Пример #1
0
def rankQuantileMoves(inputs, scores, drop, subset=None, verbose=True):
    da = dropAny(inputs=inputs, scores=scores, subset=subset, drop=drop)
    if verbose:
        print(ps.Quantiles(da.orig_rank))  # quantile breaks key
        print('\n')
    r0 = ps.Quantiles(da.orig_rank).yb
    r1 = ps.Quantiles(da.drop1p_rank).yb
    moves_raw = pd.DataFrame({
        'r0': r0,
        'r1': r1
    }).groupby(['r0', 'r1']).size().unstack(fill_value=0)
    return np.round(moves_raw.apply(lambda x: x / sum(x), axis=1), 2)
Пример #2
0
    def __init__(self, y, w, k=4, permutations=0, fixed=False):

        self.y = y
        rows, cols = y.shape
        self.cols = cols
        npm = np.matrix
        npa = np.array
        self.fixed = fixed
        if fixed:
            yf = y.flatten()
            yb = pysal.Quantiles(yf, k=k).yb
            yb.shape = (rows, cols)
            classes = yb
        else:
            classes = npa([
                pysal.Quantiles(y[:, i], k=k).yb for i in np.arange(cols)
            ]).transpose()
        classic = Markov(classes)
        self.classes = classes
        self.p = classic.p
        self.s = classic.steady_state
        self.transitions = classic.transitions
        T, P, ss, F = self._calc(y, w, classes, k=k)
        self.T = T
        self.P = P
        self.S = ss
        self.F = F
        self.shtest = self._mn_test()
        self.chi2 = self._chi2_test()
        self.x2 = sum([c[0] for c in self.chi2])
        dof = k * (k - 1) * (k - 1)
        self.x2_pvalue = 1 - stats.chi2.cdf(self.x2, dof)
        self.x2_dof = dof

        if permutations:
            nrp = np.random.permutation
            rp = range(permutations)
            counter = 0
            x2_realizations = np.zeros((permutations, 1))
            x2ss = []
            for perm in range(permutations):
                T, P, ss, F = self._calc(nrp(y), w, classes, k=k)
                x2 = [chi2(T[i], self.transitions)[0] for i in range(k)]
                x2s = sum(x2)
                x2_realizations[perm] = x2s
                if x2s >= self.x2:
                    counter += 1
            self.x2_rpvalue = (counter + 1.0) / (permutations + 1.)
            self.x2_realizations = x2_realizations
Пример #3
0
def slider():
    fp = "C:\zoovision\data\states\states2.shp"
    rg1 = gpd.read_file(fp)
    rg1 = rg1.to_crs(epsg=2163)
    # fig, ax = plt.subplots(1, figsize=(15, 10))
    hr10 = ps.Quantiles(rg1.POP10_SQMI, k=10)
    # title = "Select parameters and press query to view surveillance summary"
    # ax.set_title(title, y=1.08, fontsize=30)
    ax.set_axis_off()
    rg1.plot(ax=ax)

    # define demnsions of slider bar
    axcolor = 'lightgoldenrodyellow'
    axfreq = plt.axes([0.25, 0.1, 0.65, 0.03], facecolor=axcolor)

    # mapslider= plt.axes
    samp = Slider(axfreq, 'Week', 1, 40, valinit=1)
    samp.on_changed(update)
    if not os.path.isdir('static'):
        os.mkdir('static')
    else:
        # Remove old plot files
        for filename in glob.glob(os.path.join('static', '*.png')):
            os.remove(filename)
    # Use time in filename in order make a unique filename that the browser has not chached
    plotfile = os.path.join('static', str(time.time()) + '.png')
    plt.savefig(plotfile)
    plt.show()
    return plotfile
Пример #4
0
 def setUp(self):
     self.data = geopandas.read_file(ps.examples.get_path('south.shp'))
     self.test_attribute = 'HR70'
     self.k = 10
     self.breaks = ps.Quantiles(self.data[self.test_attribute].values, k=self.k).bins
     self.pal = mplpal.Inferno_10
     self.cmap = mplpal.Inferno_10.get_mpl_colormap()
Пример #5
0
def quantile_map(coords,y,k, title='Quantile'):
    """
    Quantile choropleth map

    Arguments
    =========

    coords: Map_Projection instance

    y: array
       variable to map

    k: int
       number of classes

    title: string
           map title

    """


    classification = ps.Quantiles(y,k)
    fig = plt.figure()
    ax = fig.add_subplot(111)
    patches = []
    colors = []
    i = 0
    shape_colors = classification.bins[classification.yb]
    shape_colors = y
    #classification.bins[classification.yb]
    for shp in coords.projected:
        for ring in shp:
            x,y = ring
            x = x / coords.bounding_box[2]
            y = y / coords.bounding_box[3]
            n = len(x)
            x.shape = (n,1)
            y.shape = (n,1)
            xy = np.hstack((x,y))
            polygon = Polygon(xy, True)
            patches.append(polygon)
            colors.append(shape_colors[i])
        i += 1
    cmap = cm.get_cmap('hot_r', k+1)
    boundaries = classification.bins.tolist()
    boundaries.insert(0,0)
    norm = clrs.BoundaryNorm(boundaries, cmap.N)
    p = PatchCollection(patches, cmap=cmap, alpha=0.4, norm=norm)
    colors = np.array(colors)
    p.set_array(colors)
    ax.add_collection(p)
    ax.set_frame_on(False)
    ax.axes.get_yaxis().set_visible(False)
    ax.axes.get_xaxis().set_visible(False)
    ax.set_title(title)
    plt.colorbar(p, cmap=cmap, norm = norm, boundaries = boundaries, ticks=
            boundaries)
    plt.show()
    return classification
Пример #6
0
 def test___init__(self):
     import numpy as np
     f = pysal.open(pysal.examples.get_path('usjoin.csv'))
     pci = np.array([f.by_col[str(y)] for y in range(1929, 2010)])
     q5 = np.array([pysal.Quantiles(y).yb for y in pci]).transpose()
     m = pysal.Markov(q5)
     np.testing.assert_array_almost_equal(markov.shorrock(m.p),
                                          0.19758992000997844)
Пример #7
0
 def test___init__(self):
     import numpy as np
     f = pysal.open(pysal.examples.get_path('usjoin.csv'))
     pci = np.array([f.by_col[str(y)] for y in range(1929, 2010)])
     q5 = np.array([pysal.Quantiles(y).yb for y in pci]).transpose()
     m = pysal.Markov(q5)
     res = np.matrix(
         [[0.08988764, 0.21468144, 0.21125, 0.20194986, 0.07259074]])
     np.testing.assert_array_almost_equal(markov.prais(m.p), res)
Пример #8
0
    def _calc(self, y, w, classes, k):
        # lag markov
        ly = pysal.lag_spatial(w, y)
        npm = np.matrix
        npa = np.array
        if self.fixed:
            l_classes = pysal.Quantiles(ly.flatten(), k=k).yb
            l_classes.shape = ly.shape
        else:
            l_classes = npa([
                pysal.Quantiles(ly[:, i], k=k).yb for i in np.arange(self.cols)
            ])
            l_classes = l_classes.transpose()
        l_classic = Markov(l_classes)
        T = np.zeros((k, k, k))
        n, t = y.shape
        for t1 in range(t - 1):
            t2 = t1 + 1
            for i in range(n):
                T[l_classes[i, t1], classes[i, t1], classes[i, t2]] += 1

