def __init__( self, trainingInstanceType, trainingInstanceCount, endpointInstanceType, endpointInitialInstanceCount, sagemakerRole=IAMRoleFromConfig(), requestRowSerializer=ProtobufRequestRowSerializer(), responseRowDeserializer=LinearLearnerBinaryClassifierProtobufResponseRowDeserializer(), trainingInputS3DataPath=S3AutoCreatePath(), trainingOutputS3DataPath=S3AutoCreatePath(), trainingInstanceVolumeSizeInGB=1024, trainingProjectedColumns=None, trainingChannelName="train", trainingContentType=None, trainingS3DataDistribution="ShardedByS3Key", trainingSparkDataFormat="sagemaker", trainingSparkDataFormatOptions=None, trainingInputMode="File", trainingCompressionCodec=None, trainingMaxRuntimeInSeconds=24*60*60, trainingKmsKeyId=None, modelEnvironmentVariables=None, endpointCreationPolicy=EndpointCreationPolicy.CREATE_ON_CONSTRUCT, sagemakerClient=SageMakerClients.create_sagemaker_client(), region=None, s3Client=SageMakerClients.create_s3_default_client(), stsClient=SageMakerClients.create_sts_default_client(), modelPrependInputRowsToTransformationRows=True, deleteStagingDataAfterTraining=True, namePolicyFactory=RandomNamePolicyFactory(), uid=None, javaObject=None): if trainingSparkDataFormatOptions is None: trainingSparkDataFormatOptions = {} if modelEnvironmentVariables is None: modelEnvironmentVariables = {} if uid is None: uid = Identifiable._randomUID() kwargs = locals().copy() del kwargs['self'] super(LinearLearnerBinaryClassifier, self).__init__(**kwargs) default_params = { 'predictor_type': 'binary_classifier' } self._setDefault(**default_params)
def __init__(self, endpointInstanceType, endpointInitialInstanceCount, requestRowSerializer, responseRowDeserializer, existingEndpointName=None, modelImage=None, modelPath=None, modelEnvironmentVariables=None, modelExecutionRoleARN=None, endpointCreationPolicy=EndpointCreationPolicy.CREATE_ON_CONSTRUCT, sagemakerClient=SageMakerClients.create_sagemaker_client(), prependResultRows=True, namePolicy=RandomNamePolicy(), uid=None, javaObject=None): super(SageMakerModel, self).__init__() if modelEnvironmentVariables is None: modelEnvironmentVariables = {} if javaObject: self._java_obj = javaObject else: if uid is None: uid = Identifiable._randomUID() self._java_obj = self._new_java_obj( SageMakerModel._wrapped_class, Option(endpointInstanceType), Option(endpointInitialInstanceCount), requestRowSerializer, responseRowDeserializer, Option(existingEndpointName), Option(modelImage), Option(modelPath), modelEnvironmentVariables, Option(modelExecutionRoleARN), endpointCreationPolicy, sagemakerClient, prependResultRows, namePolicy, uid ) self._resetUid(self._call_java("uid"))
def test_spark_integration(): key = SparkMLParam(Identifiable(), "name", "doc") value = 123 param = Param(key, value) assert param.key == "name" assert param.value == "123"