Пример #1
0
    def __init__(self, use_affine_ex: bool = True, **kwargs):
        super().__init__(**kwargs)
        self.use_affine_ex = use_affine_ex

        # decoder parts

        # Flow for modelling t Gamma
        self.thickness_flow_components = ComposeTransformModule([Spline(1)])
        self.thickness_flow_constraint_transforms = ComposeTransform(
            [self.thickness_flow_lognorm,
             ExpTransform()])
        self.thickness_flow_transforms = ComposeTransform([
            self.thickness_flow_components,
            self.thickness_flow_constraint_transforms
        ])

        # affine flow for s normal
        intensity_net = DenseNN(1, [1],
                                param_dims=[1, 1],
                                nonlinearity=torch.nn.Identity())
        self.intensity_flow_components = ConditionalAffineTransform(
            context_nn=intensity_net, event_dim=0)
        self.intensity_flow_constraint_transforms = ComposeTransform(
            [SigmoidTransform(), self.intensity_flow_norm])
        self.intensity_flow_transforms = [
            self.intensity_flow_components,
            self.intensity_flow_constraint_transforms
        ]
        # build flow as s_affine_w * t * e_s + b -> depends on t though

        # realnvp or so for x
        self._build_image_flow()
Пример #2
0
    def __init__(self, **kwargs):
        super().__init__(**kwargs)

        # Flow for modelling t Gamma
        self.thickness_flow_components = ComposeTransformModule([Spline(1)])
        self.thickness_flow_constraint_transforms = ComposeTransform(
            [self.thickness_flow_lognorm,
             ExpTransform()])
        self.thickness_flow_transforms = ComposeTransform([
            self.thickness_flow_components,
            self.thickness_flow_constraint_transforms
        ])

        # affine flow for s normal
        intensity_net = DenseNN(1, [1],
                                param_dims=[1, 1],
                                nonlinearity=torch.nn.Identity())
        self.intensity_flow_components = ConditionalAffineTransform(
            context_nn=intensity_net, event_dim=0)
        self.intensity_flow_constraint_transforms = ComposeTransform(
            [SigmoidTransform(), self.intensity_flow_norm])
        self.intensity_flow_transforms = [
            self.intensity_flow_components,
            self.intensity_flow_constraint_transforms
        ]
    def __init__(self, use_affine_ex: bool = True, **kwargs):
        super().__init__(**kwargs)
        self.use_affine_ex = use_affine_ex

        # decoder parts

        # Flow for modelling t Gamma
        self.thickness_flow_components = ComposeTransformModule([Spline(1)])
        self.thickness_flow_constraint_transforms = ComposeTransform(
            [self.thickness_flow_lognorm,
             ExpTransform()])
        self.thickness_flow_transforms = ComposeTransform([
            self.thickness_flow_components,
            self.thickness_flow_constraint_transforms
        ])

        # affine flow for s normal
        self.intensity_flow_components = ComposeTransformModule(
            [LearnedAffineTransform(), Spline(1)])
        self.intensity_flow_constraint_transforms = ComposeTransform(
            [SigmoidTransform(), self.intensity_flow_norm])
        self.intensity_flow_transforms = [
            self.intensity_flow_components,
            self.intensity_flow_constraint_transforms
        ]

        # realnvp or so for x
        self._build_image_flow()
def model(n_samples=None, scale=2.):
    with pyro.plate('observations', n_samples):
        thickness = pyro.sample('thickness', Gamma(10., 5.))

        loc = (thickness - 2.5) * 2

        transforms = ComposeTransform([SigmoidTransform(), AffineTransform(10, 15)])

        width = pyro.sample('width', TransformedDistribution(Normal(loc, scale), transforms))

    return thickness, width
Пример #5
0
    def __init__(self, use_affine_ex=True, **kwargs):
        super.__init__(**kwargs)

        self.num_scales = 2

        self.register_buffer("glasses_base_loc",
                             torch.zeros([
                                 1,
                             ], requires_grad=False))
        self.register_buffer("glasses_base_scale",
                             torch.ones([
                                 1,
                             ], requires_grad=False))