        P = np.zeros_like(T)
        F = np.zeros_like(T)  # fmpt
        ss = np.zeros_like(T[0])
        for i, mat in enumerate(T):
            row_sum = mat.sum(axis=1)
            row_sum = row_sum + (row_sum == 0)
            p_i = np.matrix(np.diag(1. / row_sum) * np.matrix(mat))
            #print i
            #print mat
            #print p_i
            ss[i] = steady_state(p_i).transpose()
            try:
                F[i] = fmpt(p_i)
            except:
                #pylint; "No exception type(s) specified"
                print "Singlular fmpt matrix for class ", i
            P[i] = p_i
        return T, P, ss, F
Пример #9
0
def simplify_co_occurrence(co, nn=3):

    # quintile breaks (crude, still need to account for upper/diagonals)
    q = ps.Quantiles(co).yb
    q = np.reshape(q, co.shape)

    # nearest neighbors graph
    knn = neighbors.NearestNeighbors(n_neighbors=nn)
    neigh = knn.fit(co)
    knn_mat = neigh.kneighbors_graph(co).toarray()

    out = np.multiply(q, knn_mat)

    return out
Пример #10
0
def markov(observations, w=None, numQuints=5, method="regular"):
    result = None
    s = None
    if method == "regular":  # non spatial analysis
        quintiles = np.array([pysal.Quantiles(y, k=numQuints).yb for y in observations]).transpose()
        result = pysal.Markov(quintiles)
        #s = result.steady_state

    else:
        observations = observations.transpose()

        if method == "spatial":
            # standardize observations for smoother calculations:
            observations = observations / (observations.mean(axis=0))
            result = pysal.Spatial_Markov(observations, w, fixed=True, k=numQuints)
            #s = result.S

        else:  # method == lisa
            result = pysal.LISA_Markov(observations, w)
            #s = result.steady_state

    return result.transitions, result.p, s, pysal.ergodic.fmpt(result.p)
Пример #11
0
 def test___init__(self):
     # markov = Markov(class_ids, classes)
     import pysal
     f = pysal.open(pysal.examples.get_path('usjoin.csv'))
     pci = np.array([f.by_col[str(y)] for y in range(1929, 2010)])
     q5 = np.array([pysal.Quantiles(y).yb for y in pci]).transpose()
     m = pysal.Markov(q5)
     expected = np.array([[729., 71., 1., 0., 0.], [72., 567., 80., 3., 0.],
                          [0., 81., 631., 86.,
                           2.], [0., 3., 86., 573., 56.],
                          [0., 0., 1., 57., 741.]])
     np.testing.assert_array_equal(m.transitions, expected)
     expected = np.matrix(
         [[0.91011236, 0.0886392, 0.00124844, 0., 0.],
          [0.09972299, 0.78531856, 0.11080332, 0.00415512, 0.],
          [0., 0.10125, 0.78875, 0.1075, 0.0025],
          [0., 0.00417827, 0.11977716, 0.79805014, 0.07799443],
          [0., 0., 0.00125156, 0.07133917, 0.92740926]])
     np.testing.assert_array_almost_equal(m.p.getA(), expected.getA())
     expected = np.matrix([[0.20774716], [0.18725774], [0.20740537],
                           [0.18821787], [0.20937187]]).getA()
     np.testing.assert_array_almost_equal(m.steady_state.getA(), expected)
Пример #12
0
def base_choropleth_classif(map_obj, values, classification='quantiles', \
        k=5, cmap='hot_r', sample_fisher=True):
    '''
    Set coloring based based on different classification
    methods
    ...

    Arguments
    ---------

    map_obj         : Poly/Line collection
                      Output from map_X_shp
    values          : array
                      Numpy array with values to map
    classification  : str
                      Classificatio method to use. Options supported:
                        * 'quantiles' (default)
                        * 'fisher_jenks'
                        * 'equal_interval'

    k               : int
                      Number of bins to classify values in and assign a color
                      to
    cmap            : str
                      Matplotlib coloring scheme
    sample_fisher   : Boolean
                      Defaults to True, controls whether Fisher-Jenks
                      classification uses a sample (faster) or the entire
                      array of values. Ignored if 'classification'!='fisher_jenks'

    Returns
    -------

    map             : PatchCollection
                      Map object with the polygons from the shapefile and
                      unique value coloring

    '''
    if classification == 'quantiles':
        classification = ps.Quantiles(values, k)
        boundaries = classification.bins.tolist()

    if classification == 'equal_interval':
        classification = ps.Equal_Interval(values, k)
        boundaries = classification.bins.tolist()

    if classification == 'fisher_jenks':
        if sample_fisher:
            classification = ps.esda.mapclassify.Fisher_Jenks_Sampled(
                values, k)
        else:
            classification = ps.Fisher_Jenks(values, k)
        boundaries = classification.bins[:]

    map_obj.set_alpha(0.4)

    cmap = cm.get_cmap(cmap, k + 1)
    map_obj.set_cmap(cmap)

    boundaries.insert(0, values.min())
    norm = clrs.BoundaryNorm(boundaries, cmap.N)
    map_obj.set_norm(norm)

    if isinstance(map_obj, mpl.collections.PolyCollection):
        pvalues = _expand_values(values, map_obj.shp2dbf_row)
        map_obj.set_array(pvalues)
        map_obj.set_edgecolor('k')
    elif isinstance(map_obj, mpl.collections.LineCollection):
        pvalues = _expand_values(values, map_obj.shp2dbf_row)
        map_obj.set_array(pvalues)
    elif isinstance(map_obj, mpl.collections.PathCollection):
        if not hasattr(map_obj, 'shp2dbf_row'):
            map_obj.shp2dbf_row = np.arange(values.shape[0])
        map_obj.set_array(values)
    return map_obj
Пример #13
0
def base_choropleth_classif(shp_link, values, classification='quantiles', \
        k=5, cmap='hot_r', projection='merc', sample_fisher=True):
    '''
    Create a map object with coloring based on different classification
    methods, from a shapefile in lon/lat CRS
    ...

