Пример #1
0
 def setUp(self):
     self.ntw = network.Network(in_data=examples.get_path('streets.shp'))
     for obs in ['schools', 'crimes']:
         in_data = examples.get_path('{}.shp'.format(obs))
         self.ntw.snapobservations(in_data, obs, attribute=True)
         #setattr(self, obs, obs)
         setattr(self, obs, self.ntw.pointpatterns[obs])
Пример #2
0
 def setUp(self):
     self.ntw = network.Network(in_data=examples.get_path('streets.shp'))
     for obs in ['schools', 'crimes']:
         in_data = examples.get_path('{}.shp'.format(obs))
         self.ntw.snapobservations(in_data, obs, attribute=True)
         #setattr(self, obs, obs)
         setattr(self, obs, self.ntw.pointpatterns[obs])
Пример #3
0
 def setUp(self):
     self.ntw = network.Network(in_data=examples.get_path('streets.shp'))
     pt_str = 'crimes'
     in_data = examples.get_path('{}.shp'.format(pt_str))
     self.ntw.snapobservations(in_data, pt_str, attribute=True)
     npts = self.ntw.pointpatterns['crimes'].npoints
     self.ntw.simulate_observations(npts)
Пример #4
0
 def setUp(self):
     self.ntw = network.Network(in_data=examples.get_path('streets.shp'))
     pt_str = 'crimes'
     in_data = examples.get_path('{}.shp'.format(pt_str))
     self.ntw.snapobservations(in_data, pt_str, attribute=True)
     npts = self.ntw.pointpatterns['crimes'].npoints
     self.ntw.simulate_observations(npts)
Пример #5
0
 def setUp(self):
     path_to_shp = examples.get_path('streets.shp')
     gdf = geopandas.read_file(path_to_shp)
     self.ntw = spgh.Network(in_data=gdf)
     for obs in ['schools', 'crimes']:
         in_data = examples.get_path('{}.shp'.format(obs))
         self.ntw.snapobservations(in_data, obs, attribute=True)
         setattr(self, obs, self.ntw.pointpatterns[obs])
Пример #6
0
 def setUp(self):
     path_to_shp = examples.get_path('streets.shp')
     gdf = geopandas.read_file(path_to_shp)
     self.ntw = spgh.Network(in_data=gdf)
     for obs in ['schools', 'crimes']:
         in_data = examples.get_path('{}.shp'.format(obs))
         self.ntw.snapobservations(in_data, obs, attribute=True)
         setattr(self, obs, self.ntw.pointpatterns[obs])
Пример #7
0
 def setUp(self):
     path_to_shp = examples.get_path('streets.shp')
     gdf = geopandas.read_file(path_to_shp)
     self.ntw = spgh.Network(in_data=gdf)
     pt_str = 'crimes'
     path_to_shp = examples.get_path('{}.shp'.format(pt_str))
     in_data = geopandas.read_file(path_to_shp)
     self.ntw.snapobservations(in_data, pt_str, attribute=True)
     npts = self.ntw.pointpatterns['crimes'].npoints
     self.ntw.simulate_observations(npts)
Пример #8
0
 def setUp(self):
     path_to_shp = examples.get_path('streets.shp')
     self.ntw = spgh.Network(in_data=path_to_shp)
     self.pt_str = 'schools'
     path_to_shp = examples.get_path('%s.shp' % self.pt_str)
     self.ntw.snapobservations(path_to_shp, self.pt_str, attribute=True)
     npts = self.ntw.pointpatterns[self.pt_str].npoints
     self.ntw.simulate_observations(npts)
     self.test_permutations = 3
     self.test_steps = 5
Пример #9
0
 def setUp(self):
     path_to_shp = examples.get_path('streets.shp')
     gdf = geopandas.read_file(path_to_shp)
     self.ntw = network.Network(in_data=gdf)
     pt_str = 'crimes'
     path_to_shp = examples.get_path('{}.shp'.format(pt_str))
     in_data = geopandas.read_file(path_to_shp)
     self.ntw.snapobservations(in_data, pt_str, attribute=True)
     npts = self.ntw.pointpatterns['crimes'].npoints
     self.ntw.simulate_observations(npts)
Пример #10
0
 def setUp(self):
     path_to_shp = examples.get_path('streets.shp')
     self.ntw = spgh.Network(in_data=path_to_shp)
     self.pp1_str = 'schools'
     self.pp2_str = 'crimes'
     iterator = [(self.pp1_str, 'pp1'), (self.pp2_str, 'pp2')]
     for (obs, idx) in iterator:
         path_to_shp = examples.get_path('%s.shp' % obs)
         self.ntw.snapobservations(path_to_shp, obs, attribute=True)
         setattr(self, idx, self.ntw.pointpatterns[obs])
     self.known_pp1_npoints = 8
Пример #11
0
def test_moran_facet():
    f = lp.io.open(examples.get_path("sids2.dbf"))
    varnames = ['SIDR74', 'SIDR79', 'NWR74', 'NWR79']
    vars = [np.array(f.by_col[var]) for var in varnames]
    w = lp.io.open(examples.get_path("sids2.gal")).read()
    # calculate moran matrix
    moran_matrix = Moran_BV_matrix(vars, w, varnames=varnames)
    # plot
    fig, axarr = moran_facet(moran_matrix)
    plt.close(fig)
    # customize
    fig, axarr = moran_facet(moran_matrix,
                             scatter_glob_kwds=dict(color='r'),
                             fitline_bv_kwds=dict(color='y'))
    plt.close(fig)
Пример #12
0
def test_moran_loc_bv_scatterplot():
    link_to_data = examples.get_path('Guerry.shp')
    gdf = gpd.read_file(link_to_data)
    x = gdf['Suicids'].values
    y = gdf['Donatns'].values
    w = Queen.from_dataframe(gdf)
    w.transform = 'r'
    # Calculate Univariate and Bivariate Moran
    moran_loc = Moran_Local(y, w)
    moran_loc_bv = Moran_Local_BV(x, y, w)
    # try with p value so points are colored
    fig, _ = _moran_loc_bv_scatterplot(moran_loc_bv)
    plt.close(fig)

