test_ajdc_transform_error(rndstate):
    n_subjects, n_conditions, n_channels, n_times = 2, 2, 3, 256
    X = rndstate.randn(n_subjects, n_conditions, n_channels, n_times)
    ajdc = AJDC().fit(X)
    n_matrices = 4
    X_new = rndstate.randn(n_matrices, n_channels, n_times)
    with pytest.raises(ValueError):  # not 3 dims
        ajdc.transform(X_new[0])
    with pytest.raises(ValueError):  # unequal # of chans
        ajdc.transform(rndstate.randn(n_matrices, n_channels + 1, 1))
Пример #3
0
def test_ajdc_fit_error(rndstate):
    n_conditions, n_channels, n_times = 3, 8, 512
    ajdc = AJDC()
    with pytest.raises(ValueError):  # unequal # of conditions
        ajdc.fit([
            rndstate.randn(n_conditions, n_channels, n_times),
            rndstate.randn(n_conditions + 1, n_channels, n_times),
        ])
    with pytest.raises(ValueError):  # unequal # of channels
        ajdc.fit([
            rndstate.randn(n_conditions, n_channels, n_times),
            rndstate.randn(n_conditions, n_channels + 1, n_times),
        ])
Пример #4
0
def test_ajdc_fit_variable_input(rndstate):
    n_subjects, n_cond, n_chan, n_times = 2, 2, 3, 256
    X = rndstate.randn(n_subjects, n_cond, n_chan, n_times)
    ajdc = AJDC()
    # 3 subjects, same # conditions and channels, different # of times
    X = [
        rndstate.randn(n_cond, n_chan, n_times + rndstate.randint(500))
        for _ in range(3)
    ]
    ajdc.fit(X)

    # 2 subjects, 2 conditions, same # channels, different # of times
    X = [
        [
            rndstate.randn(n_chan, n_times + rndstate.randint(500))
            for _ in range(2)
        ],
        [
            rndstate.randn(n_chan, n_times + rndstate.randint(500))
            for _ in range(2)
        ],
    ]
    ajdc.fit(X)
Пример #5
0
def test_ajdc_inverse_transform(rndstate):
    n_subjects, n_conditions, n_channels, n_times = 2, 2, 3, 256
    X = rndstate.randn(n_subjects, n_conditions, n_channels, n_times)
    ajdc = AJDC().fit(X)
    n_matrices = 4
    X_new = rndstate.randn(n_matrices, n_channels, n_times)
    Xt = ajdc.transform(X_new)
    Xit = ajdc.inverse_transform(Xt)
    assert_array_equal(Xit.shape, [n_matrices, n_channels, n_times])
    with pytest.raises(ValueError):  # not 3 dims
        ajdc.inverse_transform(Xt[0])
    with pytest.raises(ValueError):  # unequal # of sources
        shape = (n_matrices, ajdc.n_sources_ + 1, 1)
        ajdc.inverse_transform(rndstate.randn(*shape))

    Xit = ajdc.inverse_transform(Xt, supp=[ajdc.n_sources_ - 1])
    assert Xit.shape == (n_matrices, n_channels, n_times)
    with pytest.raises(ValueError):  # not a list
        ajdc.inverse_transform(Xt, supp=1)
Пример #6
0
def test_ajdc_fit(rndstate):
    n_subjects, n_conditions, n_channels, n_times = 5, 3, 8, 512
    X = rndstate.randn(n_subjects, n_conditions, n_channels, n_times)
    ajdc = AJDC().fit(X)
    assert ajdc.forward_filters_.shape == (ajdc.n_sources_, n_channels)
    assert ajdc.backward_filters_.shape == (n_channels, ajdc.n_sources_)
Пример #7
0
def test_ajdc_init():
    ajdc = AJDC(fmin=1, fmax=32, fs=64)
    assert ajdc.window == 128
    assert ajdc.overlap == 0.5
    assert ajdc.dim_red is None
    assert ajdc.verbose
                      sfreq=sfreq)
ch_info.set_montage('standard_1020')
signal = RawArray(signal_raw, ch_info, verbose=False)
signal.plot(duration=duration, start=0, n_channels=ch_count,
            scalings={'eeg': 3e1}, color={'eeg': 'steelblue'},
            title='Original EEG signal', show_scalebars=False)


###############################################################################
# AJDC: Second-Order Statistics (SOS)-based BSS, diagonalizing cospectra
# ----------------------------------------------------------------------

# Compute and diagonalize Fourier cospectral matrices between 1 and 32 Hz
window, overlap = sfreq, 0.5
fmin, fmax = 1, 32
ajdc = AJDC(window=window, overlap=overlap, fmin=fmin, fmax=fmax, fs=sfreq,
            expl_var=0.99)
ajdc.fit(signal_raw[np.newaxis, np.newaxis, ...])
freqs = ajdc.freqs_

# Plot cospectra in channel space, after trace-normalization by frequency: each
# cospectrum, associated to a frequency, is a covariance matrix
plot_cospectra(ajdc._cosp_channels, freqs, ylabels=ch_names,
               title='Cospectra, in channel space')