    Arguments
    ---------

    shp_link        : str
                      Path to shapefile
    values          : array
                      Numpy array with values to map
    classification  : str
                      Classificatio method to use. Options supported:
                        * 'quantiles' (default)
                        * 'fisher_jenks'
                        * 'equal_interval'
                            
    k               : int
                      Number of bins to classify values in and assign a color
                      to
    cmap            : str
                      Matplotlib coloring scheme
    projection      : str
                      Basemap projection. See [1]_ for a list. Defaults to
                      'merc'
    sample_fisher   : Boolean
                      Defaults to True, controls whether Fisher-Jenks
                      classification uses a sample (faster) or the entire
                      array of values. Ignored if 'classification'!='fisher_jenks'

    Returns
    -------

    map             : PatchCollection
                      Map object with the polygons from the shapefile and
                      unique value coloring
    
    Links
    -----
    .. [1] <http://matplotlib.org/basemap/api/basemap_api.html#module-mpl_toolkits.basemap>
    '''
    if classification == 'quantiles':
        classification = ps.Quantiles(values, k)
        boundaries = classification.bins.tolist()

    if classification == 'equal_interval':
        classification = ps.Equal_Interval(values, k)
        boundaries = classification.bins.tolist()

    if classification == 'fisher_jenks':
        if sample_fisher:
            classification = ps.esda.mapclassify.Fisher_Jenks_Sampled(
                values, k)
        else:
            classification = ps.Fisher_Jenks(values, k)
        boundaries = classification.bins[:]

    map_obj = map_poly_shp_lonlat(shp_link, projection=projection)
    map_obj.set_alpha(0.4)

    cmap = cm.get_cmap(cmap, k + 1)
    map_obj.set_cmap(cmap)

    boundaries.insert(0, 0)
    norm = clrs.BoundaryNorm(boundaries, cmap.N)
    map_obj.set_norm(norm)

    map_obj.set_array(values)
    return map_obj
Пример #14
0
def plot_map(gdf,
             filename,
             crm,
             hlt=None,
             shading="district",
             figsize=10,
             label="",
             ring=None,
             circ=None,
             point=None,
             scores=None,
             legend=False):

    gdf["C"] = pd.Series(crm)

    if hlt:
        gdf["H"] = 0
        gdf.loc[hlt, "H"] = 1

    if shading == "density":
        gdf["density"] = gdf["pop"] / gdf["a"]
        gdf.loc[gdf["density"].isnull(), "density"] = 0.

    dis = gdf.dissolve("C", aggfunc='sum')
    dis.reset_index(inplace=True)

    target = dis["pop"].sum() / dis.shape[0]
    dis["frac"] = dis["pop"] / target

    bounds = gdf.total_bounds
    xr = bounds[2] - bounds[0]
    yr = bounds[3] - bounds[1]
    fs = (figsize * np.sqrt(xr / yr), figsize * np.sqrt(yr / xr))

    bins = min(5, dis.shape[0])
    q = ps.Quantiles(dis["frac"], k=bins)

    if scores: dis["scores"] = pd.Series(scores)

    if "target" in shading:

        col, alpha, trunc = "coolwarm", 0.7, ""

        if dis["frac"].max() > 2:
            norm = Normalize(vmin=0, vmax=2)
            trunc = " (Truncated)"
        elif dis["frac"].max() - 1 < 0.005:
            norm = Normalize(vmin=0.995, vmax=1.005)
        else:  # regardless, keep it centered
            larger = max(1 - dis["frac"].min(), dis["frac"].max() - 1)
            norm = Normalize(vmin=1 - larger, vmax=1 + larger)

        cmap = plt.cm.ScalarMappable(norm=norm, cmap=col)

        ax = dis.plot(color="white", edgecolor="white", figsize=fs)
        for xi, row in dis.iterrows():
            dis[dis.index == xi].plot(ax=ax,
                                      alpha=alpha,
                                      linewidth=1,
                                      edgecolor="black",
                                      facecolor=cmap.to_rgba(row["frac"]))

        fig = ax.get_figure()
        cax = fig.add_axes([0.16, 0.13, 0.70, 0.015 * np.sqrt(xr / yr)])
        sm = plt.cm.ScalarMappable(cmap=col, norm=norm)
        sm._A = []  # gross

        cb = fig.colorbar(
            sm,
            cax=cax,
            alpha=alpha,  # label = "Population / Target" + trunc, labelsize=12,
            orientation='horizontal',
            drawedges=True)
        cb.locator = ticker.MaxNLocator(nbins=5)
        cb.formatter.set_useOffset(False)
        cb.set_label("Population / Target" + trunc, size=12)
        cb.ax.tick_params(labelsize=12)
        cb.dividers.set_visible(False)
        cb.update_ticks()

        # if hlt: gdf[gdf["H"] == 1].plot(facecolor = "red", alpha = 0.1, linewidth = 0.05, ax = ax)

    elif "scores" in shading:

        col, alpha, trunc = "cool", 0.7, ""

        norm = Normalize(vmin=min(scores.values()),
                         vmax=max([1, max(scores.values())]))
        # print(sum(scores.values()))

        cmap = plt.cm.ScalarMappable(norm=norm, cmap=col)

        ax = dis.plot(color="white", edgecolor="white", figsize=fs)
        for xi, row in dis.iterrows():
            dis[dis.index == xi].plot(ax=ax,
                                      alpha=alpha,
                                      facecolor=cmap.to_rgba(row["scores"]),
                                      linewidth=1,
                                      edgecolor="black")

        fig = ax.get_figure()
        cax = fig.add_axes([0.16, 0.13, 0.70, 0.015 * np.sqrt(xr / yr)])
        sm = plt.cm.ScalarMappable(cmap=col, norm=norm)
        sm._A = []  # gross

        cb = fig.colorbar(
            sm,
            cax=cax,
            alpha=alpha,  # label = "Population / Target" + trunc, labelsize=12,
            orientation='horizontal',
            drawedges=True)
        cb.locator = ticker.MaxNLocator(nbins=5)
        cb.formatter.set_useOffset(False)
        cb.set_label("Score", size=12)
        cb.ax.tick_params(labelsize=12)
        cb.dividers.set_visible(False)
        cb.update_ticks()

        if hlt:
            gdf[gdf["H"] == 1].plot(facecolor="grey",
                                    alpha=0.1,
                                    linewidth=0.05,
                                    ax=ax)

    elif "counties" in shading:

        counties = gdf.dissolve("county").reset_index()

        # ax = counties.plot(column = "county", categorical = True,
        #                    cmap = "nipy_spectral", alpha = 0.5, linewidth = 0, figsize = fs)