    # try with p value and different figure size
    fig, _ = _moran_loc_bv_scatterplot(moran_loc_bv,
                                       p=0.05,
                                       aspect_equal=False)
    plt.close(fig)

    assert_raises(ValueError, _moran_loc_bv_scatterplot, moran_loc, p=0.5)
    assert_warns(UserWarning,
                 _moran_loc_bv_scatterplot,
                 moran_loc_bv,
                 p=0.5,
                 scatter_kwds=dict(c='r'))
def test_vba_choropleth():
    # data
    link_to_data = examples.get_path('columbus.shp')
    gdf = gpd.read_file(link_to_data)
    x = gdf['HOVAL'].values
    y = gdf['CRIME'].values
    # plot
    fig, _ = vba_choropleth(x, y, gdf)
    plt.close(fig)
    # plot with divergent and reverted alpha
    fig, _ = vba_choropleth(x, y, gdf, cmap='RdBu',
                            divergent=True,
                            revert_alpha=True)
    plt.close(fig)
    # plot with classified alpha and rgb
    fig, _ = vba_choropleth(x, y, gdf, cmap='RdBu',
                            alpha_mapclassify=dict(classifier='quantiles'),
                            rgb_mapclassify=dict(classifier='quantiles'))
    plt.close(fig)
    # plot classified with legend
    fig, _ = vba_choropleth(x, y, gdf,
                            alpha_mapclassify=dict(classifier='std_mean'),
                            rgb_mapclassify=dict(classifier='std_mean'),
                            legend=True)
    plt.close(fig)
Пример #14
0
def test_vba_choropleth():
    # data
    link_to_data = examples.get_path('columbus.shp')
    gdf = gpd.read_file(link_to_data)
    x = gdf['HOVAL'].values
    y = gdf['CRIME'].values
    # plot
    fig, _ = vba_choropleth(x, y, gdf)
    plt.close(fig)
    # plot with divergent and reverted alpha
    fig, _ = vba_choropleth(x,
                            y,
                            gdf,
                            cmap='RdBu',
                            divergent=True,
                            revert_alpha=True)
    plt.close(fig)
    # plot with classified alpha and rgb
    fig, _ = vba_choropleth(x,
                            y,
                            gdf,
                            cmap='RdBu',
                            alpha_mapclassify=dict(classifier='quantiles'),
                            rgb_mapclassify=dict(classifier='quantiles'))
    plt.close(fig)
    # plot classified with legend
    fig, _ = vba_choropleth(x,
                            y,
                            gdf,
                            alpha_mapclassify=dict(classifier='std_mean'),
                            rgb_mapclassify=dict(classifier='std_mean'),
                            legend=True)
    plt.close(fig)
Пример #15
0
def test_plot_spatial_weights():
    # get data
    gdf = gpd.read_file(examples.get_path('43MUE250GC_SIR.shp'))
    gdf.head()
    # calculate weights
