Пример #1
0
def incorrect_input_size(D, num_frames):

    if D == 1:
        x_local = x[:, 0]
    else:
        x_local = x[:, :D]

    # parameters
    block_size = 512
    hop = block_size

    # create STFT object
    stft = STFT(block_size,
                hop=hop,
                channels=D,
                transform=transform,
                num_frames=num_frames)

    try:  # passing more frames than 'hop'
        stft.analysis(x_local)
        computed = False
    except:
        computed = True

    return computed
Пример #2
0
def no_overlap_no_filter(D, num_frames=1, fixed_memory=False, streaming=True):
    """
    D             - number of channels
    num_frames    - how many frames to process, None will process one frame at
                    a time
    fixed_memory  - whether to enforce checks for size (real-time consideration)
    streaming     - whether or not to stitch between frames
    """

    if D == 1:
        x_local = x[:, 0]
    else:
        x_local = x[:, :D]

    # parameters
    block_size = 512  # make sure the FFT size is a power of 2
    hop = block_size  # no overlap
    if not streaming:
        num_samples = (num_frames - 1) * hop + block_size
        x_local = x_local[:num_samples, ]

    # Create the STFT object
    if fixed_memory:
        stft = STFT(
            block_size,
            hop=hop,
            channels=D,
            transform=transform,
            num_frames=num_frames,
            streaming=streaming,
        )
    else:
        stft = STFT(block_size,
                    hop=hop,
                    channels=D,
                    transform=transform,
                    streaming=streaming)

    # collect the processed blocks
    processed_x = np.zeros(x_local.shape)

    if streaming:

        n = 0
        hop_frames = hop * num_frames
        # process the signals while full blocks are available
        while x_local.shape[0] - n > hop_frames:
            stft.analysis(x_local[n:n + hop_frames, ])
            processed_x[n:n + hop_frames, ] = stft.synthesis()
            n += hop_frames

    else:

        stft.analysis(x_local)
        processed_x = stft.synthesis()
        n = processed_x.shape[0]

    error = np.max(np.abs(x_local[:n, ] - processed_x[:n, ]))

    return error
def apply_spectral_sub(
    noisy_signal, nfft=512, db_reduc=25, lookback=12, beta=30, alpha=1
):
    """
    One-shot function to apply spectral subtraction approach.

    Parameters
    ----------
    noisy_signal : numpy array
        Real signal in time domain.
    nfft: int
        FFT size. Length of gain filter, i.e. the number of frequency bins, is
        given by ``nfft//2+1``.
    db_reduc: float
        Maximum reduction in dB for each bin.
    lookback: int
        How many frames to look back for the noise estimate.
    beta: float
        Overestimation factor to "push" the gain filter value (at each
        frequency) closer to the dB reduction specified by ``db_reduc``.
    alpha: float, optional
        Exponent factor to modify transition behavior towards the dB reduction
        specified by ``db_reduc``. Default is 1.

    Returns
    -------
    numpy array
        Enhanced/denoised signal.
    """

    from pyroomacoustics import hann
    from pyroomacoustics.transform import STFT

    hop = nfft // 2
    window = hann(nfft, flag="asymmetric", length="full")
    stft = STFT(nfft, hop=hop, analysis_window=window, streaming=True)
    scnr = SpectralSub(nfft, db_reduc, lookback, beta, alpha)

    processed_audio = np.zeros(noisy_signal.shape)
    n = 0
    while noisy_signal.shape[0] - n >= hop:
        # SCNR in frequency domain
        stft.analysis(
            noisy_signal[
                n : (n + hop),
            ]
        )
        gain_filt = scnr.compute_gain_filter(stft.X)

        # back to time domain
        processed_audio[
            n : n + hop,
        ] = stft.synthesis(gain_filt * stft.X)

        # update step
        n += hop

    return processed_audio
Пример #4
0
def with_half_overlap_with_filter(D,
                                  num_frames=1,
                                  fixed_memory=False,
                                  streaming=True):
    """
    D             - number of channels
    num_frames    - how many frames to process, None will process one frame at 
                    a time 
    fixed_memory  - whether to enforce checks for size (real-time consideration)
    streaming     - whether or not to stitch between frames
    """

    if D == 1:
        x_local = x[:, 0]
        y_local = y[:, 0]
        h_local = h[:, 0]
    else:
        x_local = x[:, :D]
        y_local = y[:, :D]
        h_local = h[:, :D]

