Пример #1
0
def MakeSiggenWaveform(samp, r, z, ene, t0, smooth=1, phi=np.pi / 8):
    """ Use pysiggen to generate a waveform w/ arb. ADC amplitude. Thanks Ben. """

    wf_length = samp  # in tens of ns.  This sets how long a wf you will simulate
    # r ranges from 0 to detector.detector_radius
    # phi ranges from 0 to np.pi/4                (Clint: Limit is the pcrad, set below)
    # z ranges from 0 to detector.detector_length (Clint: Limit is the pclen, set below)
    # energy sets the waveform amplitude
    # t0 sets the start point of the waveform
    # smooth is a gaussian smoothing parameter
    # default: r, phi, z, energy, t0, smooth = (15, np.pi/8, 15, 80, 10,15)

    # Probably don't mess around with anything in this block
    fitSamples = 1000  # ask me if you think you need to change this (you almost definitely don't)
    timeStepSize = 1  # don't change this, you'll break everything
    # Create a detector model (don't change any of this)
    detName = "../data/conf/P42574A_grad%0.2f_pcrad%0.2f_pclen%0.2f.conf" % (
        0.05, 2.5, 1.65)
    detector = Detector(detName,
                        timeStep=timeStepSize,
                        numSteps=fitSamples * 10. / timeStepSize,
                        maxWfOutputLength=5000)
    detector.LoadFieldsGrad("../data/fields_impgrad.npz", pcLen=1.6, pcRad=2.5)
    # Sets the impurity gradient.  Don't bother changing this
    detector.SetFieldsGradIdx(0)

    # First 3 params control the preamp shaping.
    # The 4th param is the RC decay, you can change that if you want.
    # params 5 and 6 are set not to do anything (theyre for the 2 rc constant decay model)
    rc_decay = 72.6  #us
    detector.SetTransferFunction(50, -0.814072377576, 0.82162729751, rc_decay,
                                 1, 1)

    wf_notrap = np.copy(
        detector.MakeSimWaveform(r,
                                 phi,
                                 z,
                                 ene,
                                 t0,
                                 wf_length,
                                 h_smoothing=smooth))
    timesteps = np.arange(0, wf_length) * 10  # makes it so your plot is in ns

    # Add charge trapping
    # trap_constants = [8, 28,288] # these are in microseconds
    # trap_constant_colors = ["red", "blue", "purple"]
    # for (idx, trap_rc) in enumerate(trap_constants):
    #     detector.trapping_rc = trap_rc
    #     wf = np.copy(detector.MakeSimWaveform(r, phi, z, ene, t0, wf_length, h_smoothing=smooth))
    #     ax0.plot(timesteps, wf, color = trap_constant_colors[idx],  label = "%0.1f us trapping" % trap_rc )
    #     ax1.plot(timesteps, wf_notrap - wf, color = trap_constant_colors[idx])
    #     print "amplitude diff: %f" % ( (np.amax(wf_notrap) - np.amax(wf)) /  np.amax(wf_notrap) )

    return wf_notrap, timesteps
Пример #2
0
    exit()

siggen_wf_length = (max_sample_idx - np.amin(baselineLengths) + 10) * 10
output_wf_length = np.amax(wfLengths) + 1

#Create a detector model
timeStepSize = 1  #ns
detName = "conf/P42574A_grad%0.2f_pcrad%0.2f_pclen%0.2f.conf" % (0.05, 2.5,
                                                                 1.65)
det = Detector(detName,
               timeStep=timeStepSize,
               numSteps=siggen_wf_length,
               maxWfOutputLength=output_wf_length,
               t0_padding=100)
det.LoadFieldsGrad(fieldFileName)
det.SetFieldsGradIdx(10)


def fit(directory):

    initializeDetectorAndWaveforms(
        det,
        wfs,
    )
    initMultiThreading(numThreads)

    # Create a model object and a sampler
    model = Model()
    sampler = dnest4.DNest4Sampler(model,
                                   backend=dnest4.backends.CSVBackend(
                                       basedir="./" + directory, sep=" "))
Пример #3
0
def plot_waveforms():

    wf_length = 200  #in tens of ns.  This sets how long a wf you will simulate

    #Probably don't mess around with anything in this block
    fitSamples = 1000  #ask me if you think you need to change this (you almost definitely don't)
    timeStepSize = 1  #don't change this, you'll break everything
    #Create a detector model (don't change any of this)
    detName = "conf/P42574A_grad%0.2f_pcrad%0.2f_pclen%0.2f.conf" % (0.05, 2.5,
                                                                     1.65)
    detector = Detector(detName,
                        timeStep=timeStepSize,
                        numSteps=fitSamples * 10. / timeStepSize,
                        maxWfOutputLength=5000)
    detector.LoadFieldsGrad("fields_impgrad.npz", pcLen=1.6, pcRad=2.5)
    #sets the impurity gradient.  Don't bother changing this
    detector.SetFieldsGradIdx(0)

    #First 3 params control the preamp shaping.
    #The 4th param is the RC decay, you can change that if you want.
    #params 5 and 6 are set not to do anything (theyre for the 2 rc constant decay model)
    rc_decay = 72.6  #us
    detector.SetTransferFunction(50, -0.814072377576, 0.82162729751, rc_decay,
                                 1, 1)

    #r ranges from 0 to detector.detector_radius
    #phi ranges from 0 to np.pi/4
    #z ranges from 0 to detector.detector_length
    #energy sets the waveform amplitude
    #t0 sets the start point of the waveform
    #smooth is a gaussian smoothing parameter

    r, phi, z, energy, t0, smooth = (15, np.pi / 8, 15, 80, 10, 15)

    trap_constants = [8, 28, 288]  #these are in microseconds
    trap_constant_colors = ["red", "blue", "purple"]