    weights = Queen.from_dataframe(gdf)
    # plot weights
    fig, _ = plot_spatial_weights(weights, gdf)
    plt.close(fig)
    # calculate nonplanar_joins
    wnp = pysal.lib.weights.util.nonplanar_neighbors(weights, gdf)
    # plot new joins
    fig2, _ = plot_spatial_weights(wnp, gdf)
    plt.close(fig2)
    #customize
    fig3, _ = plot_spatial_weights(wnp,
                                   gdf,
                                   nonplanar_edge_kws=dict(color='#4393c3'))
    plt.close(fig3)
    # plot in existing figure
    fig4, axs = plt.subplots(1, 3)
    plot_spatial_weights(wnp, gdf, ax=axs[0])
    plt.close(fig4)

    # uses a column as the index for spatial weights object
    weights_index = Queen.from_dataframe(gdf, idVariable="CD_GEOCMU")
    fig, _ = plot_spatial_weights(weights_index, gdf, indexed_on="CD_GEOCMU")
    plt.close(fig)
def test_mapclassify_bin():
    # data
    link_to_data = examples.get_path('columbus.shp')
    gdf = gpd.read_file(link_to_data)
    x = gdf['HOVAL'].values
    # quantiles
    mapclassify_bin(x, 'quantiles')
    mapclassify_bin(x, 'quantiles', k=3)
    # box_plot
    mapclassify_bin(x, 'box_plot')
    mapclassify_bin(x, 'box_plot', hinge=2)
    # headtail_breaks
    mapclassify_bin(x, 'headtail_breaks')
    # percentiles
    mapclassify_bin(x, 'percentiles')
    mapclassify_bin(x, 'percentiles', pct=[25, 50, 75, 100])
    # std_mean
    mapclassify_bin(x, 'std_mean')
    mapclassify_bin(x, 'std_mean', multiples=[-1, -0.5, 0.5, 1])
    # maximum_breaks
    mapclassify_bin(x, 'maximum_breaks')
    mapclassify_bin(x, 'maximum_breaks', k=3, mindiff=0.1)
    # natural_breaks, max_p_classifier
    mapclassify_bin(x, 'natural_breaks')
    mapclassify_bin(x, 'max_p_classifier', k=3, initial=50)
    # user_defined
    mapclassify_bin(x, 'user_defined', bins=[20, max(x)])
def test_mapclassify_bin():
    # data
    link_to_data = examples.get_path('columbus.shp')
    gdf = gpd.read_file(link_to_data)
    x = gdf['HOVAL'].values
    # quantiles
    mapclassify_bin(x, 'quantiles')
    mapclassify_bin(x, 'quantiles', k=3)
    # box_plot
    mapclassify_bin(x, 'box_plot')
    mapclassify_bin(x, 'box_plot', hinge=2)
    # headtail_breaks
    mapclassify_bin(x, 'headtail_breaks')   
    # percentiles
    mapclassify_bin(x, 'percentiles')
    mapclassify_bin(x, 'percentiles', pct=[25,50,75,100])
    # std_mean
    mapclassify_bin(x, 'std_mean')
    mapclassify_bin(x, 'std_mean', multiples=[-1,-0.5,0.5,1])
    # maximum_breaks
    mapclassify_bin(x, 'maximum_breaks')
    mapclassify_bin(x, 'maximum_breaks', k=3, mindiff=0.1)
    # natural_breaks, max_p_classifier
    mapclassify_bin(x, 'natural_breaks')
    mapclassify_bin(x, 'max_p_classifier', k=3, initial=50)
    # user_defined
    mapclassify_bin(x, 'user_defined', bins=[20, max(x)])
Пример #18
0
    def setUp(self):
        self.path_to_shp = examples.get_path('streets.shp')