        # ax = dis.set_geometry(dis.boundary).plot(edgecolor = "black", linewidth = 2.5, figsize = fs)
        ax = dis.plot(column="C",
                      cmap="nipy_spectral",
                      alpha=0.5,
                      edgecolor="black",
                      linewidth=2.5,
                      figsize=fs)
        dis.set_geometry(dis.boundary).plot(edgecolor="black",
                                            linewidth=2.5,
                                            ax=ax)

        county_bounds = gpd.GeoDataFrame(geometry=gpd.GeoSeries(
            crs=counties.crs, data=[counties.boundary.unary_union]))
        # county_bounds.plot(edgecolor = "black", linewidth = 0.4, linestyle = "-", ax = ax)
        county_bounds.plot(edgecolor="white",
                           linewidth=0.4,
                           linestyle="-",
                           ax=ax)

    elif "density" in shading:
        ax = gdf.plot(column="density",
                      cmap="gray",
                      scheme="quantiles",
                      k=9,
                      alpha=0.8,
                      figsize=fs,
                      linewidth=0)

        dis.plot(color="blue", alpha=0.3, linewidth=1, ax=ax)

    else:
        ax = dis.plot("C",
                      alpha=0.5,
                      categorical=True,
                      cmap="nipy_spectral",
                      linewidth=1,
                      edgecolor="black",
                      legend=legend,
                      figsize=fs)

        if legend: ax.get_legend().set_bbox_to_anchor((1, 1))

        if hlt:
            gdf[gdf["H"] == 1].plot(facecolor="grey",
                                    alpha=0.1,
                                    linewidth=0.05,
                                    ax=ax)

    ax.set_xlim([bounds[0] - 0.1 * xr, bounds[2] + 0.1 * xr])
    ax.set_ylim([bounds[1] - 0.1 * yr, bounds[3] + 0.1 * yr])

    if label:
        ax.text(bounds[0] - 0.16 * xr,
                bounds[3] + 0.12 * yr,
                label,
                fontsize=10)

    ax.set_axis_off()

    if ring is not None:
        ring["C"] = ring.index
        if shading == "district":
            ring.plot("C",
                      categorical=True,
                      cmap="nipy_spectral",
                      ax=ax,
                      linewidth=3)
            ring.plot(color="white", ax=ax, linewidth=1)
        else:
            ring.plot(color="black", ax=ax, linewidth=2.5)
            ring.plot(color="white", ax=ax, linewidth=0.7)

    if circ is not None:
        circ.plot(color="white", alpha=0.2, ax=ax, linewidth=0.4)

    if point is not None:
        if "district" in shading:
            point["C"] = point.index
            point.plot("C",
                       categorical=True,
                       cmap="nipy_spectral",
                       ax=ax,
                       markersize=3)
        else:
            point.plot(color="black", ax=ax, markersize=3)
        point.plot(color="white", ax=ax, markersize=1)

    if not filename: return ax

    ax.figure.savefig(filename, bbox_inches='tight', pad_inches=0.05)
    plt.close('all')
c = np.array([['b', 'a', 'c'], ['c', 'c', 'a'], ['c', 'b', 'c'],
              ['a', 'a', 'b'], ['a', 'b', 'c']])
print(c)

m = pysal.Markov(c)
print(m.classes)

print(m.transitions)
#################################################################Classic Markov
f = pysal.open(
    r'C:\Anaconda\Lib\site-packages\pysal\examples\us_income\usjoin.csv')
pci = np.array([f.by_col[str(y)] for y in range(1929, 2010)])
print(pci.shape)
print(pci)

q5 = np.array([pysal.Quantiles(y).yb for y in pci]).transpose()
print(q5.shape)
print(q5[:, 0])
print(q5[4, :])

m5 = pysal.Markov(q5)
print(m5.transitions)

print(m5.p)

print(m5.steady_state)

print(pysal.ergodic.fmpt(m5.p))
################################################################# Spatial Markov
fpci = pci.transpose() / (pci.transpose().mean(axis=0))
print(fpci)
Пример #16
0
def main():

    shp_link = "data/LSOA_2011_London_gen_MHW.shp"

     # Read in LSOA shapefile
    try:
        shp = gpd.read_file(shp_link, crs="+init=epsg:4326")
        # Set CRS for later mapping
        shp = shp.to_crs(epsg=3857)
    except:
        # Unzip file if not done already
        zip = ZipFile('data.zip')
        zip.extractall()
        shp = gpd.read_file(shp_link, crs="+init=epsg:4326")
        # Set CRS for later mapping
        shp = shp.to_crs(epsg=3857)

      # Read PTAL table
    PTAL_AV = pd.read_csv("data/AVPTAL2015_LSOA2011.csv")
      # Rename column for merge
    PTAL_AV = PTAL_AV.rename(columns = {'LSOA2011':'LSOA11CD'})
    PTAL = shp.merge(PTAL_AV, on='LSOA11CD')
      # Rename average PTAL col to easier name
    PTAL = PTAL.rename(columns = {'AvPTAI2015':'AV_PTAL'})

      # Read in bokeh modules
    from collections import OrderedDict
    from bokeh.plotting import figure, show, output_notebook, ColumnDataSource
    from bokeh.models import HoverTool
    from bokeh.io import output_file, show #Scatter


      # Convert geomertries from gpd to bokeh format
    lons, lats = gpd_bokeh(PTAL)


      # Create PTAL Rate quantile bins in pysal
    bins_q5 = ps.Quantiles(PTAL.AV_PTAL, k=5)

        # Creat colour classes from bins
    bwr = plt.cm.get_cmap('Reds')
    bwr(.76)
    c5 = [bwr(c) for c in [0.2, 0.4, 0.6, 0.7, 1.0]]
    classes = bins_q5.yb
    colors = [c5[i] for i in classes]



    colors5 = ["#F1EEF6", "#D4B9DA", "#C994C7", "#DF65B0", "#DD1C77"]
    colors = [colors5[i] for i in classes]

    p = figure(title="London PTAI 2015 Quintiles", toolbar_location='left',
                plot_width=1100, plot_height=700)
    p.patches(lons, lats, fill_alpha=0.7, fill_color=colors,
                line_color="#884444", line_width=2, line_alpha=0.3)

    # Now for interactive plot
    from bokeh.models import HoverTool
    from bokeh.plotting import figure, show, output_file, ColumnDataSource
    from bokeh.tile_providers import STAMEN_TERRAIN, CARTODBPOSITRON_RETINA

    source = ColumnDataSource(data=dict(
        x=lons,
        y=lats,
        color=colors,
        name=PTAL.LSOA11NM,
        rate=PTAL.AV_PTAL
    ))
        # Add bokeh tools for interactive mapping
    TOOLS = "pan, wheel_zoom, box_zoom, reset, hover, save"
    p = figure(title="London Average PTAL Index ", tools=TOOLS,
                plot_width=900, plot_height=900)

    p.patches('x', 'y', source=source,
            fill_color='color', fill_alpha=0.7,
            line_color='white', line_width=0.5)


