Пример #1
0
def set_historical_prices(trading_robot: PyRobot):
	"""
		Set the historical prices for the robot

		:param trading_robot {PyRobot} -- The trading robot class
	"""

	end_date = datetime.today()
	start_date = end_date - timedelta(days=20)

	# Get historical data
	historical_prices = trading_robot.grab_historical_prices(
		start=start_date,
		end=end_date,
		bar_size=1,
		bar_type='minute'
	)

	# Convert data to a stock frame
	stock_frame = trading_robot.create_stock_frame(
		data=historical_prices['aggregated']
	)

	# Add the stock frame to the portfolio
	trading_robot.portfolio.stock_frame = stock_frame
	trading_robot.portfolio.historical_prices = historical_prices
Пример #2
0
class PyRobotIndicatorTest(TestCase):
    """Will perform a unit test for the Indicator Object."""
    def setUp(self) -> None:
        """Set up the Indicator Client."""

        # Grab configuration values.
        config = ConfigParser()
        config.read('configs/config.ini')

        CLIENT_ID = config.get('main', 'CLIENT_ID')
        REDIRECT_URI = config.get('main', 'REDIRECT_URI')
        CREDENTIALS_PATH = config.get('main', 'JSON_PATH')

        # Create a robot.
        self.robot = PyRobot(client_id=CLIENT_ID,
                             redirect_uri=REDIRECT_URI,
                             credentials_path=CREDENTIALS_PATH)

        # Grab historical prices, first define the start date and end date.
        start_date = datetime.today()
        end_date = start_date - timedelta(days=30)

        # Grab the historical prices.
        historical_prices = self.robot.grab_historical_prices(
            start=end_date,
            end=start_date,
            bar_size=1,
            bar_type='minute',
            symbols=['AAPL', 'MSFT'])

        # Convert data to a Data Frame.
        self.stock_frame = self.robot.create_stock_frame(
            data=historical_prices['aggregated'])

    def test_creates_instance_of_session(self):
        """Create an instance and make sure it's a StockFrame."""

        self.assertIsInstance(self.stock_frame, StockFrame)
Пример #3
0
# Print out the order.
pprint.pprint(new_trade.order)

# Grab historical prices, first define the start date and end date.
start_date = datetime.today()
end_date = start_date - timedelta(days=30)

# Grab the historical prices.
historical_prices = trading_robot.grab_historical_prices(start=end_date,
                                                         end=start_date,
                                                         bar_size=1,
                                                         bar_type='minute')

# Convert data to a Data Frame.
stock_frame = trading_robot.create_stock_frame(
    data=historical_prices['aggregated'])

# We can also add the stock frame to the Portfolio object.
trading_robot.portfolio.stock_frame = stock_frame

# Additionally the historical prices can be set as well.
trading_robot.portfolio.historical_prices = historical_prices

# Portfolio Variance
pprint.pprint(trading_robot.portfolio.portfolio_metrics())

# Create an indicator Object.
indicator_client = Indicators(price_data_frame=stock_frame)

# Add the RSI Indicator.
indicator_client.rsi(period=14)
Пример #4
0
class PyRobotStockFrameTest(TestCase):
    """Will perform a unit test for the StockFrame Object."""
    def setUp(self) -> None:
        """Set up the Stock Frame."""

        # Grab configuration values.
        config = ConfigParser()
        config.read('configs/config.ini')

        CLIENT_ID = config.get('main', 'CLIENT_ID')
        REDIRECT_URI = config.get('main', 'REDIRECT_URI')
        CREDENTIALS_PATH = config.get('main', 'JSON_PATH')

        # Create a robot.
        self.robot = PyRobot(client_id=CLIENT_ID,
                             redirect_uri=REDIRECT_URI,
                             credentials_path=CREDENTIALS_PATH)

        # Grab historical prices, first define the start date and end date.
        start_date = datetime.today()
        end_date = start_date - timedelta(days=30)

        # Grab the historical prices.
        historical_prices = self.robot.grab_historical_prices(
            start=end_date,
            end=start_date,
            bar_size=1,
            bar_type='minute',
            symbols=['AAPL', 'MSFT'])

        # Convert data to a Data Frame.
        self.stock_frame = self.robot.create_stock_frame(
            data=historical_prices['aggregated'])

    def test_creates_instance_of_session(self):
        """Create an instance and make sure it's a StockFrame."""

        self.assertIsInstance(self.stock_frame, StockFrame)

    def test_frame_property(self):
        """Test that the `frame` property returns a Pandas DataFrame object."""

        self.assertIsInstance(self.stock_frame.frame, pd.DataFrame)
        self.assertIsInstance(self.stock_frame.frame.index, pd.MultiIndex)

    def test_frame_symbols(self):
        """Test that the `frame.index` property contains the specified symbols."""

        self.assertIn('AAPL', self.stock_frame.frame.index)
        self.assertIn('MSFT', self.stock_frame.frame.index)

    def test_symbol_groups_property(self):
        """Test that the `symbol_groups` property returns a Pandas DataFrameGroupBy object."""

        self.assertIsInstance(self.stock_frame.symbol_groups,
                              pd.core.groupby.DataFrameGroupBy)

    def test_symbol_rolling_groups_property(self):
        """Test that the `symbol_rolling_groups` property returns a Pandas RollingGroupBy object."""

        self.assertIsInstance(self.stock_frame.symbol_rolling_groups(size=15),
                              pd.core.window.RollingGroupby)

    def test_add_row(self):
        """Test adding a new row to our data frame."""