        # network instantiated from shapefile
        self.ntw_from_shp = spgh.Network(in_data=self.path_to_shp,
                                         weightings=True,
                                         w_components=True)
        self.n_known_arcs, self.n_known_vertices = 303, 230
Пример #19
0
def test_plot_choropleth():
    link = examples.get_path('columbus.shp')
    df = gpd.read_file(link)

    w = Queen.from_dataframe(df)
    w.transform = 'r'

    TOOLS = "tap,help"
    fig = plot_choropleth(df, 'HOVAL', title='columbus',
                          reverse_colors=True, tools=TOOLS)
Пример #20
0
def test_plot_local_autocorrelation():
    link = examples.get_path('columbus.shp')
    df = gpd.read_file(link)

    y = df['HOVAL'].values
    w = Queen.from_dataframe(df)
    w.transform = 'r'

    moran_loc = esda.moran.Moran_Local(y, w)

    fig = plot_local_autocorrelation(moran_loc, df, 'HOVAL')
Пример #21
0
def test_moran_scatterplot():
    link = examples.get_path('columbus.shp')
    df = gpd.read_file(link)

    y = df['HOVAL'].values
    w = Queen.from_dataframe(df)
    w.transform = 'r'

    moran_loc = esda.moran.Moran_Local(y, w)

    fig = moran_scatterplot(moran_loc, p=0.05)
Пример #22
0
def _data_generation():
    # get csv and shp
    shp_link = examples.get_path('us48.shp')
    df = gpd.read_file(shp_link)
    income_table = pd.read_csv(examples.get_path("usjoin.csv"))
    # calculate relative values
    for year in range(1969, 2010):
        income_table[str(year) + '_rel'] = (income_table[str(year)] /
                                            income_table[str(year)].mean())
    # merge
    gdf = df.merge(income_table, left_on='STATE_NAME', right_on='Name')
    # retrieve spatial weights and data for two points in time
    w = Queen.from_dataframe(gdf)
    w.transform = 'r'
    y1 = gdf['1969_rel'].values
    y2 = gdf['2000_rel'].values
    #calculate rose Object
    Y = np.array([y1, y2]).T
    rose = Rose(Y, w, k=5)
    return gdf, y1, rose
Пример #23
0
def test_plot_local_autocorrelation():
    link = examples.get_path('columbus.shp')
    df = gpd.read_file(link)

    y = df['HOVAL'].values
    w = Queen.from_dataframe(df)
    w.transform = 'r'

    moran_loc = esda.moran.Moran_Local(y, w)

