Пример #1
0
 def __init__(self,
              y,
              w,
              transform="R",
              permutations=PERMUTATIONS,
              star=False):
     y = np.asarray(y).flatten()
     self.n = len(y)
     self.y = y
     self.w = w
     self.w_original = w.transform
     self.w.transform = self.w_transform = transform.lower()
     self.permutations = permutations
     self.star = star
     self.calc()
     self.p_norm = np.array(
         [1 - stats.norm.cdf(np.abs(i)) for i in self.Zs])
     if permutations:
         self.__crand()
         sim = np.transpose(self.rGs)
         above = sim >= self.Gs
         larger = sum(above)
         low_extreme = (self.permutations - larger) < larger
         larger[low_extreme] = self.permutations - larger[low_extreme]
         self.p_sim = (larger + 1.0) / (permutations + 1)
         self.sim = sim
         self.EG_sim = sim.mean(axis=0)
         self.seG_sim = sim.std(axis=0)
         self.VG_sim = self.seG_sim * self.seG_sim
         self.z_sim = (self.Gs - self.EG_sim) / self.seG_sim
         self.p_z_sim = 1 - stats.norm.cdf(np.abs(self.z_sim))
Пример #2
0
    def __init__(self, y, w, permutations=PERMUTATIONS):
        y = np.asarray(y).flatten()
        self.n = len(y)
        self.y = y
        w.transform = "B"
        self.w = w
        self.permutations = permutations
        self.__moments()
        self.y2 = y * y
        y = y.reshape(len(y), 1)  # Ensure that y is an n by 1 vector, otherwise y*y.T == y*y
        self.den_sum = (y * y.T).sum() - (y * y).sum()
        self.G = self.__calc(self.y)
        self.z_norm = (self.G - self.EG) / np.sqrt(self.VG)
        self.p_norm = 1.0 - stats.norm.cdf(np.abs(self.z_norm))

        if permutations:
            sim = [self.__calc(np.random.permutation(self.y))
                   for i in range(permutations)]
            self.sim = sim = np.array(sim)
            above = sim >= self.G
            larger = sum(above)
            if (self.permutations - larger) < larger:
                larger = self.permutations - larger
            self.p_sim = (larger + 1.0) / (permutations + 1.)
            self.EG_sim = sum(sim) / permutations
            self.seG_sim = sim.std()
            self.VG_sim = self.seG_sim ** 2
            self.z_sim = (self.G - self.EG_sim) / self.seG_sim
            self.p_z_sim = 1. - stats.norm.cdf(np.abs(self.z_sim))
Пример #3
0
    def __init__(self, y, w, permutations=PERMUTATIONS):
        y = np.asarray(y).flatten()
        self.n = len(y)
        self.y = y
        w.transform = "B"
        self.w = w
        self.permutations = permutations
        self.__moments()
        self.y2 = y * y
        y = y.reshape(
            len(y),
            1)  # Ensure that y is an n by 1 vector, otherwise y*y.T == y*y
        self.den_sum = (y * y.T).sum() - (y * y).sum()
        self.G = self.__calc(self.y)
        self.z_norm = (self.G - self.EG) / np.sqrt(self.VG)
        self.p_norm = 1.0 - stats.norm.cdf(np.abs(self.z_norm))

        if permutations:
            sim = [
                self.__calc(np.random.permutation(self.y))
                for i in range(permutations)
            ]
            self.sim = sim = np.array(sim)
            above = sim >= self.G
            larger = sum(above)
            if (self.permutations - larger) < larger:
                larger = self.permutations - larger
            self.p_sim = (larger + 1.0) / (permutations + 1.0)
            self.EG_sim = sum(sim) / permutations
            self.seG_sim = sim.std()
            self.VG_sim = self.seG_sim**2
            self.z_sim = (self.G - self.EG_sim) / self.seG_sim
            self.p_z_sim = 1.0 - stats.norm.cdf(np.abs(self.z_sim))
Пример #4
0
 def __init__(self, y, w, transform='R', permutations=PERMUTATIONS, star=False):
     y = np.asarray(y).flatten()
     self.n = len(y)
     self.y = y
     self.w = w
     self.w_original = w.transform
     self.w.transform = self.w_transform = transform.lower()
     self.permutations = permutations
     self.star = star
     self.calc()
     self.p_norm = np.array(
         [1 - stats.norm.cdf(np.abs(i)) for i in self.Zs])
     if permutations:
         self.__crand()
         sim = np.transpose(self.rGs)
         above = sim >= self.Gs
         larger = sum(above)
         low_extreme = (self.permutations - larger) < larger
         larger[low_extreme] = self.permutations - larger[low_extreme]
         self.p_sim = (larger + 1.0) / (permutations + 1)
         self.sim = sim
         self.EG_sim = sim.mean()
         self.seG_sim = sim.std()
         self.VG_sim = self.seG_sim * self.seG_sim
         self.z_sim = (self.Gs - self.EG_sim) / self.seG_sim
         self.p_z_sim = 1 - stats.norm.cdf(np.abs(self.z_sim))