        # Define a new row.
        new_row_dict = {
            'AAPL': {
                'openPrice': 100.00,
                'closePrice': 100.00,
                'highPrice': 100.00,
                'lowPrice': 100.00,
                'askSize': 100,
                'bidSize': 100,
                'quoteTimeInLong': 1586390399572
            }
        }

        # Add the row.
        self.stock_frame.add_rows(data=new_row_dict)

        # Create a timestamp.
        time_stamp_parsed = pd.to_datetime(1586390399572,
                                           unit='ms',
                                           origin='unix')
        index_tuple = ('AAPL', time_stamp_parsed)

        # Check to see if the Tuple is in the Index.
        self.assertIn(index_tuple, self.stock_frame.frame.index)

    def tearDown(self) -> None:
        """Teardown the StockFrame."""

        self.stock_frame = None
class PyRobotIndicatorTest(TestCase):

    """Will perform a unit test for the Indicator Object."""

    def setUp(self) -> None:
        """Set up the Indicator Client."""

        # Grab configuration values.
        config = ConfigParser()
        config.read('configs/config.ini')       

        CLIENT_ID = config.get('main', 'CLIENT_ID')
        REDIRECT_URI = config.get('main', 'REDIRECT_URI')
        CREDENTIALS_PATH = config.get('main', 'JSON_PATH')

        # Create a robot.
        self.robot = PyRobot(
            client_id = CLIENT_ID, 
            redirect_uri = REDIRECT_URI, 
            credentials_path = CREDENTIALS_PATH
        )

        # Grab historical prices, first define the start date and end date.
        start_date = datetime.today()
        end_date = start_date - timedelta(days=30)

        # Grab the historical prices.
        historical_prices = self.robot.grab_historical_prices(
            start=end_date,
            end=start_date,
            bar_size=1,
            bar_type='minute',
            symbols=['AAPL','MSFT']
        )

        # Convert data to a Data Frame.
        self.stock_frame = self.robot.create_stock_frame(data=historical_prices['aggregated'])

        # Create the indicator client.
        self.indicator_client = Indicators(price_data_frame=self.stock_frame)

    def test_creates_instance_of_session(self):
        """Create an instance and make sure it's a StockFrame."""

        self.assertIsInstance(self.stock_frame, StockFrame)
        self.assertIsInstance(self.indicator_client, Indicators)
    
    def test_price_frame_data_property(self):
        """Test getting the Price Data Frame."""

        self.assertIsNotNone(self.indicator_client.price_data_frame)

    def test_is_multi_index_property(self):
        """Test getting the Price Data Frame."""

        self.assertTrue(self.indicator_client.is_multi_index)

    def test_change_in_price(self):
        """Test adding the Change in Price."""
        
        # Create the Change in Price indicator.
        self.indicator_client.change_in_price()

        # Check if we have the column.
        self.assertIn('change_in_price', self.stock_frame.frame.columns)

        # And that it's not empty.
        self.assertFalse(self.stock_frame.frame['change_in_price'].empty)

    def test_rsi(self):
        """Test adding the Relative Strength Index."""
        
        # Create the RSI indicator.
        self.indicator_client.rsi(period=14)

        # Check if we have the column.
        self.assertIn('rsi', self.stock_frame.frame.columns)

        # And that it's not empty.
        self.assertFalse(self.stock_frame.frame['rsi'].empty)

    def test_sma(self):
        """Test adding the Simple Moving Average."""
        
        # Create the SMA indicator.
        self.indicator_client.sma(period=200)

        # Check if we have the column.
        self.assertIn('sma', self.stock_frame.frame.columns)

        # And that it's not empty.
        self.assertFalse(self.stock_frame.frame['sma'].empty)

    def test_ema(self):
        """Test adding the Exponential Moving Average."""
        
        # Create the EMA indicator.
        self.indicator_client.ema(period=50)

        # Check if we have the column.
        self.assertIn('ema', self.stock_frame.frame.columns)

        # And that it's not empty.
        self.assertFalse(self.stock_frame.frame['ema'].empty)

    def test_indicator_exist(self):
        """Test checkinf if an indicator column exist."""
        
        # Create the EMA indicator.
        self.indicator_client.ema(period=50)

        # Check if we have the column.
        self.assertIn('ema', self.stock_frame.frame.columns)

        # And that it's not empty.
        self.assertTrue(self.stock_frame.do_indicator_exist(column_names=['ema']))

    def test_indicator_signal(self):
        """Test checkinf if an indicator column exist."""
        
        # Create the EMA indicator.
        self.indicator_client.ema(period=50)

        self.indicator_client.set_indicator_signal(
            indicator='sma',
            buy=50.0,
            sell=30.0,
            condition_buy=operator.ge,
            condition_sell=operator.le
        )

        func_1 = operator.ge
        func_2 = operator.le

        correct_dict = {
            'buy': 50.0,
            'sell': 30.0,
            'buy_operator': func_1,
            'sell_operator': func_2
        }

        correct_dict_all = {
            'sma':{
                'buy': 50.0,
                'sell': 30.0,
                'buy_operator': func_1,
                'sell_operator': func_2
            }
        }


        # And that it's not empty.
        self.assertDictEqual(
            self.indicator_client.get_indicator_signal(indicator='sma'),
            correct_dict
        )

        # And that it's not empty.
        self.assertDictEqual(
            self.indicator_client.get_indicator_signal(),
            correct_dict_all
        )

    def tearDown(self) -> None:
        """Teardown the Indicator object."""

        self.stock_frame = None
        self.indicator_client = None