    fig = plot_local_autocorrelation(moran_loc, df, 'HOVAL')
Пример #24
0
def _data_generation():
    # get csv and shp
    shp_link = examples.get_path('us48.shp')
    df = gpd.read_file(shp_link)
    income_table = pd.read_csv(examples.get_path("usjoin.csv"))
    # calculate relative values
    for year in range(1969, 2010):
        income_table[str(year) + '_rel'] = (
            income_table[str(year)] / income_table[str(year)].mean())
    # merge
    gdf = df.merge(income_table,left_on='STATE_NAME',right_on='Name')
    # retrieve spatial weights and data for two points in time
    w = Queen.from_dataframe(gdf)
    w.transform = 'r'
    y1 = gdf['1969_rel'].values
    y2 = gdf['2000_rel'].values
    #calculate rose Object
    Y = np.array([y1, y2]).T
    rose = Rose(Y, w, k=5)
    return gdf, y1, rose
Пример #25
0
def test_moran_scatterplot():
    link = examples.get_path('columbus.shp')
    df = gpd.read_file(link)

    y = df['HOVAL'].values
    w = Queen.from_dataframe(df)
    w.transform = 'r'

    moran_loc = esda.moran.Moran_Local(y, w)

    fig = moran_scatterplot(moran_loc, p=0.05)
def test_vba_legend():
    # data
    link_to_data = examples.get_path('columbus.shp')
    gdf = gpd.read_file(link_to_data)
    x = gdf['HOVAL'].values
    y = gdf['CRIME'].values
    # classify data
    rgb_bins = mapclassify_bin(x, 'quantiles')
    alpha_bins = mapclassify_bin(y, 'quantiles')
    # plot legend
    fig, _ = vba_legend(rgb_bins, alpha_bins, cmap='RdBu')
    plt.close(fig)
Пример #27
0
def test_lisa_cluster():
    link = examples.get_path('columbus.shp')
    df = gpd.read_file(link)

    y = df['HOVAL'].values
    w = Queen.from_dataframe(df)
    w.transform = 'r'

    moran_loc = Moran_Local(y, w)

    fig, _ = lisa_cluster(moran_loc, df)
    plt.close(fig)
Пример #28
0
def test_lisa_cluster():
    link = examples.get_path('columbus.shp')
    df = gpd.read_file(link)

    y = df['HOVAL'].values
    w = Queen.from_dataframe(df)
    w.transform = 'r'

    moran_loc = esda.moran.Moran_Local(y, w)

    TOOLS = "tap,reset,help"
    fig = lisa_cluster(moran_loc, df, p=0.05, tools=TOOLS)
def test_value_by_alpha_cmap():
    # data
    link_to_data = examples.get_path('columbus.shp')
    gdf = gpd.read_file(link_to_data)
    x = gdf['HOVAL'].values
    y = gdf['CRIME'].values
    # create cmap
    rgba, cmap = value_by_alpha_cmap(x, y)
    # create divergent rgba
    div_rgba, _ = value_by_alpha_cmap(x, y, cmap='seismic', divergent=True)
    # create reverted rgba
    rev_rgba, _ = value_by_alpha_cmap(x, y, cmap='RdBu', revert_alpha=True)
def test_vba_legend():
    # data
    link_to_data = examples.get_path('columbus.shp')
    gdf = gpd.read_file(link_to_data)
    x = gdf['HOVAL'].values
    y = gdf['CRIME'].values
    # classify data
    rgb_bins = mapclassify_bin(x, 'quantiles')
    alpha_bins = mapclassify_bin(y, 'quantiles')
    # plot legend
    fig, _ = vba_legend(rgb_bins, alpha_bins, cmap='RdBu')
    plt.close(fig)
Пример #31
0
def test_lisa_cluster():
    link = examples.get_path('columbus.shp')
    df = gpd.read_file(link)

    y = df['HOVAL'].values
    w = Queen.from_dataframe(df)
    w.transform = 'r'

    moran_loc = esda.moran.Moran_Local(y, w)