###############################################################################

# Plot diagonalized cospectra in source space
sr_count = ajdc.n_sources_
sr_names = ['S' + str(s).zfill(2) for s in range(sr_count)]
plot_cospectra(ajdc._cosp_sources, freqs, ylabels=sr_names,
Пример #9
0
            n_channels=ch_count,
            scalings={'eeg': 3e1},
            color={'eeg': 'steelblue'},
            title='Original EEG signal',
            show_scalebars=False)

###############################################################################
# AJDC: Second-Order Statistics (SOS)-based BSS, diagonalizing cospectra
# ----------------------------------------------------------------------

# Compute and diagonalize Fourier cospectral matrices between 1 and 32 Hz
window, overlap = sfreq, 0.5
fmin, fmax = 1, 32
ajdc = AJDC(window=window,
            overlap=overlap,
            fmin=fmin,
            fmax=fmax,
            fs=sfreq,
            dim_red={'max_cond': 100})
ajdc.fit(signal_raw[np.newaxis, np.newaxis, ...])
freqs = ajdc.freqs_

# Plot cospectra in channel space, after trace-normalization by frequency: each
# cospectrum, associated to a frequency, is a covariance matrix
plot_cospectra(ajdc._cosp_channels,
               freqs,
               ylabels=ch_names,
               title='Cospectra, in channel space')

###############################################################################

# Plot diagonalized cospectra in source space
Пример #10
0
def test_AJDC():
    """Test AJDC"""
    rs = np.random.RandomState(33)
    n_subjects, n_conditions, n_channels, n_samples = 5, 3, 8, 512
    X = rs.randn(n_subjects, n_conditions, n_channels, n_samples)

    # Test Init
    with pytest.raises(ValueError): # value out of bounds
        AJDC(expl_var=0)
    with pytest.raises(ValueError): # value out of bounds
        AJDC(expl_var=1.1)
    ajdc = AJDC(fmin=1, fmax=32, fs=64)
    assert ajdc.window == 128
    assert ajdc.overlap == 0.5
    assert ajdc.expl_var == 0.999
    assert ajdc.verbose

    # Test fit
    ajdc.fit(X)
    assert ajdc.n_channels_ == n_channels
    assert ajdc.n_sources_ <= n_channels
    assert_array_equal(ajdc.forward_filters_.shape,
                       [ajdc.n_sources_, n_channels])
    assert_array_equal(ajdc.backward_filters_.shape,
                       [n_channels, ajdc.n_sources_])
    with pytest.raises(ValueError): # unequal # of conditions
        ajdc.fit([rs.randn(n_conditions, n_channels, n_samples),
                  rs.randn(n_conditions + 1, n_channels, n_samples)])
    with pytest.raises(ValueError): # unequal # of channels
        ajdc.fit([rs.randn(n_conditions, n_channels, n_samples),
                  rs.randn(n_conditions, n_channels + 1, n_samples)])
    # 3 subjects, same # conditions and channels, different # of samples
    X = [rs.randn(n_conditions, n_channels, n_samples),
         rs.randn(n_conditions, n_channels, n_samples + 200),
         rs.randn(n_conditions, n_channels, n_samples + 500)]
    ajdc.fit(X)
    # 2 subjects, 2 conditions, same # channels, different # of samples
    X = [[rs.randn(n_channels, n_samples),
          rs.randn(n_channels, n_samples + 200)],
         [rs.randn(n_channels, n_samples + 500),
          rs.randn(n_channels, n_samples + 100)]]
    ajdc.fit(X)

    # Test transform
    n_trials = 4
    X = rs.randn(n_trials, n_channels, n_samples)
    Xt = ajdc.transform(X)
    assert_array_equal(Xt.shape, [n_trials, ajdc.n_sources_, n_samples])
    with pytest.raises(ValueError): # not 3 dims
        ajdc.transform(X[0])
    with pytest.raises(ValueError): # unequal # of chans
        ajdc.transform(rs.randn(n_trials, n_channels + 1, 1))

    # Test inverse_transform
    Xtb = ajdc.inverse_transform(Xt)
    assert_array_equal(Xtb.shape, [n_trials, n_channels, n_samples])
    with pytest.raises(ValueError): # not 3 dims
        ajdc.inverse_transform(Xt[0])
    with pytest.raises(ValueError): # unequal # of sources
        ajdc.inverse_transform(rs.randn(n_trials, ajdc.n_sources_ + 1, 1))

    Xtb = ajdc.inverse_transform(Xt, supp=[ajdc.n_sources_ - 1])
    assert_array_equal(Xtb.shape, [n_trials, n_channels, n_samples])
    with pytest.raises(ValueError): # not a list
        ajdc.inverse_transform(Xt, supp=1)

    # Test get_src_expl_var
    v = ajdc.get_src_expl_var(X)
    assert_array_equal(v.shape, [n_trials, ajdc.n_sources_])
    with pytest.raises(ValueError): # not 3 dims
        ajdc.get_src_expl_var(X[0])
    with pytest.raises(ValueError): # unequal # of chans
        ajdc.get_src_expl_var(rs.randn(n_trials, n_channels + 1, 1))