        # Define what info shows with mouse hover
    hover = p.select_one(HoverTool)
    hover.point_policy = 'follow_mouse'
    hover.tooltips = [
        ("Name", "@name"),
        ("PTAL rank", "@rate"),
    ]

        # Turn off axis
    p.axis.visible = False
        # Add basemap
    p.add_tile(CARTODBPOSITRON_RETINA)
    # Output file to html
    output_file("London_PTAL2015.html", title="Average_PTAL_2015")
    show(p)
Пример #17
0
 def setUp(self):
     self.data = ps.pdio.read_files(ps.examples.get_path('south.shp'))
     self.test_attribute = 'HR70'
     self.k = 10
     self.breaks = ps.Quantiles(self.data[self.test_attribute].values, k=self.k).bins
     self.pal = mplpal.Inferno_10
Пример #18
0
    def spatial_trend(self,
                      subquery,
                      time_cols,
                      num_classes=7,
                      w_type='knn',
                      num_ngbrs=5,
                      permutations=0,
                      geom_col='the_geom',
                      id_col='cartodb_id'):
        """
            Predict the trends of a unit based on:
            1. history of its transitions to different classes (e.g., 1st
               quantile -> 2nd quantile)
            2. average class of its neighbors

            Inputs:
            @param subquery string: e.g., SELECT the_geom, cartodb_id,
              interesting_time_column FROM table_name
            @param time_cols list of strings: list of strings of column names
            @param num_classes (optional): number of classes to break
              distribution of values into. Currently uses quantile bins.
            @param w_type string (optional): weight type ('knn' or 'queen')
            @param num_ngbrs int (optional): number of neighbors (if knn type)
            @param permutations int (optional): number of permutations for test
              stats
            @param geom_col string (optional): name of column which contains
              the geometries
            @param id_col string (optional): name of column which has the ids
              of the table

            Outputs:
            @param trend_up float: probablity that a geom will move to a higher
              class
            @param trend_down float: probablity that a geom will move to a
              lower class
            @param trend float: (trend_up - trend_down) / trend_static
            @param volatility float: a measure of the volatility based on
              probability stddev(prob array)
        """

        if len(time_cols) < 2:
            plpy.error('More than one time column needs to be passed')

        params = {
            "id_col": id_col,
            "time_cols": time_cols,
            "geom_col": geom_col,
            "subquery": subquery,
            "num_ngbrs": num_ngbrs
        }

        result = self.data_provider.get_markov(w_type, params)

        # build weight
        weights = pu.get_weight(result, w_type)
        weights.transform = 'r'

        # prep time data
        t_data = get_time_data(result, time_cols)

        sp_markov_result = ps.Spatial_Markov(t_data,
                                             weights,
                                             k=num_classes,
                                             fixed=False,
                                             permutations=permutations)

        # get lag classes
        lag_classes = ps.Quantiles(ps.lag_spatial(weights, t_data[:, -1]),
                                   k=num_classes).yb

        # look up probablity distribution for each unit according to class and
        #  lag class
        prob_dist = get_prob_dist(sp_markov_result.P, lag_classes,
                                  sp_markov_result.classes[:, -1])

        # find the ups and down and overall distribution of each cell
        trend_up, trend_down, trend, volatility = get_prob_stats(
            prob_dist, sp_markov_result.classes[:, -1])

        # output the results
        return zip(trend, trend_up, trend_down, volatility, weights.id_order)
Пример #19
0
def choropleth_map(jsonpath,
                   key,
                   attribute,
                   df=None,
                   classification="Quantiles",
                   classes=5,
                   bins=None,
                   std=None,
                   centroid=None,
                   zoom_start=5,
                   tiles='OpenStreetMap',
                   fill_color="YlGn",
                   fill_opacity=.5,
                   line_opacity=0.2,
                   legend_name='',
                   save=True):
    '''
    One-shot mapping function for folium-based choropleth mapping. 

    jsonpath - the filepath to a JSON file
    key - the field upon which the JSON and the dataframe will be linked
    attribute - the attribute to be mapped

    The rest of the arguments are keyword:
    
    classification - type of classification scheme to be used
    classes - number of classes used
    bins - breakpoints, if manual classes are desired


    '''

    #Polymorphism by hand...

    if isinstance(jsonpath, str):
        if os.path.isfile(jsonpath):
            sjson = gj.load(open(jsonpath))
        else:
            raise IOError('File not found')

    if isinstance(jsonpath, dict):
        raise NotImplementedError(
            'Direct mapping from dictionary not yet supported')
        #with open('tmp.json', 'w') as out:
        #    gj.dump(jsonpath, out)
        #    sjson = gj.load(open('tmp.json'))

    if isinstance(jsonpath, tuple):
        if 'ShpWrapper' in str(type(jsonpath[0])) and 'DBF' in str(
                type(jsonpath[1])):
            flip('tmp.json', jsonpath[0], jsonpath[1])
            sjson = gj.load(open('tmp.json'))
            jsonpath = 'tmp.json'

        elif 'ShpWrapper' in str(type(jsonpath[1])) and 'DBF' in str(
                type(jsonpath[0])):
            flip('tmp.json', jsonpath[1], jsonpath[0])
            sjson = gj.load(open('tmp.json'))
            jsonpath = 'tmp.json'

        else:
            raise IOError(
                'Inputs must be GeoJSON filepath, GeoJSON dictionary in memory, or shp-dbf tuple'
            )

    #key construction
    if df is None:
        df = json2df(sjson)
    dfkey = [key, attribute]

    #centroid search
    if centroid == None:
        if 'bbox' in sjson.keys():
            bbox = sjson.bbox
        bbox = bboxsearch(sjson)
        xs = sum([bbox[0], bbox[2]]) / 2.
        ys = sum([bbox[1], bbox[3]]) / 2.
        centroid = [ys, xs]
    jsonkey = 'feature.properties.' + key

    choromap = fm.Map(
        location=centroid, zoom_start=zoom_start,
        tiles=tiles)  # all the elements you need to make a choropleth

    #standardization
    if std != None:
        if isinstance(std, int) or isinstance(std, float):
            y = np.array(df[attribute] / std)
        elif type(std) == str:
            y = np.array(df[attribute] / df[std])
        elif callable(std):
            raise NotImplementedError(
                'Functional Standardizations are not implemented yet')
        else:
            raise ValueError(
                'Standardization must be integer, float, function, or Series')
    else:
        y = np.array(df[attribute].tolist())