    TOOLS = "tap,reset,help"
    fig = lisa_cluster(moran_loc, df, p=0.05, tools=TOOLS)
def test_value_by_alpha_cmap():
    # data
    link_to_data = examples.get_path('columbus.shp')
    gdf = gpd.read_file(link_to_data)
    x = gdf['HOVAL'].values
    y = gdf['CRIME'].values
    # create cmap
    rgba, cmap = value_by_alpha_cmap(x, y)
    # create divergent rgba
    div_rgba, _ = value_by_alpha_cmap(x, y, cmap='seismic', divergent=True)
    # create reverted rgba
    rev_rgba, _ = value_by_alpha_cmap(x, y, cmap='RdBu', revert_alpha=True)
Пример #33
0
def test_plot_choropleth():
    link = examples.get_path('columbus.shp')
    df = gpd.read_file(link)

    w = Queen.from_dataframe(df)
    w.transform = 'r'

    TOOLS = "tap,help"
    fig = plot_choropleth(df,
                          'HOVAL',
                          title='columbus',
                          reverse_colors=True,
                          tools=TOOLS)
Пример #34
0
    def test_pp_from_geopandas(self):
        self.gdf_pp1_str = 'schools'
        self.gdf_pp2_str = 'crimes'
        iterator = [(self.gdf_pp1_str, 'gdf_pp1'),
                    (self.gdf_pp2_str, 'gdf_pp2')]
        for (obs, idx) in iterator:
            path_to_shp = examples.get_path('%s.shp' % obs)
            in_data = geopandas.read_file(path_to_shp)
            self.ntw.snapobservations(in_data, obs, attribute=True)
            setattr(self, idx, self.ntw.pointpatterns[obs])

        self.assertEqual(self.pp1.npoints, self.gdf_pp1.npoints)
        self.assertEqual(self.pp2.npoints, self.gdf_pp2.npoints)
Пример #35
0
def test_plot_moran_simulation():
    # Load data and apply statistical analysis
    link_to_data = examples.get_path('Guerry.shp')
    gdf = gpd.read_file(link_to_data)
    y = gdf['Donatns'].values
    w = Queen.from_dataframe(gdf)
    w.transform = 'r'
    # Calc Global Moran
    w = Queen.from_dataframe(gdf)
    moran = Moran(y, w)
    # plot
    fig, _ = plot_moran_simulation(moran)
    plt.close(fig)
    # customize
    fig, _ = plot_moran_simulation(moran, fitline_kwds=dict(color='#4393c3'))
    plt.close(fig)
Пример #36
0
def test_plot_moran_bv():
    # Load data and calculate weights
    link_to_data = examples.get_path('Guerry.shp')
    gdf = gpd.read_file(link_to_data)
    x = gdf['Suicids'].values
    y = gdf['Donatns'].values
    w = Queen.from_dataframe(gdf)
    w.transform = 'r'
    # Calculate Bivariate Moran
    moran_bv = Moran_BV(x, y, w)
    # plot
    fig, _ = plot_moran_bv(moran_bv)
    plt.close(fig)
    # customize plot
    fig, _ = plot_moran_bv(moran_bv, fitline_kwds=dict(color='#4393c3'))
    plt.close(fig)
Пример #37
0
def test_moran_loc_bv_scatterplot():
    link_to_data = examples.get_path('Guerry.shp')
    gdf = gpd.read_file(link_to_data)
    x = gdf['Suicids'].values
    y = gdf['Donatns'].values
    w = Queen.from_dataframe(gdf)
    w.transform = 'r'
    # Calculate Bivariate Moran
    moran_loc_bv = Moran_Local_BV(x, y, w)
    # try with p value so points are colored
    fig, _ = _moran_loc_bv_scatterplot(moran_loc_bv)
    plt.close(fig)