    # parameters
    block_size = 512 - h_len + 1  # make sure the FFT size is a power of 2
    hop = block_size // 2  # half overlap
    window = pra.hann(block_size)  # the analysis window
    if not streaming:
        num_samples = (num_frames - 1) * hop + block_size
        x_local = x_local[:num_samples, ]

    # Create the STFT object
    if fixed_memory:
        stft = STFT(block_size,
                    hop=hop,
                    channels=D,
                    transform=transform,
                    num_frames=num_frames,
                    analysis_window=window,
                    streaming=streaming)
    else:
        stft = STFT(block_size,
                    hop=hop,
                    channels=D,
                    transform=transform,
                    analysis_window=window,
                    streaming=streaming)

    # setup the filter
    stft.set_filter(h_local, zb=h_len - 1)

    # collect the processed blocks
    processed_x = np.zeros(x_local.shape)

    if not streaming:

        stft.analysis(x_local)
        stft.process()
        processed_x = stft.synthesis()
        n = processed_x.shape[0]

        error = np.max(
            np.abs(y_local[block_size:n - block_size, ] -
                   processed_x[block_size:n - block_size, ]))

    else:

        n = 0
        hop_frames = hop * num_frames
        # process the signals while full blocks are available
        while x_local.shape[0] - n > hop_frames:
            stft.analysis(x_local[n:n + hop_frames, ])
            stft.process()  # apply the filter
            processed_x[n:n + hop_frames, ] = stft.synthesis()
            n += hop_frames

        error = np.max(np.abs(y_local[:n - hop, ] - processed_x[hop:n, ]))

        # if D==1:
        #     import matplotlib.pyplot as plt
        #     plt.figure()
        #     plt.plot(y_local)
        #     plt.plot(processed_x)
        #     plt.show()

    return error
Пример #5
0
def with_arbitrary_overlap_synthesis_window(D,
                                            num_frames=1,
                                            fixed_memory=False,
                                            streaming=True,
                                            overlap=0.5):
    """
    D             - number of channels
    num_frames    - how many frames to process, None will process one frame at
                    a time
    fixed_memory  - whether to enforce checks for size (real-time consideration)
    streaming     - whether or not to stitch between frames
    """

    if D == 1:
        x_local = x[:, 0]
    else:
        x_local = x[:, :D]

    # parameters
    block_size = 512  # make sure the FFT size is a power of 2
    hop = int((1 - overlap) * block_size)  # quarter overlap
    if not streaming:
        num_samples = (num_frames - 1) * hop + block_size
        x_local = x_local[:num_samples, ]

    analysis_window = pra.hann(block_size)
    synthesis_window = pra.transform.compute_synthesis_window(
        analysis_window, hop)

    # Create the STFT object
    if fixed_memory:
        stft = STFT(block_size,
                    hop=hop,
                    channels=D,
                    transform=transform,
                    num_frames=num_frames,
                    analysis_window=analysis_window,
                    synthesis_window=synthesis_window,
                    streaming=streaming)
    else:
        stft = STFT(block_size,
                    hop=hop,
                    channels=D,
                    analysis_window=analysis_window,
                    synthesis_window=synthesis_window,
                    transform=transform,
                    streaming=streaming)

    # collect the processed blocks
    processed_x = np.zeros(x_local.shape)

    if streaming:

        n = 0
        hop_frames = hop * num_frames
        # process the signals while full blocks are available
        while x_local.shape[0] - n > hop_frames:
            stft.analysis(x_local[n:n + hop_frames, ])
            processed_x[n:n + hop_frames, ] = stft.synthesis()
            n += hop_frames

        error = np.max(
            np.abs(x_local[:n - block_size + hop, ] -
                   processed_x[block_size - hop:n, ]))

        if 20 * np.log10(error) > -10:
            import matplotlib.pyplot as plt
            if x_local.ndim == 1:
                plt.plot(x_local[:n - block_size + hop])
                plt.plot(processed_x[block_size - hop:n])
            else:
                plt.plot(x_local[:n - block_size + hop, 0])
                plt.plot(processed_x[block_size - hop:n, 0])
            plt.show()

    else:

        stft.analysis(x_local)
        processed_x = stft.synthesis()
        n = processed_x.shape[0]