    #For people who don't read documentation...
    if isinstance(classes, list):
        bins = classes
        classes = len(bins)
    elif isinstance(classes, float):
        try:
            classes = int(classes)
        except:
            raise ValueError('Classes must be coercable to integers')

    #classification passing
    if classification != None:
        if classification == "Maximum Breaks":  #there is probably a better way to do this, but it's a start.
            mapclass = ps.Maximum_Breaks(y, k=classes).bins.tolist()
        elif classification == 'Quantiles':
            mapclass = ps.Quantiles(y, k=classes).bins.tolist()
        elif classification == 'Fisher-Jenks':
            mapclass = ps.Fisher_Jenks(y, k=classes).bins
        elif classification == 'Equal Interval':
            mapclass = ps.Equal_Interval(y, k=classes).bins.tolist()
        elif classification == 'Natural Breaks':
            mapclass = ps.Natural_Breaks(y, k=classes).bins
        elif classification == 'Jenks Caspall Forced':
            raise NotImplementedError(
                'Jenks Caspall Forced is not implemented yet.')
        #   mapclass = ps.Jenks_Caspall_Forced(y, k=classes).bins.tolist()
        elif classification == 'Jenks Caspall Sampled':
            raise NotImplementedError(
                'Jenks Caspall Sampled is not implemented yet')
        #   mapclass = ps.Jenks_Caspall_Sampled(y, k=classes).bins.tolist()
        elif classification == 'Jenks Caspall':
            mapclass = ps.Jenks_Caspall(y, k=classes).bins.tolist()
        elif classification == 'User Defined':
            mapclass = bins
        elif classification == 'Standard Deviation':
            if bins == None:
                l = classes / 2
                bins = range(-l, l + 1)
                mapclass = list(ps.Std_Mean(y, bins).bins)
            else:
                mapclass = list(ps.Std_Mean(y, bins).bins)
        elif classification == 'Percentiles':
            if bins == None:
                bins = [1, 10, 50, 90, 99, 100]
                mapclass = list(ps.Percentiles(y, bins).bins)
            else:
                mapclass = list(ps.Percentiles(y, bins).bins)
        elif classification == 'Max P':
            #raise NotImplementedError('Max-P classification is not implemented yet')
            mapclass = ps.Max_P_Classifier(y, k=classes).bins.tolist()
        else:
            raise NotImplementedError(
                'Your classification is not supported or was not found. Supported classifications are:\n "Maximum Breaks"\n "Quantiles"\n "Fisher-Jenks"\n "Equal Interval"\n "Natural Breaks"\n "Jenks Caspall"\n "User Defined"\n "Percentiles"\n "Max P"'
            )
    else:
        print('Classification forced to None. Defaulting to Quartiles')
        mapclass = ps.Quantiles(y, k=classes).bins.tolist()

    #folium call, try abstracting to a "mapper" function, passing list of args
    choromap.geo_json(geo_path=jsonpath,
                      key_on=jsonkey,
                      data=df,
                      columns=dfkey,
                      fill_color=fill_color,
                      fill_opacity=fill_opacity,
                      line_opacity=line_opacity,
                      threshold_scale=mapclass[:-1],
                      legend_name=legend_name)

    if save:
        fname = jsonpath.rstrip('.json') + '_' + attribute + '.html'
        choromap.save(fname)

    return choromap
Пример #20
0
    def createClassifyMap(self, map_type):
        """ return an instance of pysal.Map_Classifier """
        id_group = []
        color_group = []
        label_group = []

        if map_type == stars.MAP_CLASSIFY_EQUAL_INTERVAL:
            k = 5  # default
            if self.params.has_key("k"):
                k = self.params["k"]
            cm = pysal.Equal_Interval(self.data, k=k)

            # add label group, color group
            label_group = self._get_label_group_by_k(cm.bins, cm.counts)
            #color_group = self._get_color_schema_by_k(k)
            color_group = self.pick_color_set(1, len(cm.bins), False)

        elif map_type == stars.MAP_CLASSIFY_PERCENTILES:
            pct = [1, 10, 50, 90, 99, 100]
            # doesn't support different defined pct
            #if self.params.has_key("pct"):
            #    pct = self.params["pct"]
            cm = pysal.Percentiles(self.data, pct=pct)
            counts = list(cm.counts)
            n_counts = len(counts)
            if n_counts < 6:
                for i in range(6 - n_counts):
                    counts.append(0)
            label_group = [
                '<1%%(%d)' % counts[0],
                '1%% - 10%%(%d)' % counts[1],
                '10%% - 50%%(%d)' % counts[2],
                '50%% - 90%%(%d)' % counts[3],
                '90%% - 99%%(%d)' % counts[4],
                '>99%%(%d)' % counts[5]
            ]
            #color_group = self._get_default_color_schema(n_bins)
            color_group = self.pick_color_set(3, 6, True)

        elif map_type == stars.MAP_CLASSIFY_BOX_PLOT:
            hinge = 1.5  # default
            if self.params.has_key("hinge"):
                hinge = self.params["hinge"]

            cm = pysal.Box_Plot(self.data, hinge=hinge)
            n_bins = len(cm.bins)
            if n_bins == 5:
                n_upper_outlier = 0
            else:
                n_upper_outlier = cm.counts[5]
            label_group = [
                'Lower outlier(%d)' % cm.counts[0],
                '<25%% (%d)' % cm.counts[1],
                '25%% - 50%% (%d)' % cm.counts[2],
                '50%% - 75%% (%d)' % cm.counts[3],
                '>75%% (%d)' % cm.counts[4],
                'Upper outlier (%d)' % n_upper_outlier
            ]

            #color_group = self._get_default_color_schema(n_bins)
            color_group = self.pick_color_set(2, 6, False)

        elif map_type == stars.MAP_CLASSIFY_QUANTILES:
            k = 5  # default
            if self.params.has_key("k"):
                k = self.params["k"]

            cm = pysal.Quantiles(self.data, k=k)

            # add label group, color group
            label_group = self._get_label_group_by_k(cm.bins, cm.counts)
            #color_group = self._get_color_schema_by_k(k)
            color_group = self.pick_color_set(1, len(cm.bins), False)

        elif map_type == stars.MAP_CLASSIFY_STD_MEAN:
            cm = pysal.Std_Mean(self.data, multiples=[-2, -1, 0, 1, 2])
            n_bins = len(cm.bins)

        elif map_type == stars.MAP_CLASSIFY_MAXIMUM_BREAK:
            k = 5  # default
            if self.params.has_key("k"):
                k = self.params["k"]
            cm = pysal.Maximum_Breaks(self.data, k=k)