    # try with p value and different figure size
    fig, _ = _moran_loc_bv_scatterplot(moran_loc_bv, p=0.05)
    plt.close(fig)
Пример #38
0
def test_plot_spatial_weights():
    # get data
    gdf = gpd.read_file(examples.get_path('43MUE250GC_SIR.shp'))
    gdf.head()
    # calculate weights
    weights = Queen.from_dataframe(gdf)
    # plot weights
    fig, _ = plot_spatial_weights(weights, gdf)
    plt.close(fig)
    # calculate nonplanar_joins
    wnp = pysal.lib.weights.util.nonplanar_neighbors(weights, gdf)
    # plot new joins
    fig2, _ = plot_spatial_weights(wnp, gdf)
    plt.close(fig2)
    #customize
    fig3, _ = plot_spatial_weights(wnp, gdf, nonplanar_edge_kws=dict(color='#4393c3'))
    plt.close(fig3)
Пример #39
0
def test_moran_bv_scatterplot():
    link_to_data = examples.get_path('Guerry.shp')
    gdf = gpd.read_file(link_to_data)
    x = gdf['Suicids'].values
    y = gdf['Donatns'].values
    w = Queen.from_dataframe(gdf)
    w.transform = 'r'
    # Calculate Bivariate Moran
    moran_bv = Moran_BV(x, y, w)
    # plot
    fig, _ = _moran_bv_scatterplot(moran_bv)
    plt.close(fig)
    # customize plot
    fig, _ = _moran_bv_scatterplot(moran_bv,
                                   aspect_equal=False,
                                   fitline_kwds=dict(color='#4393c3'))
    plt.close(fig)
Пример #40
0
def test_plot_spatial_weights():
    # get data
    gdf = gpd.read_file(examples.get_path('43MUE250GC_SIR.shp'))
    gdf.head()
    # calculate weights
    weights = Queen.from_dataframe(gdf)
    # plot weights
    fig, _ = plot_spatial_weights(weights, gdf)
    plt.close(fig)
    # calculate nonplanar_joins
    wnp = pysal.lib.weights.util.nonplanar_neighbors(weights, gdf)
    # plot new joins
    fig2, _ = plot_spatial_weights(wnp, gdf)
    plt.close(fig2)
    #customize
    fig3, _ = plot_spatial_weights(wnp,
                                   gdf,
                                   nonplanar_edge_kws=dict(color='#4393c3'))
    plt.close(fig3)
Пример #41
0
def test_moran_loc_scatterplot():
    link = examples.get_path('columbus.shp')
    df = gpd.read_file(link)

    y = df['HOVAL'].values
    w = Queen.from_dataframe(df)
    w.transform = 'r'

    moran_loc = Moran_Local(y, w)

    # try with p value so points are colored
    fig, _ = _moran_loc_scatterplot(moran_loc, p=0.05)
    plt.close(fig)

    # try with p value and different figure size
    fig, _ = _moran_loc_scatterplot(moran_loc,
                                    p=0.05,
                                    fitline_kwds=dict(color='#4393c3'))
    plt.close(fig)
Пример #42
0
def test_moran_loc_scatterplot():
    link = examples.get_path('columbus.shp')
    df = gpd.read_file(link)

    x = df['INC'].values
    y = df['HOVAL'].values
    w = Queen.from_dataframe(df)
    w.transform = 'r'

    moran_loc = Moran_Local(y, w)
    moran_bv = Moran_BV(x, y, w)

    # try without p value
    fig, _ = _moran_loc_scatterplot(moran_loc)
    plt.close(fig)

    # try with p value and different figure size
    fig, _ = _moran_loc_scatterplot(moran_loc,
                                    p=0.05,
                                    aspect_equal=False,
                                    fitline_kwds=dict(color='#4393c3'))
    plt.close(fig)

    # try with p value and zstandard=False
    fig, _ = _moran_loc_scatterplot(moran_loc,
                                    p=0.05,
                                    zstandard=False,
                                    fitline_kwds=dict(color='#4393c3'))
    plt.close(fig)

