Пример #1
0
def kernel(mf, conv_tol=1e-9, dump_chk=True, dm0=None, callback=None):
    '''the modified SCF kernel for Dirac-Hartree-Fock.  In this kernel, the
    SCF is carried out in three steps.  First the 2-electron part is
    approximated by large component integrals (LL|LL); Next, (SS|LL) the
    interaction between large and small components are added; Finally,
    converge the SCF with the small component contributions (SS|SS)
    '''
    if dm0 is None:
        dm = mf.get_init_guess()
    else:
        dm = dm0

    if dm0 is None and mf._coulomb_now.upper() == 'LLLL':
        scf_conv, hf_energy, mo_energy, mo_coeff, mo_occ \
                = hf.kernel(mf, 4e-3, dump_chk, dm0=dm, callback=callback)
        dm = mf.make_rdm1(mo_coeff, mo_occ)
        mf._coulomb_now = 'SSLL'

    if dm0 is None and (mf._coulomb_now.upper() == 'SSLL' \
                         or mf._coulomb_now.upper() == 'LLSS'):
        scf_conv, hf_energy, mo_energy, mo_coeff, mo_occ \
                = hf.kernel(mf, 4e-4, dump_chk, dm0=dm, callback=callback)
        dm = mf.make_rdm1(mo_coeff, mo_occ)
        mf._coulomb_now = 'SSSS'

    if mf.with_ssss:
        mf._coulomb_now = 'SSSS'
    else:
        mf._coulomb_now = 'SSLL'

    if mf.with_gaunt:
        mf.get_veff = mf.get_vhf_with_gaunt

    return hf.kernel(mf, conv_tol, dump_chk, dm0=dm, callback=callback)
Пример #2
0
def kernel(mf,
           conv_tol=1e-9,
           conv_tol_grad=None,
           dump_chk=True,
           dm0=None,
           callback=None,
           conv_check=True):
    '''the modified SCF kernel for Dirac-Hartree-Fock.  In this kernel, the
    SCF is carried out in three steps.  First the 2-electron part is
    approximated by large component integrals (LL|LL); Next, (SS|LL) the
    interaction between large and small components are added; Finally,
    converge the SCF with the small component contributions (SS|SS)
    '''
    if conv_tol_grad is None:
        conv_tol_grad = numpy.sqrt(conv_tol)
        logger.info(mf, 'Set gradient conv threshold to %g', conv_tol_grad)
    if dm0 is None:
        dm = mf.get_init_guess()
    else:
        dm = dm0

    mf._coulomb_now = 'LLLL'
    if dm0 is None and mf._coulomb_now.upper() == 'LLLL':
        scf_conv, e_tot, mo_energy, mo_coeff, mo_occ \
                = hf.kernel(mf, 1e-2, 1e-1,
                            dump_chk, dm0=dm, callback=callback,
                            conv_check=False)
        dm = mf.make_rdm1(mo_coeff, mo_occ)
        mf._coulomb_now = 'SSLL'

    if dm0 is None and (mf._coulomb_now.upper() == 'SSLL'
                        or mf._coulomb_now.upper() == 'LLSS'):
        scf_conv, e_tot, mo_energy, mo_coeff, mo_occ \
                = hf.kernel(mf, 1e-3, 1e-1,
                            dump_chk, dm0=dm, callback=callback,
                            conv_check=False)
        dm = mf.make_rdm1(mo_coeff, mo_occ)
        mf._coulomb_now = 'SSSS'

    if mf.with_ssss:
        mf._coulomb_now = 'SSSS'
    else:
        mf._coulomb_now = 'SSLL'

    return hf.kernel(mf,
                     conv_tol,
                     conv_tol_grad,
                     dump_chk,
                     dm0=dm,
                     callback=callback,
                     conv_check=conv_check)
Пример #3
0
    def scf(self, dm0=None):
        cput0 = (time.clock(), time.time())
        mol = self.mol
        self.build(mol)
        self.dump_flags()
        self.converged, self.hf_energy, \
                self.mo_energy, self.mo_coeff, self.mo_occ \
                = hf.kernel(self, self.conv_tol, dm0=dm0,
                            callback=self.callback)

        logger.timer(self, 'SCF', *cput0)
        self.dump_energy(self.hf_energy, self.converged)

        # sort MOs wrt orbital energies, it should be done last.
        o_sort = numpy.argsort(self.mo_energy[self.mo_occ>0])
        v_sort = numpy.argsort(self.mo_energy[self.mo_occ==0])
        self.mo_energy = numpy.hstack((self.mo_energy[self.mo_occ>0][o_sort], \
                                       self.mo_energy[self.mo_occ==0][v_sort]))
        self.mo_coeff = numpy.hstack((self.mo_coeff[:,self.mo_occ>0][:,o_sort], \
                                      self.mo_coeff[:,self.mo_occ==0][:,v_sort]))
        nocc = len(o_sort)
        self.mo_occ[:nocc] = self.mo_occ[self.mo_occ>0][o_sort]
        self.mo_occ[nocc:] = 0

