def test_get_jk_high_cost(self): kpts = cell1.make_kpts([3, 1, 1]) np.random.seed(1) dm = (np.random.rand(len(kpts), cell1.nao, cell1.nao) + np.random.rand(len(kpts), cell1.nao, cell1.nao) * 1j) dm = dm + dm.transpose(0, 2, 1).conj() kmesh = k2gamma.kpts_to_kmesh(cell1, kpts) phase = k2gamma.get_phase(cell1, kpts, kmesh)[1] dm = np.einsum('Rk,kuv,Sk->RSuv', phase.conj().T, dm, phase.T) dm = np.einsum('Rk,RSuv,Sk->kuv', phase, dm.real, phase.conj()) mf = cell1.KRHF(kpts=kpts) jref, kref = mf.get_jk(cell1, dm, kpts=kpts) ej = np.einsum('kij,kji->', jref, dm) ek = np.einsum('kij,kji->', kref, dm) * .5 jk_builder = rsjk.RangeSeparationJKBuilder(cell1, kpts) jk_builder.omega = 0.5 vj, vk = jk_builder.get_jk(dm, kpts=kpts, exxdiv=mf.exxdiv) self.assertAlmostEqual(abs(vj - jref).max(), 0, 7) self.assertAlmostEqual(abs(vk - kref).max(), 0, 7) vj, vk = jk_builder.get_jk(dm, kpts=kpts, exxdiv=mf.exxdiv, with_k=False) self.assertAlmostEqual(abs(vj - jref).max(), 0, 7) vj, vk = jk_builder.get_jk(dm, kpts=kpts, exxdiv=mf.exxdiv, with_j=False) self.assertAlmostEqual(abs(vk - kref).max(), 0, 7) vj, vk = jk_builder.get_jk(dm, hermi=0, kpts=kpts, exxdiv=mf.exxdiv) self.assertAlmostEqual(abs(vj - jref).max(), 0, 7) self.assertAlmostEqual(abs(vk - kref).max(), 0, 7) vj, vk = jk_builder.get_jk(dm, hermi=0, kpts=kpts, exxdiv=mf.exxdiv, with_k=False) self.assertAlmostEqual(abs(vj - jref).max(), 0, 7) vj, vk = jk_builder.get_jk(dm, hermi=0, kpts=kpts, exxdiv=mf.exxdiv, with_j=False) self.assertAlmostEqual(abs(vk - kref).max(), 0, 7)
def build(self, omega=None, direct_scf_tol=None): cpu0 = (time.clock(), time.time()) cell = self.cell kpts = self.kpts k_scaled = cell.get_scaled_kpts(kpts).sum(axis=0) k_mod_to_half = k_scaled * 2 - (k_scaled * 2).round(0) if abs(k_mod_to_half).sum() > 1e-5: raise NotImplementedError('k-points must be symmetryic') if omega is not None: self.omega = omega if self.omega is None: # Search a proper range-separation parameter omega that can balance the # computational cost between the real space integrals and moment space # integrals self.omega, self.mesh, self.ke_cutoff = _guess_omega( cell, kpts, self.mesh) else: self.ke_cutoff = aft.estimate_ke_cutoff_for_omega(cell, self.omega) self.mesh = pbctools.cutoff_to_mesh(cell.lattice_vectors(), self.ke_cutoff) logger.info(self, 'omega = %.15g ke_cutoff = %s mesh = %s', self.omega, self.ke_cutoff, self.mesh) if direct_scf_tol is None: direct_scf_tol = cell.precision**1.5 logger.debug(self, 'Set direct_scf_tol %g', direct_scf_tol) self.cell_rs = cell_rs = _re_contract_cell(cell, self.ke_cutoff) self.bvk_kmesh = kmesh = k2gamma.kpts_to_kmesh(cell_rs, kpts) bvkcell, phase = k2gamma.get_phase(cell_rs, kpts, kmesh) self.bvkmesh_Ls = Ks = k2gamma.translation_vectors_for_kmesh( cell_rs, kmesh) self.bvkcell = bvkcell self.phase = phase # Given ke_cutoff, eta corresponds to the most steep Gaussian basis # of which the Coulomb integrals can be accurately computed in moment # space. eta = aft.estimate_eta_for_ke_cutoff(cell, self.ke_cutoff, precision=cell.precision) # * Assuming the most steep function in smooth basis has exponent eta, # with attenuation parameter omega, rcut_sr is the distance of which # the value of attenuated Coulomb integrals of four shells |eta> is # smaller than the required precision. # * The attenuated coulomb integrals between four s-type Gaussians # (2*a/pi)^{3/4}exp(-a*r^2) is # (erfc(omega*a^0.5/(omega^2+a)^0.5*R) - erfc(a^0.5*R)) / R # if two Gaussians on one center and the other two on another center # and the distance between the two centers are R. # * The attenuated coulomb integrals between two spherical charge # distributions is # ~(pi/eta)^3/2 (erfc(tau*(eta/2)^0.5*R) - erfc((eta/2)^0.5*R)) / R # tau = omega/sqrt(omega^2 + eta/2) # if the spherical charge distribution is the product of above s-type # Gaussian with exponent eta and a very smooth function. # When R is large, the attenuated Coulomb integral is # ~= (pi/eta)^3/2 erfc(tau*(eta/2)^0.5*R) / R # ~= pi/(tau*eta^2*R^2) exp(-tau^2*eta*R^2/2) tau = self.omega / (self.omega**2 + eta / 2)**.5 rcut_sr = 10 # initial guess rcut_sr = (-np.log(direct_scf_tol * tau * (eta * rcut_sr)**2 / np.pi) / (tau**2 * eta / 2))**.5 logger.debug(self, 'eta = %g rcut_sr = %g', eta, rcut_sr) # Ls is the translation vectors to mimic periodicity of a cell Ls = bvkcell.get_lattice_Ls(rcut=cell.rcut + rcut_sr) self.supmol_Ls = Ls = Ls[np.linalg.norm(Ls, axis=1).argsort()] supmol = _make_extended_mole(cell_rs, Ls, Ks, self.omega, direct_scf_tol) self.supmol = supmol nkpts = len(self.bvkmesh_Ls) nbas = cell_rs.nbas n_steep, n_local, n_diffused = cell_rs._nbas_each_set n_compact = n_steep + n_local bas_mask = supmol._bas_mask self.bvk_bas_mask = bvk_bas_mask = bas_mask.any(axis=2) # Some basis in bvk-cell are not presented in the supmol. They can be # skipped when computing SR integrals self.bvkcell._bas = bvkcell._bas[bvk_bas_mask.ravel()] # Record the mapping between the dense bvkcell basis and the # original sparse bvkcell basis bvk_cell_idx = np.repeat(np.arange(nkpts)[:, None], nbas, axis=1) self.bvk_cell_id = bvk_cell_idx[bvk_bas_mask].astype(np.int32) cell0_shl_idx = np.repeat(np.arange(nbas)[None, :], nkpts, axis=0) self.cell0_shl_id = cell0_shl_idx[bvk_bas_mask].astype(np.int32) logger.timer_debug1(self, 'initializing supmol', *cpu0) logger.info(self, 'sup-mol nbas = %d cGTO = %d pGTO = %d', supmol.nbas, supmol.nao, supmol.npgto_nr()) supmol.omega = -self.omega # Set short range coulomb with supmol.with_integral_screen(direct_scf_tol**2): vhfopt = _vhf.VHFOpt(supmol, 'int2e_sph', qcondname=libpbc.PBCVHFsetnr_direct_scf) vhfopt.direct_scf_tol = direct_scf_tol self.vhfopt = vhfopt logger.timer(self, 'initializing vhfopt', *cpu0) q_cond = vhfopt.get_q_cond((supmol.nbas, supmol.nbas)) idx = supmol._images_loc bvk_q_cond = lib.condense('NP_absmax', q_cond, idx, idx) ovlp_mask = bvk_q_cond > direct_scf_tol # Remove diffused-diffused block if n_diffused > 0: diffused_mask = np.zeros_like(bvk_bas_mask) diffused_mask[:, n_compact:] = True diffused_mask = diffused_mask[bvk_bas_mask] ovlp_mask[diffused_mask[:, None] & diffused_mask] = False self.ovlp_mask = ovlp_mask.astype(np.int8) # mute rcut_threshold, divide basis into two sets only cell_lr_aft = _re_contract_cell(cell, self.ke_cutoff, -1, verbose=0) self.lr_aft = lr_aft = _LongRangeAFT(cell_lr_aft, kpts, self.omega, self.bvk_kmesh) lr_aft.ke_cutoff = self.ke_cutoff lr_aft.mesh = self.mesh lr_aft.eta = eta return self
cell.atom = ''' H 0. 0. 0. H 0.5 0.3 0.4 ''' cell.basis = 'gth-dzvp' cell.pseudo = 'gth-pade' cell.a = np.eye(3) * 4. cell.unit = 'B' cell.build() kmesh = [2, 2, 1] kpts = cell.make_kpts(kmesh) print("Transform k-point integrals to supercell integral") scell, phase = k2gamma.get_phase(cell, kpts) NR, Nk = phase.shape nao = cell.nao s_k = cell.pbc_intor('int1e_ovlp', kpts=kpts) s = scell.pbc_intor('int1e_ovlp') s1 = np.einsum('Rk,kij,Sk->RiSj', phase, s_k, phase.conj()) print(abs(s - s1.reshape(s.shape)).max()) s = scell.pbc_intor('int1e_ovlp').reshape(NR, nao, NR, nao) s1 = np.einsum('Rk,RiSj,Sk->kij', phase.conj(), s, phase) print(abs(s1 - s_k).max()) kmf = dft.KRKS(cell, kpts) ekpt = kmf.run() mf = k2gamma.k2gamma(kmf, kmesh)
0.4037767149 -0.4712295093 0.1187877657 -0.4058039291 ''') cell.verbose = 6 cells.append(cell) for cell in cells: kpts = cell.make_kpts([3, 1, 1]) mf = cell.KRHF(kpts=kpts) #.run() #dm = mf.make_rdm1() np.random.seed(1) dm = (np.random.rand(len(kpts), cell.nao, cell.nao) + np.random.rand(len(kpts), cell.nao, cell.nao) * 1j) dm = dm + dm.transpose(0, 2, 1).conj() kmesh = k2gamma.kpts_to_kmesh(cell, kpts) phase = k2gamma.get_phase(cell, kpts, kmesh)[1] dm = lib.einsum('Rk,kuv,Sk->RSuv', phase.conj().T, dm, phase.T) dm = lib.einsum('Rk,RSuv,Sk->kuv', phase, dm.real, phase.conj()) jref, kref = mf.get_jk(cell, dm, kpts=kpts) ej = np.einsum('kij,kji->', jref, dm) ek = np.einsum('kij,kji->', kref, dm) * .5 jk_builder = RangeSeparationJKBuilder(cell, kpts) jk_builder.build(omega=0.5) #jk_builder.mesh = [6,6,6] #print(jk_builder.omega, jk_builder.mesh) vj, vk = jk_builder.get_jk(dm, kpts=kpts, exxdiv=mf.exxdiv) print(abs(vj - jref).max()) print(abs(vk - kref).max()) print('ej_ref', ej, 'ek_ref', ek)
cell.atom = ''' H 0. 0. 0. H 0.5 0.3 0.4 ''' cell.basis = 'gth-dzvp' cell.pseudo = 'gth-pade' cell.a = np.eye(3) * 4. cell.unit='B' cell.build() kmesh = [2, 2, 1] kpts = cell.make_kpts(kmesh) print("Transform k-point integrals to supercell integral") scell, phase = k2gamma.get_phase(cell, kpts) NR, Nk = phase.shape nao = cell.nao s_k = cell.pbc_intor('int1e_ovlp', kpts=kpts) s = scell.pbc_intor('int1e_ovlp') s1 = np.einsum('Rk,kij,Sk->RiSj', phase, s_k, phase.conj()) print(abs(s-s1.reshape(s.shape)).max()) s = scell.pbc_intor('int1e_ovlp').reshape(NR,nao,NR,nao) s1 = np.einsum('Rk,RiSj,Sk->kij', phase.conj(), s, phase) print(abs(s1-s_k).max()) kmf = dft.KRKS(cell, kpts) ekpt = kmf.run() mf = k2gamma.k2gamma(kmf, kmesh)