    # try without p value and zstandard=False
    fig, _ = _moran_loc_scatterplot(moran_loc,
                                    zstandard=False,
                                    fitline_kwds=dict(color='#4393c3'))
    plt.close(fig)

    assert_raises(ValueError, _moran_loc_scatterplot, moran_bv, p=0.5)
    assert_warns(UserWarning,
                 _moran_loc_scatterplot,
                 moran_loc,
                 p=0.5,
                 scatter_kwds=dict(c='#4393c3'))
Пример #43
0
def test_moran_scatterplot():
    link_to_data = examples.get_path('Guerry.shp')
    gdf = gpd.read_file(link_to_data)
    x = gdf['Suicids'].values
    y = gdf['Donatns'].values
    w = Queen.from_dataframe(gdf)
    w.transform = 'r'
    # Calculate `esda.moran` Objects
    moran = Moran(y, w)
    moran_bv = Moran_BV(y, x, w)
    moran_loc = Moran_Local(y, w)
    moran_loc_bv = Moran_Local_BV(y, x, w)
    # try with p value so points are colored or warnings apply
    fig, _ = moran_scatterplot(moran, p=0.05, aspect_equal=False)
    plt.close(fig)
    fig, _ = moran_scatterplot(moran_loc, p=0.05)
    plt.close(fig)
    fig, _ = moran_scatterplot(moran_bv, p=0.05)
    plt.close(fig)
    fig, _ = moran_scatterplot(moran_loc_bv, p=0.05)
    plt.close(fig)
Пример #44
0
def test_plot_local_autocorrelation():
    link = examples.get_path('columbus.shp')
    df = gpd.read_file(link)

    y = df['HOVAL'].values
    w = Queen.from_dataframe(df)
    w.transform = 'r'

    moran_loc = Moran_Local(y, w)

    fig, _ = plot_local_autocorrelation(moran_loc, df, 'HOVAL', p=0.05)
    plt.close(fig)

    # also test with quadrant and mask
    fig, _ = plot_local_autocorrelation(moran_loc,
                                        df,
                                        'HOVAL',
                                        p=0.05,
                                        region_column='POLYID',
                                        mask=['1', '2', '3'],
                                        quadrant=1)
    plt.close(fig)
Пример #45
0

def _test():
    import doctest
    start_suppress = np.get_printoptions()['suppress']
    np.set_printoptions(suppress=True)
    doctest.testmod()
    np.set_printoptions(suppress=start_suppress)


if __name__ == '__main__':
    _test()
    import numpy as np
    import pysal.lib
    from pysal.lib import examples
    db = pysal.lib.io.open(examples.get_path("columbus.dbf"), 'r')
    y_var = 'CRIME'
    y = np.array([db.by_col(y_var)]).reshape(49, 1)
    x_var = ['INC']
    x = np.array([db.by_col(name) for name in x_var]).T
    yd_var = ['HOVAL']
    yd = np.array([db.by_col(name) for name in yd_var]).T
    q_var = ['DISCBD']
    q = np.array([db.by_col(name) for name in q_var]).T
    r_var = 'NSA'
    regimes = db.by_col(r_var)
    w = pysal.lib.weights.Queen.from_shapefile(pysal.lib.examples.get_path("columbus.shp"))
    w.transform = 'r'
    model = GM_Lag_Regimes(y, x, regimes, yend=yd, q=q, w=w, constant_regi='many', spat_diag=True, sig2n_k=False, lag_q=True, name_y=y_var,
                           name_x=x_var, name_yend=yd_var, name_q=q_var, name_regimes=r_var, name_ds='columbus', name_w='columbus.gal', regime_err_sep=True, robust='white')
    print(model.summary)
Пример #46
0
 def setUp(self):
     path_to_shp = examples.get_path('streets.shp')
     gdf = geopandas.read_file(path_to_shp)
     self.ntw = spgh.Network(in_data=gdf)
Пример #47
0
 def setUp(self):
     self.ntw = network.Network(in_data=examples.get_path('streets.shp'))
Пример #48
0
 def setUp(self):
     self.w = popen(examples.get_path("book.gal")).read()
     f = popen(examples.get_path("book.txt"))
     self.y = np.array(f.by_col['y'])