def test_eval_bootstrap_rdm(self): from pyrsa.inference import eval_bootstrap_rdm from pyrsa.rdm import RDMs from pyrsa.model import ModelFixed rdms = RDMs(np.random.rand(11, 10)) # 11 5x5 rdms m = ModelFixed('test', rdms.get_vectors()[0]) m2 = ModelFixed('test2', rdms.get_vectors()[1]) value = eval_bootstrap_rdm([m, m2], rdms, N=10)
def test_eval_bootstrap(self): from pyrsa.inference import eval_bootstrap from pyrsa.rdm import RDMs from pyrsa.model import ModelFixed rdms = RDMs(np.random.rand(11, 10)) # 11 5x5 rdms m = ModelFixed('test', rdms.get_vectors()[0]) m2 = ModelFixed('test2', rdms.get_vectors()[1]) result = eval_bootstrap([m, m2], rdms, N=10) assert result.evaluations.shape[1] == 2 assert result.evaluations.shape[0] == 10
def test_bootstrap_testset_rdm(self): from pyrsa.inference import bootstrap_testset_rdm from pyrsa.rdm import RDMs from pyrsa.model import ModelFixed rdms = RDMs(np.random.rand(11, 10)) # 11 5x5 rdms m = ModelFixed('test', rdms.get_vectors()[0]) m2 = ModelFixed('test2', rdms.get_vectors()[1]) evaluations, n_rdms = bootstrap_testset_rdm([m, m2], rdms, method='cosine', fitter=None, N=100, rdm_descriptor=None)
def test_eval_fixed(self): from pyrsa.inference import eval_fixed from pyrsa.rdm import RDMs from pyrsa.model import ModelFixed rdms = RDMs(np.random.rand(11, 10)) # 11 5x5 rdms m = ModelFixed('test', rdms.get_vectors()[0]) value = eval_fixed(m, rdms)
def test_eval_bootstrap_rdm(self): from pyrsa.inference import eval_bootstrap_rdm from pyrsa.rdm import RDMs from pyrsa.model import ModelFixed rdms = RDMs(np.random.rand(11, 10)) # 11 5x5 rdms m = ModelFixed('test', rdms.get_vectors()[0]) value = eval_bootstrap_rdm(m, rdms, N=10) value = eval_bootstrap_rdm(m, rdms, N=10, boot_noise_ceil=True)
def test_bootstrap_testset_pattern(self): from pyrsa.inference import bootstrap_testset_pattern from pyrsa.rdm import RDMs from pyrsa.model import ModelFixed rdms = RDMs(np.random.rand(11, 10)) # 11 5x5 rdms m = ModelFixed('test', rdms.get_vectors()[0]) evaluations, n_cond = bootstrap_testset_pattern( m, rdms, method='cosine', fitter=None, N=100, pattern_descriptor=None)