        self.register_buffer("glasses_flow_lognorm_loc",
                             torch.zeros([], requires_grad=False))
        self.register_buffer("glasses_flow_lognorm_scale",
                             torch.ones([], requires_grad=False))

        self.glasses_flow_components = ComposeTransformModule([Spline(1)])
        self.glasses_flow_constraint_transforms = ComposeTransform(
            [self.glasses_flow_lognorm,
             SigmoidTransform()])
        self.glasses_flow_transforms = ComposeTransform([
            self.glasses_flow_components,
            self.glasses_flow_constraint_transforms
        ])

        glasses_base_dist = Normal(self.glasses_base_loc,
                                   self.glasses_base_scale).to_event(1)
        self.glasses_dist = TransformedDistribution(
            glasses_base_dist, self.glasses_flow_transforms)
        glasses_ = pyro.sample("glasses_", self.glasses_dist)
        glasses = pyro.sample("glasses", dist.Bernoulli(glasses_))
        glasses_context = self.glasses_flow_constraint_transforms.inv(glasses_)

        self.x_transforms = self._build_image_flow()
        self.register_buffer("x_base_loc",
                             torch.zeros([1, 64, 64], requires_grad=False))
        self.register_buffer("x_base_scale",
                             torch.ones([1, 64, 64], requires_grad=False))
        x_base_dist = Normal(self.x_base_loc, self.x_base_scale).to_event(3)
        cond_x_transforms = ComposeTransform(
            ConditionalTransformedDistribution(
                x_base_dist,
                self.x_transforms).condition(context).transforms).inv
        cond_x_dist = TransformedDistribution(x_base_dist, cond_x_transforms)

        x = pyro.sample("x", cond_x_dist)

        return x, glasses
Пример #6
0
 def _get_preprocess_transforms(self):
     alpha = 0.05
     num_bits = 8
     if self.preprocessing == 'glow':
         # Map to [-0.5,0.5]
         a1 = AffineTransform(-0.5, (1. / 2 ** num_bits))
         preprocess_transform = ComposeTransform([a1])
     elif self.preprocessing == 'realnvp':
         # Map to [0,1]
         a1 = AffineTransform(0., (1. / 2 ** num_bits))
         # Map into unconstrained space as done in RealNVP
         a2 = AffineTransform(alpha, (1 - alpha))
         s = SigmoidTransform()
         preprocess_transform = ComposeTransform([a1, a2, s.inv])
     else:
         raise ValueError(f'{self.preprocessing} not valid.')
     return preprocess_transform
Пример #7
0
def model(n_samples=None, scale=0.5, invert=False):
    with pyro.plate('observations', n_samples):
        thickness = 0.5 + pyro.sample('thickness', Gamma(10., 5.))

        if invert:
            loc = (thickness - 2) * -2
        else:
            loc = (thickness - 2.5) * 2

        transforms = ComposeTransform(
            [SigmoidTransform(), AffineTransform(64, 191)])

        intensity = pyro.sample(
            'intensity', TransformedDistribution(Normal(loc, scale),
                                                 transforms))

    return thickness, intensity
    def __init__(self, **kwargs):
        super().__init__(**kwargs)

        # Flow for modelling t Gamma
        self.thickness_flow_components = ComposeTransformModule([Spline(1)])
        self.thickness_flow_constraint_transforms = ComposeTransform(
            [self.thickness_flow_lognorm,
             ExpTransform()])
        self.thickness_flow_transforms = ComposeTransform([
            self.thickness_flow_components,
            self.thickness_flow_constraint_transforms
        ])

        # affine flow for s normal
        self.intensity_flow_components = ComposeTransformModule(
            [LearnedAffineTransform(), Spline(1)])
        self.intensity_flow_constraint_transforms = ComposeTransform(
            [SigmoidTransform(), self.intensity_flow_norm])
        self.intensity_flow_transforms = [
            self.intensity_flow_components,
            self.intensity_flow_constraint_transforms
        ]
Пример #9
0
 def sigmoid(self):
     return self.transform(SigmoidTransform())