        L = block_size - hop
        error = np.max(np.abs(x_local[L:-L, ] - processed_x[L:, ]))

        if 20 * np.log10(error) > -10:
            import matplotlib.pyplot as plt
            if x_local.ndim == 1:
                plt.plot(x_local[L:-L])
                plt.plot(processed_x[L:])
            else:
                plt.plot(x_local[L:-L, 0])
                plt.plot(processed_x[L:, 0])
            plt.show()

    return error
Пример #6
0
def apply_iterative_wiener(noisy_signal,
                           frame_len=512,
                           lpc_order=20,
                           iterations=2,
                           alpha=0.8,
                           thresh=0.01):
    """
    One-shot function to apply iterative Wiener filtering for denoising.

    Parameters
    ----------
    noisy_signal : numpy array
        Real signal in time domain.
    frame_len : int
        Frame length in samples. 50% overlap is used with hanning window.
    lpc_order : int
        Number of LPC coefficients to compute
    iterations : int
        How many iterations to perform in updating the Wiener filter for each
        signal frame.
    alpha : int
        Smoothing factor within [0,1] for updating noise level. Closer to `1`
        gives more weight to the previous noise level, while closer to `0`
        gives more weight to the current frame's level. Closer to `0` can track
        more rapid changes in the noise level. However, if a speech frame is
        incorrectly identified as noise, you can end up removing desired
        speech.
    thresh : float
        Threshold to distinguish between (signal+noise) and (noise) frames. A
        high value will classify more frames as noise but might remove desired
        signal!

    Returns
    -------
    numpy array
        Enhanced/denoised signal.
    """

    from pyroomacoustics import hann
    from pyroomacoustics.transform import STFT

    hop = frame_len // 2
    window = hann(frame_len, flag='asymmetric', length='full')
    stft = STFT(frame_len, hop=hop, analysis_window=window, streaming=True)
    scnr = IterativeWiener(frame_len, lpc_order, iterations, alpha, thresh)

    processed_audio = np.zeros(noisy_signal.shape)
    n = 0
    while noisy_signal.shape[0] - n >= hop:
        # SCNR in frequency domain
        stft.analysis(noisy_signal[n:(n + hop), ])
        X = scnr.compute_filtered_output(current_frame=stft.fft_in_buffer,
                                         frame_dft=stft.X)

        # back to time domain
        processed_audio[n:n + hop, ] = stft.synthesis(X)

        # update step
        n += hop

    return processed_audio
Пример #7
0
One frame at a time
"""
print("Averaging computation time over %d cases of %d channels of %d samples (%0.1f s at %0.1f kHz)." 
    % (num_times,num_mic,len(signals),(len(signals)/fs),fs/1000) )
print()
print("----- SINGLE FRAME AT A TIME -----")
print("With STFT object (not fixed) : ", end="")
stft = STFT(block_size, hop=hop, channels=num_mic,
    streaming=True, analysis_window=win)
start = time.time()
for k in range(num_times):

    x_r = np.zeros(signals.shape)
    n = 0
    while  signals.shape[0] - n > hop:
        stft.analysis(signals[n:n+hop,])
        x_r[n:n+hop,] = stft.synthesis()
        n += hop
avg_time = (time.time()-start)/num_times
print("%0.3f sec" % avg_time)
err_dB = 20*np.log10(np.max(np.abs(signals[:n-hop,] - x_r[hop:n,])))
print("Error [dB] : %0.3f" % err_dB)


print("With STFT object (fixed) : ", end="")
stft = STFT(block_size, hop=hop, channels=num_mic, num_frames=1, 
    streaming=True, analysis_window=win)
start = time.time()
for k in range(num_times):

    x_r = np.zeros(signals.shape)