            # add label group, color group
            label_group = self._get_label_group_by_k(cm.bins, cm.counts)
            #color_group = self._get_color_schema_by_k(k)
            color_group = self.pick_color_set(1, len(cm.bins), False)

        elif map_type == stars.MAP_CLASSIFY_NATURAL_BREAK:
            k = 5  # default
            if self.params.has_key("k"):
                k = self.params["k"]
            cm = pysal.Natural_Breaks(self.data, k=k)

            # add label group, color group
            label_group = self._get_label_group_by_k(cm.bins, cm.counts)
            #color_group = self._get_color_schema_by_k(k)
            color_group = self.pick_color_set(1, len(cm.bins), False)

        elif map_type == stars.MAP_CLASSIFY_FISHER_JENKS:
            cm = pysal.Fisher_Jenks(self.data)

            # see blow: common label group and color group

        elif map_type == stars.MAP_CLASSIFY_JENKS_CASPALL:
            k = 5  # default
            if self.params.has_key("k"):
                k = self.params["k"]
            cm = pysal.Jenks_Caspall(self.data, k=k)

            # add label group, color group
            label_group = self._get_label_group_by_k([i[0] for i in cm.bins],
                                                     cm.counts)
            #color_group = self._get_color_schema_by_k(k)
            color_group = self.pick_color_set(1, len(cm.bins), False)

        elif map_type == stars.MAP_CLASSIFY_JENKS_CASPALL_SAMPLED:
            k = 5  # default
            pct = 0.1
            if self.params.has_key("k"):
                k = self.params["k"]
            if self.params.has_key("pct"):
                pct = self.params["pct"]
            cm = pysal.Jenks_Caspall_Sampled(self.data, k=k, pct=pct)

            # add label group, color group
            label_group = self._get_label_group_by_k(cm.bins, cm.counts)
            #color_group = self._get_color_schema_by_k(k)
            color_group = self.pick_color_set(1, len(cm.bins), False)

        elif map_type == stars.MAP_CLASSIFY_JENKS_CASPALL_FORCED:
            k = 5  # default
            if self.params.has_key("k"):
                k = self.params["k"]
            cm = pysal.Jenks_Caspall_Forced(self.data, k=k)

            # add label group, color group
            label_group = self._get_label_group_by_k(cm.bins, cm.counts)
            #color_group = self._get_color_schema_by_k(k)
            color_group = self.pick_color_set(1, len(cm.bins), False)

        elif map_type == stars.MAP_CLASSIFY_USER_DEFINED:
            assert self.params.has_key("bins")
            bins = self.params["bins"]
            cm = pysal.User_Defined(self.data, bins=bins)
            k = len(bins)

            # add label group, color group
            label_group = self._get_label_group_by_k(cm.bins, cm.counts)
            #color_group = self._get_color_schema_by_k(k)
            color_group = self.pick_color_set(1, len(cm.bins), False)

        elif map_type == stars.MAP_CLASSIFY_MAX_P:
            k = 5  # default
            if self.params.has_key("k"):
                k = self.params["k"]
            cm = pysal.Max_P_Classifier(self.data, k=k)

            # add label group, color group
            label_group = self._get_label_group_by_k(cm.bins, cm.counts)
            #color_group = self._get_color_schema_by_k(k)
            color_group = self.pick_color_set(1, len(cm.bins), False)

        elif map_type == stars.MAP_CLASSIFY_UNIQUE_VALUES:
            id_group_dict = {}
            id_other = []

            n = 0
            for i, item in enumerate(self.data):
                if n < 10:
                    if not id_group_dict.has_key(item):
                        id_group_dict[item] = []
                        n += 1
                if id_group_dict.has_key(item):
                    id_group_dict[item].append(i)
                else:
                    id_other.append(i)

            id_group = id_group_dict.values()
            unique_values = id_group_dict.keys()
            max_num_values = n if n <= 10 else 10

            label_group = [
                str(unique_values[i]) for i in range(max_num_values)
            ]
            color_group = [
                stars.MAP_COLOR_12_UNIQUE_FILL[i]
                for i in range(max_num_values)
            ]
            #color_group = self.pick_color_set(1, max_num_values,False)
            if n >= 10:
                id_group.append(id_other)
                label_group.append('Others')
                color_group.append(stars.MAP_COLOR_12_UNIQUE_OTHER)

            field_name = self.params['field_name']
            id_group.insert(0, [])
            label_group.insert(0, field_name)
            color_group.insert(0, None)

        else:
            raise KeyError, 'Classify map type is illegal'

        # for some common label group and color group
        if map_type in [
                stars.MAP_CLASSIFY_FISHER_JENKS, stars.MAP_CLASSIFY_STD_MEAN
        ]:
            """
            upper_bound = 0 if len(cm.counts) == 5 else cm.counts[5]
            label_group = ['<%s (%d)'% (cm.bins[0],cm.counts[0]),
                           '%s - %s (%d)'% (cm.bins[0], cm.bins[1],cm.counts[1]),
                           '%s - %s (%d)'% (cm.bins[1], cm.bins[2], cm.counts[2]),
                           '%s - %s (%d)'% (cm.bins[2], cm.bins[3], cm.counts[3]),
                           '%s - %s (%d)'% (cm.bins[3], cm.bins[4], cm.counts[4]),
                           '>%s (%d)'% (cm.bins[4], upper_bound)]
            #color_group = self._get_default_color_schema(len(cm.bins))
            color_group = self.pick_color_set(3,7,False)[1:]
            """
            label_group = self._get_range_labels(cm.bins, cm.counts)
            color_group = self.pick_color_set(3, len(cm.bins), True)  #[1:]

        if map_type != stars.MAP_CLASSIFY_UNIQUE_VALUES:
            # convert
            binIds = cm.yb
            bins = cm.bins

            n_group = len(bins)
            id_group = [[] for i in range(n_group)]
            for i, gid in enumerate(binIds):
                id_group[gid].append(i)

        return id_group, label_group, color_group
Пример #21
0
#Accounts for the acutocorrelation in the model with the weight matrix
#
data = ps.pdio.read_files(shape)
Queen = ps.queen_from_shapefile(shape)
Queen.transform = 'r'
percent16Lag = ps.lag_spatial(Queen, data.percent16)

# In[4]:

#This is a spatial lag graph of the percentages of suicide for the year 2016.
#Spatial lag is a form of regression that accounts for the weight matrix of the shape file
#and the dependent veriable that you have chosen.

import matplotlib.pyplot as plt
us = file
percent16LagQ16 = ps.Quantiles(percent16Lag, k=10)
f, ax = plt.subplots(1, figsize=(150, 150))
us.assign(cl=percent16LagQ16.yb).plot(column='cl',
                                      categorical=True,
                                      k=10,
                                      cmap='OrRd',
                                      linewidth=0.1,
                                      ax=ax,
                                      edgecolor='white',
                                      legend=True)
ax.set_axis_off()
plt.title("Percentage of Suicides 2016 Spatial Lag Deciles")

plt.show()