    # fig1 = plt.figure(0, figsize=(20,10))
    fig1 = plt.figure(0, figsize=(9, 7))
    gs = gridspec.GridSpec(2, 1, height_ratios=[4, 1])
    ax0 = plt.subplot(gs[0])
    ax1 = plt.subplot(gs[1], sharex=ax0)
    ax1.set_xlabel("Digitizer Time [ns]")
    ax0.set_ylabel("Voltage [A.U.]")
    ax1.set_ylabel("Residual [A.U]")

    timesteps = np.arange(0, wf_length) * 10  #makes it so your plot is in ns

    wf_notrap = np.copy(
        detector.MakeSimWaveform(r,
                                 phi,
                                 z,
                                 energy,
                                 t0,
                                 wf_length,
                                 h_smoothing=smooth))
    ax0.plot(timesteps, wf_notrap, color="green", label="No trapping")

    for (idx, trap_rc) in enumerate(trap_constants):
        detector.trapping_rc = trap_rc
        wf = np.copy(
            detector.MakeSimWaveform(r,
                                     phi,
                                     z,
                                     energy,
                                     t0,
                                     wf_length,
                                     h_smoothing=smooth))
        ax0.plot(timesteps,
                 wf,
                 color=trap_constant_colors[idx],
                 label="%0.1f us trapping" % trap_rc)
        ax1.plot(timesteps, wf_notrap - wf, color=trap_constant_colors[idx])

        print "amplitude diff: %f" % (
            (np.amax(wf_notrap) - np.amax(wf)) / np.amax(wf_notrap))

    ax0.legend(loc=4)
    plt.show()
    plt.savefig("wf.pdf")
Пример #4
0
max_sample_idx = 150

#Prepare detector
timeStepSize = 1
fitSamples = 200
detName = "conf/P42574A_grad%0.2f_pcrad%0.2f_pclen%0.2f.conf" % (0.05, 2.5,
                                                                 1.65)
detector = Detector(detName,
                    timeStep=timeStepSize,
                    numSteps=fitSamples * 10. / timeStepSize,
                    maxWfOutputLength=fitSamples + max_sample_idx + 2)
fieldFileName = "P42574A_fields_impgrad_0.00000-0.00100.npz"
#sets the impurity gradient.  Don't bother changing this
detector.LoadFieldsGrad(fieldFileName)
detector.SetFieldsGradIdx(33)

b = 169.722312
c = -0.805889
d = 0.813206

rc1 = 72.904982
rc2 = 23.900887
rcfrac = 0.996435

fallPercentage = 0.99

detector.SetTransferFunction(b, c, d, rc1, rc2, rcfrac)
h_100_mu0, h_100_beta, h_100_e0 = 337372.980584, 0.545879, 30.952525,
h_111_mu0, h_111_beta, h_111_e0 = 452053.925755, 0.430484, 23.900887
detector.siggenInst.set_hole_params(h_100_mu0, h_100_beta, h_100_e0, h_111_mu0,
Пример #5
0
def main(argv):

    wfFileName = "P42574A_24_spread.npz"

    if os.path.isfile(wfFileName):
        data = np.load(wfFileName)
        wfs = data['wfs']
    else:
        print "No saved waveforms available."
        exit(0)

    global wf
    wf = wfs[20]

    max_sample_idx = 150
    fallPercentage = 0.97
    wf.WindowWaveformAroundMax(fallPercentage=fallPercentage,
                               rmsMult=2,
                               earlySamples=max_sample_idx)
    baseline_length = wf.t0Guess

    print "wf length %d (entry %d from run %d)" % (
        wf.wfLength, wf.entry_number, wf.runNumber)
    wf_length = wf.wfLength
    wf_max = np.argmax(wf.windowedWf)
    baseline_origin_idx = baseline_length - 30

    if baseline_origin_idx < 0:
        print "not enough baseline!!"
        exit(0)
    initT0Padding(max_sample_idx, baseline_origin_idx)

    siggen_wf_length = (max_sample_idx - baseline_length + 10) * 10

    global output_wf_length
    output_wf_length = wf_length + 1

    #setup .ector
    timeStepSize = 1
    fitSamples = 200
    detName = "conf/P42574A_ben.conf"
    det = Detector(
        detName,
        timeStep=timeStepSize,
        numSteps=siggen_wf_length,
        maxWfOutputLength=output_wf_length,
    )
    fieldFileName = "P42574A_fields_impgrad_0.00000-0.00100.npz"
    #sets the impurity gradient.  Don't bother changing this
    det.LoadFieldsGrad(fieldFileName)

    det.SetFieldsGradIdx(np.int(imp_grad))
    det.siggenInst.set_hole_params(h_100_mu0, h_100_beta, h_100_e0, h_111_mu0,
                                   h_111_beta, h_111_e0)
    det.trapping_rc = trapping_rc
    det.SetTransferFunction(
        tf_b,
        tf_c,
        tf_d,
        rc1,
        rc2,
        rcfrac,
    )
    global detector
    detector = det

    directory = ""

    if len(argv) == 0:
        fit(directory)
    elif argv[0] == "plot":
        if len(argv) > 1: directory = argv[1]
        plot("sample.txt", directory)
    elif argv[0] == "plotpost":
        if len(argv) > 1: directory = argv[1]
        plot("posterior_sample.txt", directory)
    else:
        fit(argv[0])