        #if self.verbose >= logger.INFO:
        #    self.analyze(self.verbose)
        return self.hf_energy
Пример #4
0
def kernel(mf, conv_tol=1e-9, conv_tol_grad=None,
           dump_chk=True, dm0=None, callback=None, conv_check=True):
    '''the modified SCF kernel for Dirac-Hartree-Fock.  In this kernel, the
    SCF is carried out in three steps.  First the 2-electron part is
    approximated by large component integrals (LL|LL); Next, (SS|LL) the
    interaction between large and small components are added; Finally,
    converge the SCF with the small component contributions (SS|SS)
    '''
    if conv_tol_grad is None:
        conv_tol_grad = numpy.sqrt(conv_tol)
        logger.info(mf, 'Set gradient conv threshold to %g', conv_tol_grad)
    if dm0 is None:
        dm = mf.get_init_guess()
    else:
        dm = dm0

    mf._coulomb_now = 'LLLL'
    if dm0 is None and mf._coulomb_now.upper() == 'LLLL':
        scf_conv, e_tot, mo_energy, mo_coeff, mo_occ \
                = hf.kernel(mf, 1e-2, 1e-1,
                            dump_chk, dm0=dm, callback=callback,
                            conv_check=False)
        dm = mf.make_rdm1(mo_coeff, mo_occ)
        mf._coulomb_now = 'SSLL'

    if dm0 is None and (mf._coulomb_now.upper() == 'SSLL' or
                        mf._coulomb_now.upper() == 'LLSS'):
        scf_conv, e_tot, mo_energy, mo_coeff, mo_occ \
                = hf.kernel(mf, 1e-3, 1e-1,
                            dump_chk, dm0=dm, callback=callback,
                            conv_check=False)
        dm = mf.make_rdm1(mo_coeff, mo_occ)
        mf._coulomb_now = 'SSSS'

    if mf.with_ssss:
        mf._coulomb_now = 'SSSS'
    else:
        mf._coulomb_now = 'SSLL'

    return hf.kernel(mf, conv_tol, conv_tol_grad, dump_chk, dm0=dm,
                     callback=callback, conv_check=conv_check)
Пример #5
0
def kernel(mf, dm0=None, **kwargs):

    if dm0 is None:
        dm0 = mf.dm_guess

    mf.converged, mf.e_tot, \
                mf.mo_energy, mf.mo_coeff, mf.mo_occ = \
                hf.kernel(mf, mf.conv_tol, mf.conv_tol_grad,
                          dm0=dm0, callback=mf.callback,
                          conv_check=mf.conv_check, **kwargs)

    if (mf.converged == False ):
        print ("scf did not converge")
        #raise RuntimeError("scf did not converge")

    mf.rdm1 = mf.make_rdm1()
    mf.elec_energy = mf.energy_elec(mf.rdm1)[0]
Пример #6
0
    def scf(self, dm0=None):
        cput0 = (time.clock(), time.time())

        self.build()
        self.dump_flags()
        self.converged, self.hf_energy, \
                self.mo_energy, self.mo_coeff, self.mo_occ \
                = hf.kernel(self, self.conv_tol, dm0=dm0,
                            callback=self.callback)
#        if self.nelectron_alpha * 2 < self.mol.nelectron:
#            self.mo_coeff = (self.mo_coeff[1], self.mo_coeff[0])
#            self.mo_occ = (self.mo_occ[1], self.mo_occ[0])
#            self.mo_energy = (self.mo_energy[1], self.mo_energy[0])

        logger.timer(self, 'SCF', *cput0)
        self.dump_energy(self.hf_energy, self.converged)
        #if self.verbose >= logger.INFO:
        #    self.analyze(self.verbose)
        return self.hf_energy
Пример #7
0
    def scf(self, dm0=None):
        cput0 = (time.clock(), time.time())
        mol = self.mol
        self.build(mol)
        self.dump_flags()
        self.converged, self.hf_energy, \
                self.mo_energy, self.mo_coeff, self.mo_occ \
                = hf.kernel(self, self.conv_tol, dm0=dm0,
                            callback=self.callback)

        logger.timer(self, 'SCF', *cput0)
        self.dump_energy(self.hf_energy, self.converged)

        ea = numpy.hstack(self.mo_energy[0])
        eb = numpy.hstack(self.mo_energy[0])
        oa_sort = numpy.argsort(ea[self.mo_occ[0]>0])
        va_sort = numpy.argsort(ea[self.mo_occ[0]==0])
        ob_sort = numpy.argsort(eb[self.mo_occ[1]>0])
        vb_sort = numpy.argsort(eb[self.mo_occ[1]==0])
        self.mo_energy = (numpy.hstack((ea[self.mo_occ[0]>0 ][oa_sort], \
                                        ea[self.mo_occ[0]==0][va_sort])), \
                          numpy.hstack((eb[self.mo_occ[1]>0 ][ob_sort], \
                                        eb[self.mo_occ[1]==0][vb_sort])))
        ca = self.mo_coeff[0]
        cb = self.mo_coeff[1]
        self.mo_coeff = (numpy.hstack((ca[:,self.mo_occ[0]>0 ][:,oa_sort], \
                                       ca[:,self.mo_occ[0]==0][:,va_sort])), \
                         numpy.hstack((cb[:,self.mo_occ[1]>0 ][:,ob_sort], \
                                       cb[:,self.mo_occ[1]==0][:,vb_sort])))
        nocc_a = int(self.mo_occ[0].sum())
        nocc_b = int(self.mo_occ[1].sum())
        self.mo_occ[0][:nocc_a] = 1
        self.mo_occ[0][nocc_a:] = 0
        self.mo_occ[1][:nocc_b] = 1
        self.mo_occ[1][nocc_b:] = 0

        #if self.verbose >= logger.INFO:
        #    self.analyze(self.verbose)
        return self.hf_energy
Пример #8
0
 def scf(self, *args, **kwargs):
     self.build()
     return hf.kernel(self, *args, dump_chk=False, **kwargs)