# In[17]:
Пример #22
0
def column_kde(series_to_plot, num_bins=7, split_type="quantiles", bw=0.15,
               plot_title="", xlabel="x", ylabel="y"):
    """
    v1.0
    function that plots: Kernel Density Estimation (KDE)
                         rugplot
                         shows a classification of the distribution based on 'num_bins' and 'split_type'

    Plots data from the global variable (GeoDataFrame) 'teranet_da_gdf'

    ----------------
    Input arguments: series_to_plot -- pandas Series -- series to be plotted

                     num_bins       -- int    -- number of bins to be used for the split of
                                                 the distribution (default=7)

                     split_type     -- str    -- type of the split of the distribution (default='quantiles')
                                                 must be either 'quantiles', 'equal_interval', or 'fisher_jenks'

                     bw             -- float  -- bandwidth to be used for KDE (default=0.15)

    --------
    Returns:     None, plots a KDE, rugplot, and bins of values in 'column_to_plot'
    """
    # generate a list of bins from the split of the distribution using type of split provided in 'split_type'
    if split_type == 'quantiles':
        classi = ps.Quantiles(series_to_plot, k=num_bins)
    elif split_type == 'equal_interval':
        classi = ps.Equal_Interval(series_to_plot, k=num_bins)
    elif split_type == 'fisher_jenks':
        classi = ps.Fisher_Jenks(series_to_plot, k=num_bins)
    elif type(split_type) == str:
        raise ValueError("Input parameter 'split_type' must be either 'quantiles', " +
                         "'equal_interval', or 'fisher_jenks'.")
    else:
        raise TypeError("Input parameter 'split_type' must be a string and either 'quantiles', " +
                        "'equal_interval, or 'fisher_jenks'.")
    # print the bins
    print(classi)

    # create figure and axis
    f, ax = plt.subplots(1, figsize=(9, 6))

    # plot KDE of the distribution
    sns.kdeplot(series_to_plot,
                shade=True,
                label='Distribution of counts of Teranet records per DA',
                bw=bw)

    # plot a rugplot
    sns.rugplot(series_to_plot, alpha=0.5)

    # plot the split of the distribution
    for classi_bin in classi.bins:
        ax.axvline(classi_bin, color='magenta', linewidth=1, linestyle='--')

    # plot the mean and the median
    ax.axvline(series_to_plot.mean(),
               color='deeppink',
               linestyle='--',
               linewidth=1)

    ax.text(series_to_plot.mean(),
            0,
            "Mean: {0:.2f}".format(series_to_plot.mean()),
            rotation=90)

    ax.axvline(series_to_plot.median(),
               color='coral',
               linestyle=':')

    ax.text(series_to_plot.median(),
            0,
            "Median: {0:.2f}".format(series_to_plot.median()),
            rotation=90)

    # configure axis parameters
    ax.set_title(plot_title,
                 fontdict={'fontsize': '18', 'fontweight': '3'})
    ax.set_xlabel(xlabel,
                  fontdict={'fontsize': '16', 'fontweight': '3'})
    ax.set_ylabel(ylabel,
                  fontdict={'fontsize': '16', 'fontweight': '3'})

    ax.legend(loc='best')

    plt.show()
Пример #23
0
    ## prep time data
    t_data = get_time_data(query_result, time_cols)

    plpy.debug('shape of t_data %d, %d' % t_data.shape)
    plpy.debug('number of weight objects: %d, %d' % (weights.sparse).shape)
    plpy.debug('first num elements: %f' % t_data[0, 0])

    sp_markov_result = ps.Spatial_Markov(t_data,
                                         weights,
                                         k=num_classes,
                                         fixed=False,
                                         permutations=permutations)

    ## get lag classes
    lag_classes = ps.Quantiles(ps.lag_spatial(weights, t_data[:, -1]),
                               k=num_classes).yb

    ## look up probablity distribution for each unit according to class and lag class
    prob_dist = get_prob_dist(sp_markov_result.P, lag_classes,
                              sp_markov_result.classes[:, -1])

    ## find the ups and down and overall distribution of each cell
    trend_up, trend_down, trend, volatility = get_prob_stats(
        prob_dist, sp_markov_result.classes[:, -1])

    ## output the results
    return zip(trend, trend_up, trend_down, volatility, weights.id_order)


def get_time_data(markov_data, time_cols):
    """
Пример #24
0
# %matplotlib inline
import pysal as ps
import pandas as pd
import numpy as np
from flask import Flask, render_template, request
from pysal.contrib.viz import mapping as maps
import matplotlib.pyplot as plt
import geopandas as gpd
import os, time, glob
import wtforms

data = ps.pdio.read_files("C:\zoovision\data\Region1.shp")
data.head()
shp_link = "C:\zoovision\data\Region1.shp"
tx = gpd.read_file(shp_link)
hr10 = ps.Quantiles(data.ind_100t, k=10)
f, ax = plt.subplots(1, figsize=(9, 9))
tx.assign(cl=hr10.yb).plot(column='cl', categorical=True, \
                           k=10, cmap='OrRd', linewidth=0.1, ax=ax, \
                           edgecolor='white', legend=True)
ax.set_axis_off()
plt.title("ind_100t Deciles")
plt.show()

if not os.path.isdir('static'):
    os.mkdir('static')
else:
    # Remove old plot files
    for filename in glob.glob(os.path.join('static', '*.png')):
        os.remove(filename)
# Use time since Jan 1, 1970 in filename in order make
Пример #25
0
import matplotlib.pyplot as plt
from matplotlib.widgets import Slider, Button, RadioButtons
# %matplotlib inline
import pysal as ps
from pysal.contrib.viz import mapping as maps
import matplotlib.pyplot as plt
import geopandas as gpd
from pandas import DataFrame
from geopandas import GeoDataFrame
import os, time, glob

fp = "C:\zoovision\data\states\states2.shp"
rg1 = gpd.read_file(fp)
rg1 = rg1.to_crs(epsg=2163)
fig, ax = plt.subplots(1, figsize=(15, 10))
hr10 = ps.Quantiles(rg1.POP10_SQMI, k=10)
# title = "Select parameters and press query to view surveillance summary"
# ax.set_title(title, y=1.08, fontsize=30)
ax.set_axis_off()

rg1.plot(ax=ax)
# rg1.assign(cl=hr10.yb).plot(column='cl', categorical=True, \
#                  linewidth=0.5, ax=ax,
#                  k = 10, cmap='BuGn', edgecolor='black')

if not os.path.isdir('static'):
    os.mkdir('static')
else:
    # Remove old plot files
    for filename in glob.glob(os.path.join('static', '*.png')):
        os.remove(filename)